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A 3D Numerical Model for a Flexible Fiber Motion in
Compressible Swirling Airflow

Hui-Fen Guo1,2 and Bin-Gang Xu1,3

Abstract: A numerical method is developed for modeling the dynamics of a flex-
ible fiber immersed in a compressible swirling flow. The modeling approach is
based on combining an Eulerian finite volume formulation for the fluid flow and a
Lagrangian small-deformation formulation for the dynamics of the fiber. The fiber
is modeled as a chain of beads connected through mass-less rods. The bending
and twisting deformation of the fiber are represented by the displacements of the
successive beads. A computational strategy is proposed for the computation of the
fluid parameters at the center of discrete fiber sections. To deal with the fiber–wall
interaction, a wall model is also developed. The new algorithm was verified against
the experimental observations using high-speed photography. The proposed model
has also been applied in a textile process to simulate the fiber motions in the two
nozzles (i.e., cylindrical and diverged conical tubes, respectively) of an air-jet spin-
ning machine, and consequently, the principle of the air-jet yarn formation can be
demonstrated.
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1 Introduction

The gas-solid two-phase swirling flows have been, and still are, the subjects of in-
tensive investigation for understanding many phenomena arising in engineering and
science. Swirling flows are used in a wide range of devices such as turbines [Zhou,
Chen, Xu, Ma and Guo (1998); Joseph, Vaidyanathan and Tomasz (2007)], com-
bustion equipment [Zhou, Chen, Xu, Ma and Guo (1998); Joseph, Vaidyanathan
and Tomasz (2007)], and cyclone separators using centrifugal effects in order to
remove particles gas-solid mixtures (Meier and Mori 1998; Su and Mao 2006) In
the 1960s, swirling airflows were also applied the textile industry, such as the rotor
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and air-jet spinning systems, to produce spun yarns. Compared with general partic-
ulates studied above [Zhou, Chen, Xu, Ma and Guo (1998); Joseph, Vaidyanathan
and Tomasz (2007); Meier and Mori (1998); Su and Mao (2006)], the textile fibers
not only have the large ratio of length to radius, i.e., aspect ratio, but also are elas-
tic and flexible. In these spinning systems, due to the effects of the swirling flow,
the flexible fibers are displaced and rotated around other fibers that surround them,
resulting in fiber twisting and wrapping around the neighboring fibers. This motion
characteristic of the fibers will help to produce a high quality yarn with good ten-
sile strength. Therefore, the dynamics of flexible fibers in swirling flows is of great
interest to predict the product properties, and to optimize the design of the spinning
systems.

Numerical simulation of two-phase flows is generally dealt with using two kinds
of approaches. In the Eulerian–Eulerian approach, the two phases are consid-
ered as the interacting and interpenetrating continua, whereas Eulerian–Lagrangian
method involves Lagrangian monitoring of solid particles or droplets in the flow.
Many studies show that although the Eulerian-Eulerian model is less time consum-
ing and more efficient, there were fundamental flaws associated with the formula-
tion [Durst, Milojevic and Schänung (1984); Stock (1996)]. For example, in this
model, the no-slip boundary condition is applied for the particulate phase in wall-
dominated multiphase flow; however, this is not valid for very high inertia particles.
The Lagrangian approach can overcome the difficulties associated with the appli-
cation of the Eulerian model for the particulate phase. It allows better considera-
tion of the physical phenomena that govern particle motion [Durst, Milojevic and
Schänung (1984); Stock (1996)]. It enables better modelling of the near-wall be-
havior, for instance. Therefore, a three-dimensional Eulerian–Lagrangian method
is adopted for simulating fiber motion in the swirling flow in this paper.

During the past decades, some useful methods had been proposed to numerically
simulate the dynamics of flexible fibers. Yamamoto and Matsuoka (1992; 1994)
proposed a method in which a slender fiber is approximated by a chain of spheres
connected through a spring, with additional potentials to mimic resistance to bend-
ing and twisting. This model [Yamamoto and Matsuoka (1992; 1994)] is believed
to be the most suitable approach to describe the dynamics of a long flexible fiber;
however, it requires enormous computational resources and computation time. To
overcome such restrictions, many researchers extended Yamamoto and Matsuoka’s
work. Wherrett (1996) modeled a fiber as a series of cylindrical elements based on
the work of Yamamoto and Matsuoka (1992; 1994) for 2D flow. The stretching and
bending stiffness are modified to include the aspect ratio of the elements. Ross and
Klingenberg (1997) employed a chain of rigid prolate spheroid connected through
ball and socket joints to improve computation efficiency. It was further developed
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by Dong, Feng, Salcudean and Gartshore (2003) to account for fiber-wall interac-
tion. In this model, the fiber can bend and twist much like a real fiber because
of the rotational freedom in each joint. Soltani and Amadi (2000) described curly
fiber as five elongated ellipsoidal links to study wall deposition of fibrous aerosols
in a turbulent channel flow. To simulate the dynamics of a long flexible fiber in
the hydro-entanglement process, Wang et al. (2006) assumed that the flexible fiber
is discretized into a chain of rigid rods, where each rod is further composed of
a series of beads connecting each other. The method is extended to simulate the
fiber movement in a two-dimensional turbulent flow field [Xiang and Kuznetsov
(2008)]. These extended fiber models [Wherrett (1996); Ross and Klingenberg
(1997); Soltani and Amadi (2000); Dong, Feng, Salcudean and Gartshore (2003);
Wang, Yu and Zhou (2006); Xiang and Kuznetsov 2008)] can greatly save the com-
putational time of long fibers. However, it is believed that too long spheroid/rod
length will greatly reduce the accuracy of the simulation for a relatively flexible
fiber.

In addition, some new methods have been also introduced to simulate fiber dynam-
ics. For example, the immersed boundary method has been applied to study the
interactions between fluid and solid particles [Stokie and Green (1998); Stockie
(2002); Zhu and Peskin (2007)]. In this method, a fiber is discretized with con-
nected Lagrangian markers, and their relative displacements by fluid motions are
used to calculate the fiber’s elastic response. To simulate the flexible fiber dynam-
ics in a non-zero Reynolds number flow, a lattice Boltzmann method was used by
Qi (2006; 2007). Other different numerical simulations of fiber dynamics were
reported by Tornberg and Shelley (2004) and Fan, Phan and Zheng (1998), who
employ a non-local slender body theory to capture the fluid–fiber interactions and
fiber–fiber interactions.

In most of the aforementioned works, the fibers are subjected to a given simple
shear flow which exerts a predetermined hydrodynamic force on the fiber. Un-
fortunately, little work has been reported regarding fiber dynamics in the complex
compressible swirling airflow. In our previous work [Guo and Xu (2009)], a 3D
bead-rod model was proposed for simulating the fiber motion in swirling airflow
in a straight tube. The beads are linked to each other by inextensible rods. The
bending and twisting displacements are also proposed to describe the fiber defor-
mation. Meanwhile, the computational problem of time-consuming was solved by
connecting the beads with rods instead of spheres. However, only the drag force
was considered in this computation process and many essential factors, such as air
compressibility, particle shape and fiber-wall collision, which may influence sig-
nificantly the fiber dynamics in the swirling flow, were neglected.

Our work is concerned with problems involving fiber motion in high-speed com-



204 Copyright © 2010 Tech Science Press CMES, vol.61, no.3, pp.201-222, 2010

pressible swirling flows, together with a corresponding wall model, since the in-
fluence of walls is critical in the shear layer where there is large velocity gradi-
ent and centrifugal force. The bead-rod model [Guo and Xu (2009)] is extended
to consider more factors, such as lift and particle-wall collision forces as well as
compressible effects. To simulate motion of a flexible fiber in a flow field, the one-
way coupling Euler–Lagrange approach is utilized. The flow field is first obtained
by solving Favre-averaged mean Navier–Stokes equations with realizable k-ε tur-
bulent model using the finite-volume approach [Guo, Chen and Yu (2009); Guo
and Chen (2009)], and then fiber dynamics is investigated by solving the bead–rod
model equations describing the response of an elastic fiber to the combined forces
exerted on it by the fluid flow. This proposed method is applied to the prediction
of the motions of a flexible fiber in the two nozzles (i.e., cylindrical and diverged
conical tubes, respectively) of air-jet spinning. Consequently, the principle of the
air-jet yarn formation is demonstrated.

2 Compressible swirling flow solver

To simulate motion of a flexible fiber in a compressible turbulent swirling flow, the
one-way coupling, which only considers the fluid-to-fiber effect, is utilized. The
fluid phase considered here is assumed to be three-dimensional, steady, viscous
turbulent flow of an ideal gas in the absence of body forces and to have constant
physical properties, such as the fluid viscosity and the specific heat capacity. Fluid
turbulence is modeled using the realizable k–ε model with neglect of the influence
of particle motion on fluid turbulence. The gas-phase Favre-averaged conservation
equations with the gas kinetic turbulence and dissipation rate can be recast in a
general form:

div
(

ρ
g−→V g

φ −Γφ gradφ

)
= Sφ (1)

Continuity equation (φ= 1):

Γφ = Sφ = 0 (2)

Momentum equation (φ = ug
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+
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+
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Sφ = Gk +ρ
g(ug

i
∂ p
∂xi

) (4)

Turbulence energy equation (φ= k):

Γφ = µl +
µt

σk

Sφ = Gk−ρ
g
ε−YM (5)

Turbulence dissipation equation (φ = ε):

Γφ = µl +
µt

σε

Sφ = ρ
g
εC1S− ρgε2C2

k +(νε)1/2 (6)

Here φ is a general variable, Γ a diffusion coefficient, and Sphi a general source
term. The vector

−→
V g = (ug

x ,u
g
y ,u

g
z ) represents the fluid velocity, ρg is the fluid den-

sity and S is the mean rate of strain tensor. µl and µt are the laminar and turbulent
viscosities, respectively. Gk represents the generation of turbulence kinetic energy
due to the mean velocity gradients. YM represents the contribution of the fluctuat-
ing dilatation in compressible turbulence to the overall dissipation rate. σk, σε and
σT are the turbulent Prandtl numbers for k, ε and temperature T respectively. The
empirical constants are C2=1.9, C1 = max[0.43,η/(η +5)] and η = Sk/ε .

In addition, the equation of state of a perfect gas (p =ρgRT) is added to complete
the system of the equations.

A finite-volume method is used to discretize the continuum gas-phase governing
equations on a collocated variable arrangement. Discretization of Eq. (1) on an
arbitrary control volume or cell V may be written as

N f

∑
f

ρ
g
f

−→
V g

f f
φ
−→
A f −

N f

∑
f

Γφ (∇φ)n
−→
A f = SφV (7)

where N f is number of faces enclosing cell, ρ
g
f , φ f , are the values of ρg and φ

through face f, respectively.
−→
A f is area of face f, (∇φ)n is magnitude of ∇φ normal

to face f.

Due to compressible effects, the coupled implicit approach is adopted. To reduce
the numerical diffusion in low-order schemes, high-order accurate schemes are
employed here. For the conservation equations, the second-order upwind (SOU)
schemes are applied, the face value φ f is computed:

φ f = φ +∇φ∆
−→s (8)
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where φ and ∇φ are the cell-centered value and its gradient in the upstream cell, and
∆
−→s is the displacement vector from the upstream cell centroid to the face centroid.

The generalized quadratic upstream interpolation of convective kinematics (QUICK)
scheme [Leonard and Mokhtari (1990)] is used in the k and ε equations. For a reg-
ularly spaced grid, this scheme is of third-order accuracy, and for an irregularly
spaced grid, the scheme is of second-order accuracy. For the cell ‘e’ with centre E,
the QUICK expression yields (see also Fig.1):

φe = θ

[
se

sp + se
φP +

sp

sp + se
φE

]
+(1−θ)

[
sw +2sp

sp + sw
φP−

sp

sp + sw
φW

]
(9)

Here points W and P are two points upstream of the point E. Sw, Sp and Se are the
lengths of the corresponding control volume of points W, P and E, respectively.
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Figure 1: Computational molecule for the QUICK scheme 
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compressible effects. In addition, a wall model is employed in this analysis since the fibers 
frequently touch the wall in shear layer of the swirling flow. 
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Figure 1: Computational molecule for the QUICK scheme

3 Flexible fiber dynamics model

A bead-rod fiber model which was developed by Guo and Xu (2009) is used in this
study. The fiber is composed of n beads of radius r which are connected by n-1
mass-less rods (Fig. 2). Only the beads are affected by forces, and the rods serve
to transmit forces and maintain the configuration of the fiber. Fiber extensibility is
neglected in this model since it is typically small when compared with other forms
of deformation. The bending and twisting deformations of the fiber are preferably
described by changing the relative displacements between successive beads.

The calculation of the fiber dynamics by the Lagrangian approach requires the so-
lution of the equation of the motion for each bead/particle. For any bead i, this
equation includes the restoring forces (i.e., the bending restoring force Fb

i and the
twisting restoring force F t

i ), and hydrodynamic forces acting from the fluid on the
bead such as drag force Fd

i and shear-induced lift force FL
i . Other hydrodynamic
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forces such as Basset history term, added mass, slip-rotational lift force and fluid
inertia are negligible here. Hence, the equations of motion for the bead i are given
by

d−→xi /dt =
−→
V f

i m f
i d
−→
V f

i /dt = F b
i +F t

i +F d
i +FL

i (10)

where m f
i = πr2ρ f(ii−1, i + ii, i+1)/2 is the mass of the bead i. ρ f , −→xi and

−→
V f

i
represent density, position and velocity of the bead i mass center, respectively. li−1,i

and li,i+1 are the lengths of the fiber section (i-1, i), and (i, i+1), respectively. For
the mass of the end bead 1 or n, the mirror reflection is applied.

Different from the previous work [Guo and Xu (2009)], this study will consider
more important influential factors on fiber dynamics. The local fluid density and
its relevant physical variables, such as particle Reynolds number and kinematic
viscosity are simulated because of the compressible effects. In addition, a wall
model is employed in this analysis since the fibers frequently touch the wall in
shear layer of the swirling flow.

 
Figure 2: Schematic diagram of a fiber model

3.1 Restoring forces

In this study, the fiber bend can be described by changing the displacements of
three adjacent beads i-2, i-1 and i (Fig. 3(a)). Assuming (i-1, it) is the equilibrium
position of the fiber section (i-1, i) and the deformation is small, the fiber section
will be bent when the bead i moves from it to it+∆t . Therefore, the bending defor-
mation of the fiber section (i-1, i) is equivalent to that of cantilever beams. From
small deflection theory [Gere and Timoshenko (1987)] the bending restoring force
Fb

i acting on the bead i is:

Fb
i =−3EIb

l3
i−1,i

sb (11)
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Figure 3: Sketch of the fiber deformations for (a) bending and (b) twisting 
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where G and It are the shear modulus and the polar moment of inertia, respectively. 
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Figure 3: Sketch of the fiber deformations for (a) bending and (b) twisting

Here sb is the bending deflection of the section (i-1,i). E and Ib are Young’s modulus
and the moment of inertia of the fiber cross-section area, respectively.

Similarly, the fiber torsion can be described by changing the displacements of four
adjacent beads i-3, i-2, i-1 and i (Fig. 3(b)). Assuming fiber section (i-1, it+∆t) is the
position after torsion of (i-1, i). The line (it+∆t , it) is normal to the plane comprising
of the fiber sections (i-2, i-1) and (i-3, i-2). Point i(i−2,i−1) is the projection of
the point it+∆t on the line (i-2, i-1) and ls is the length of the line segment (it+∆t ,
i(i−2,i−1)). According to the torsion theory of circular bar [Gere and Timoshenko
(1987)], st is the twisting displacement of the section (i-2, i-1), and the twisting
restoring force F i

t acting on the bead i is:

Ft
i =− GIt

lsli−2, i−1
st (12)

where G and it are the shear modulus and the polar moment of inertia, respectively.

3.2 Viscous forces in a fluid medium

In the proposed model, the drag force Fd
i and shear-induced lift force FL

i for the
bead i are contributed by fiber sections (i-1, i) and (i, i+1). These forces can be
calculated by:

Fd
i = (Fd

i−1,i +Fd
i,i+1)/2 FL

i = (FL
i−1,i +FL

i,i+1)/2 (13)

Fd
i−1,i and Fd

i,i+1 are the drag forces acting on the bead i and they are contributed by
the fiber sections (i-1, i) and (i, i+1),respectively. FL

i−1,i and FL
i,i+1 are corresponding

lift forces. The drag Fd
i−1,i acting on the fiber section (i-1, i) can be expressed as:

Fd
i−1,i = π d2

vCDρ
g|
−→
V g

i −
−→
V f

i |(
−→
V g

i −
−→
V f

i )/8 (14)
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where dv = (6r2li−1,i)1/3 is the equivalent diameter of an equal volume sphere.
−→
V g

i

and
−→
V f

i are the fluid and fiber velocities at the mass center of the fiber section (i-1,
i), respectively. The drag coefficient CD depends on variety parameters such as the
particle size and shape, local Reynolds number, and local fluid density. Considering
the effects of these factors, CD is described as [Haider and Levenspiel (1989)]:

CD =
24

Rep

[
1+exp

(
2.3288−6.4581Ψ+2.4486Ψ

2) Re(0.0964+0.5565Ψ)
p

]

+
exp
(
4.905−13.8944Ψ+18.4222Ψ2−10.2599Ψ3

)
Rep

exp(1.4681+12.2584Ψ−20.7322Ψ2+15.8855Ψ3) +Rep
(15)

Here particle sphericity Ψ (≤ 1) is ratio of the surface area of sphere having the

same volume as the particle to the area of the particle. Rep = ρgdv

∣∣∣−→V g−
−→
V f
∣∣∣/µ

is particle Reynolds number, and µ is the dynamic viscosity of the fluid. It should
point out that the effects of both particle shape and local fluid density were not
considered in our previous work [Guo and Xu (2009)].

Another dynamic force resulting in a deviation of particles from their trajectories is
the slip–shear lift force which is induced when a particle moves with a relative ve-
locity in a shear layer of continuous phase. In the present study, Mei (1992)’s shear-
slip lift model, which stems from Saffman’s work [Saffman (1965)], is adopted for
higher Rep, i.e.

FL
i−1,i = 1.615d2

vCL(ρg
µ)

1
2 [(
−→
V g

i −
−→
V f

i )×
−→
ω

g
i ]/|
−→
ω

g
i |

1
2 (16)

with the rotation
−→
ω

g
i = ∇×

−→
V g

i of the fluid phase. The coefficient CL can be ex-
pressed as [Mei (1992)]:

CLS =

{(
1−0.3314

√
β

)
exp
(
−Rep

10

)
+0.3314

√
β Rep ≤ 40

0.0524
√

βRep Rep > 40
(17)

and β is a parameter given by

β = 0.5dv
−→
ω

g/|
−→
V g−

−→
V f|.

3.3 Wall model

Fibers in shear layer frequently touch the wall due to both larger velocity gradi-
ent and centrifugal force of swirling flow, so a wall model that could efficiently



210 Copyright © 2010 Tech Science Press CMES, vol.61, no.3, pp.201-222, 2010

deal with the fiber–wall interaction is necessary. Olson (1996) and Lawryshyn
(1997) developed a similar approach to deal with two-dimensional fiber-wall col-
lision, where a reaction force is assumed to exert on the fiber to stop it passing
through the solid wall and the friction force is proportional to the normal force
on the fiber. In order to deal with the fiber interaction with any wall geometry,
Dong, Feng, Salcudean and Gartshore (2003) developed a three-dimensional uni-
versal wall model. However, so far no well recognized wall model is available and
thus a simple particle-wall collision model is adopted here. When a particle col-
lides with the wall, the particle velocities before and after impact can be determined
according to the impulse theorem as:

V 2
n =−enV 1

n V 2
t = etV 1

t (18)

where the superscripts 2 and 1 represent the rebound and incident components,
and subscripts n and t are the normal and tangential directions, respectively. The
variable e is the particle restitution coefficient, which is a function of wall material,
particle size, and incident angle [Schadeet al (2002)]. In this paper, the dependence
of the normal and tangential coefficients of restitution on the collision angle, α ,
was assumed to follow the relation obtained by Grant and Tabakoff (1975)

en= 0.993−1.76α+1.56α
2−0.49α

3

et= 0.988−1.66α+2.11α
2−0.67α

3 (19)

It is noted that when some of a series of beads in a fiber chain collide with the
wall, each collided particle is moved back to its old position at ∆t ago, and then
to the location where it just touches its colliding partner. The new velocities and
the new locations in the computational domain can be obtained by the wall model
(Eq. (18)) and the fiber dynamics Eq. (10), respectively. However, this may break
the connectivity of fiber chain. To remove this problem, the positions of beads will
be slightly adjusted after impingement, as proposed by Doi and Chen (1989). A
detailed calculation process was described in Section 4.

4 Algorithms for the fiber motion

In this section, a brief summary of the simulation procedure for evaluating the
motion of a fiber in a three-dimensional compressible swirling flow is provided. In
the following analysis, it is assumed that the initial fiber velocity is equal to that of
the fluid at the location of the fiber centroid.

From a practical point of view, after the Eulerian computation of the fluid flow
field, the Lagrangian step is performed by tracking a series of beads, with the flow
quantities, such as local fluid density, velocity and rotation being calculated at the
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center of each fiber section, using the data provided by the Eulerian calculation.
In this simulation, a weighted moving averaging interpolation is used to obtain the
fluid parameters at the center of each fiber-section from values at the closest grid
nodes of the fluid finite-volume scheme.

z = ∑
n
i=1 wizi

∑
N
i=1 wi

(20)

where z is the unknown fluid parameter at the fiber-section center (interpolation
point), and zi (i∈1, n) is the corresponding quantities of the ith neighbor (reference)
point. N is the total number of neighbor points used for the averaging operation.
For the ith point, the weight wi is a function of distance di of the reference point to
the interpolation point:

wi= 1/d 2
i (21)

An active search sphere, which is extended from search circle [Li, Zhu and Gold
(2005)], is suggested to determine the neighbor points (Fig. 4). The sphere center
is located at fiber-section center and the initial radius Rs can be defined as:

πR2
s = Sn× (A/Nn) (22)

where Nn is the total number of the grid points and A is the total area. Sn is average
reference point number in the sphere of radium Rs.

Regarding the calculation precision and cost, the total neighbor point number is
6≤ N ≤ 10, and the reference points are sorted according to the distance from the
interpolation point to the reference point. If there is more than ten points inside this
search sphere, the nearest ten points will be kept as reference points. If the number
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of reference point is less than six, on the other hand, increasing radius is a necessity
to achieve enough neighbor point. When such a case happens, for a set of search
sphere radii R0 < R1 < .. . < Rn, computations in the search with radius Ri are
discarded, but they are recalculated in the search with radius Ri+1. To reduce this
loss and decrease search complexity, our algorithm retains the valuable information
in the search with Ri and only search the points in the range from Ri to Ri+1. This
is similar to a sphere decoding algorithms [Zhao and Giannakis (2004)].

When solving the dynamic Eq. (10) of the fiber, due to numerical errors and the
effect of wall model, the following connectivity of the fiber chain, i.e., the nonslip
conditions, may be broken.∫

(−→xi −−−→xi−1) = lf (23)

where−−→xi−1 and−→xi are the position vectors of adjacent beads i-1 and i, respectively.
l f is the total length of the fiber.

To satisfy the nonslip conditions (23), following [Doi and Chen (1989)], the posi-
tions of the beads are slightly adjusted at each time step, i.e., the quantity of the
following function becomes minimum:

δ = ∑(∆−→xi )
2 (24)

Here, ∆
−→xi is the slight adjusting distance of the bead i.

In the paper, the time step ∆t is chosen so that the beads traverse no more than 20%
of the fiber diameter in each step, which eliminates the probability of simultaneous
multiple collisions. Based on the fluid field simulation, the algorithm of the fiber
motion is summarized as follow:

1. Calculate the forces acting on each bead

(a) Evaluate the fluid velocity
−→
V g, rotation

−→
ωg and density ρg at each fiber

section centroid using weighted averaging (Eq. (20));

(b) Compute the drag and lift forces on each bead by Equations (13)-(17);

(c) Calculate the bending and twisting forces for each bead by using Equa-
tions (11) and (12);

2. Calculate new coordinates and velocities of each bead at a time t+∆t using
Eq. (10)

3. Obtain the fiber final position at a time t+∆t with the particle-wall model and
geometrical constraint
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(a) If bead collides with the wall, the post-collisional particle velocity and
new position are calculated according to Equations (18) and (10);

(b) If no collision has occurred at all, or after all the collisions have been
dealt with, the position of the bead is adjusted to satisfy the condition
of Eq. (23).

5 Application

Air-jet spinning, as one of the application of the two-phase gas-solid swirling flow,
is becoming an important spinning technique because it offers advantages in respect
of processing speed, efficiency, and ability to spin fine count yarns. In this spinning
system [Basu (1999); Grosberg, Oxenham and Miao (1987)], the forming yarn is
‘twisted’ by operating two swirling air currents in mutually opposite directions in
two successive nozzles (Fig. 5(a)). The first nozzle is situated between the second
nozzle and the front roller. The air in this nozzle rotates in the opposite direction to
that in second nozzle. For the ribbon-like fiber bundle from the front roller, some
fibers, particularly lying at the edges of the strand, are separated from the main fiber
bundles, and will not be subject to the full twisting action imparted to the main body
of the fibers by the swirling flow in the first nozzle and hence receive less twist than
those of the main bundle. These edge fibers consequently wrap the false twisted
core in the opposite direction, and form a larger twist difference between these
fibers and yarn core. The fiber strand coming out of the first nozzle is then twisted
by the opposite swirling flow in the second nozzle. The same amount of twist is
removed from the wrapping fiber and the strand. As the yarn core is untwisted
to zero twist, an opposite twist is left in the wrapping fiber, which is equal to the
twist difference initially created (Fig. 5(b)). Hence, the air-jet spun yarn consists
of a core of parallel fibers wrapped by surface fibers (Fig. 5(c)). However, the
above-mentioned principle of yarn formation, which is mainly based on theoretical
analysis and spinning experiments, still need further study. In this section, as the
application of the proposed approach, the fiber motions in the air-jet spinning two
nozzles are studied so that the principle of yarn formation can be demonstrated.

Due to the different functions, the first and second nozzles are made cylindrical
and diverged conical shapes with the different injector number in air-jet spinning
system, respectively. The swirling flows in the nozzles are created by injecting
tangentially high-velocity compressed air through evenly spaced injectors placed
on the periphery of the tube. Normally, the inlet pressure in the injector of the
second nozzle (on the range of 3.0 to 5.0×105Pa) is higher than that of the first
nozzle (2.5-4.0×105Pa). In this study, the first and second nozzle pressures of 2.5
and 3.5×105Pa are used as the initial conditions. The Mach number approaches 1.0
near the injector outlets of the two nozzles. More information about the parameters
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Figure 5: Schematic plots of air-jet spinning: (a) the nozzles; (b) the principle of
yarn form; (c) yarn structure

and the fluid characteristics of the two nozzles has been reported in References
[Guo, Chen and Yu (2009); Guo and Chen (2009)]. Only the velocity vector and
streamline plots at different sections of the two nozzles are provided (Fig. 6).

As shown in Fig. 6, the airflows in the first and second nozzles are in mutually
opposite directions. In the two nozzles, a reverse flow appears near the upstream
wall of the injectors due to the reverse jet. The internal recirculation zones are gen-
erated as a result of the vortex breakdown in the core regions of the downstream of
the two nozzles. For the first nozzle, the vortex breakdown is axisymmetric spiral
type and the sense of the spiral’s winding is opposite to the sense of basic flow
rotation, while in the second nozzle the conical breakdown could form and its in-
ternal structure is dominated by asymmetric spiral-like vortices rotating in opposite
directions. It is also to be noted, in the second nozzle, because the injectors are
close to the nozzle inlet, that the velocity in upstream of injector is larger than that
of slightly further the downstream of the injector. In the downstream of injector,
the velocity decays quickly along axial direction for the second nozzle due to the
divergence of the pipe, while the change of the velocity is not obvious in the first
nozzle.

The predictions of the two simulation methods including the previous work [Guo
and Xu (2009)] and present model on the fiber trajectory in the first nozzle of air-jet
spinning are presented in Fig.7, where the snapshots of the fiber projections onto
the xz plane are compared with experimental results using high-speed photography.



A 3D Numerical Model for a Flexible Fiber Motion 215

 

Figure 6: Predicted velocity vector and streamline plots, in order from left to right,
the y–z plane at x =0mm; the y–z plane at x =0.6mm and the x–y plane at z=21mm
and z=4mm for (a) the first nozzle and (b) the second nozzle. l is the distance from
the injector to the outlet.

It is clear that the present simulation results (Fig. 7(b)) are in good agreement with
the experimental observations (Fig. 7(c)), while the previous results (Fig. 7(a))
only have qualitative agreements. In addition, comparison of the Figs. 7(a) and
7(b) show that the deformation of the fiber in the present model is fairly flexible.
In these senses, these factors including the change of the density, lift force and
wall model play an important role in studying the fiber dynamics in compressible
swirling flow. It is seen from Fig.7(b) that the evolution of the fiber configuration is
complex during the whole period. In upstream of the injectors, the leading end of
the fiber move toward the wall and it bends like a snake shape. After its leading end
enters into the recirculation zone near the upstream wall of the injectors, the fluid
can exert a greater compressive stress on the fiber due to low velocity reverse flow
(see also Fig. 6(a)), inducing a larger buckling. This curved fiber then is stretched
when it passes through the high velocity zone of downstream of the injectors and
enters into the breakdown zone. Finally, the fiber forms a helix and rotates like a
corkscrew in the breakdown zone.

To demonstrate the principle of air-jet yarn formation, the fiber motions releasing
at three different locations in two air-jet spinning nozzles are simulated. The initial
position of the fiber is parallel to the stream-wise direction and its length is assumed
to be 4mm. The tailing end beads of the fibers are initially released at the nozzle
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(a) 

 
(b) 

   
(c) 

 

Figure 7: Snapshots of fiber motion in the swirling flow of the first nozzle (a)
projections onto the xz plane for simulation without variable density, lift force and
wall model [Guo and Xu (2009)]; (b) projections onto the xz plane for simulation
with variable density, lift force and wall model (present model); (c) experimental
measurements using high-speed photography.
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(a) 

 
(b) 

 Figure 8: The trajectories of the leading end and tailing end beads in a fiber chain
starting at the nozzle inlets and three different radii r = 0.1, 0.5 and 0.8mm for (a)
first nozzle; (b)second nozzle. Empty-circle lines (o-), solid lines (-) and asterisk
lines (*-) represent the releasing positions of the fiber at r = 0.1, 0.5 and 0.8mm,
respectively. Upper figure, the tailing end bead; and lower figure, the leading end
bead.
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inlet and at three different radii r = 0.1, 0.5 and 0.8mm (which the nozzle inlet radii
in the first and second nozzles are 1mm and 0.9mm, respectively).

Figure 8 depicts the trajectories of the leading end and tailing end beads of a fiber
chain starting at three different radii r = 0.1, 0.5 and 0.8mm in the first and second
nozzles. They are all helical except the trajectory of the fiber in the core zone of the
second nozzle, and the screw-pitch increases rapidly with the stream-wise direction,
especially, in downstream of the injectors. It can be observed from Figure 8 that
due to the centrifugal effects of the swirling flow, the closer the releasing position
of the fiber is to the wall, the earlier the trajectory of the fiber starts to swirl. As a
result, a larger twist difference between the fibers of the different level, especially
between the edge fiber and the core one, is formed.

As seen from Fig. 8(a), in the first nozzle, the trajectory of the fiber closest to the
center (r = 0.1, i.e., empty-circle lines in Fig. 8(a)) starts to bend near the injectors,
and it rotates in the opposite direction to that of outer fibers (r = 0.5 and 0.8, i.e.,
solid and asterisk lines in Fig. 8(a)). This demonstrates the function of the first
nozzle, in which the initial wrap of the edge fibers is twisted in a direction opposite
to that of the core fibers [Grosberg, Oxenham and Miao (1987)]. Similarly, for
the second nozzle (Fig. 8(b)), the center particle trajectory is nearly straight or
little crimple, and forms an untwisted (parallel) fiber core. Comparison of upper
and lower figures in Fig. 8(b), for the fibers near the wall (r = 0.5 and 0.8), their
tailing end is near the nozzle outlet, while the leading end is in the inner zone of
the nozzle, as any bead of the fiber chain arrives at the nozzle outlet. This indicates
that these fibers have one or two ends will embed in the yarn core to support a
tensile load. Hence, when the yarn is subjected to a tensile load, these fibers are
subjected to a stress proportional to the yarn tensile load, and they contribute to
yarn strength [Rajamanickam, Patel, Hansen and Jayaraman (1998)]. According
to our simulation results, i.e., the fiber motions in the two nozzles (compressible
swirling flow), the principle of yarn formation can be demonstrated and a yarn
structure which an untwisted core of parallel fibers are wrapped by surface fibers is
formed.

6 Conclusions

We have proposed a method for modeling the dynamic behavior of the fiber in com-
pressible swirling airflow. The fiber model describes the character of large aspect
ratio, elasticity and flexibility of the fiber which are defined by the bending and
twisting displacements (in Section 3.1). Mathematical model is developed using
one-way Euler–Lagrange approach, which treats the swirling airflow by the Euler
finite volume approach and predicts the fiber motion by the Lagrange approach. A
weighted moving averaging method based on active search sphere is used to obtain
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the fluid parameters at the center of discrete fiber sections. The experimental for-
mulas obtained by Grant and Tabakoff (1975) are adopted to deal with particle-wall
collision.

The proposed approach is applied to simulate a fiber motion in the two nozzles of
an air-jet spinning machine in textile processing. The simulation results for fiber
motion in the first nozzle are consistent with the experimental observation. Again,
the principle of air-jet yarn formation is also demonstrated by the motions of the
fibers releasing on different positions in the two nozzles. From these results, it
was confirmed that the proposed method was convenient to simulate the dynamic
behavior of flexible fiber in a compressible flow field. However, the model is one-
way coupling, which only considers the effects of the flow field on the fiber. To
obtain a more clear understanding on the interaction between the fiber and airflow,
the two-way coupling algorithm must be developed. Further study will focus on
this subject.
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