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Dispersion of One Dimensional Stochastic Waves in
Continuous Random Media

C. Du1, H. Bai2, J. Qu3 and X. Su1,4

Abstract: Second, or higher, order harmonics have great potential in fatigue
life prediction. In this study, the dispersion properties of waves propagating in
the nonlinear random media are investigated. An one dimensional nonlinear model
based on the nonlinear Hikata stress-strain relation is used. We applied perturbation
method, the Liouville transformation and the smoothing approximation method to
solve the one dimensional nonlinear stochastic wave equation. We show easily that
the dispersion equations for all higher order terms will be the same with the cor-
responding linear random medium by perturbation method. The linear stochastic
equation with two random coefficients is greatly simplified to an equatin with just
one random coefficients by the Liouville transformation. And without using any
more approximations, the Green function for the first term and the closed form dis-
persion equation are obtained explicitly. The numerical solution of the dispersion
equation shows that the phase velocity for the same wave number will decrease
when damage factor—a measure of the total damage/inhomogeneties—increases
and will increase to the velocity of the undamaged material for a given damage
factor when the circular frequency increases. And very excitingly, we find that
there is cutoff wave number which is rarely found before. Like phonon which has
forbidden bands for frequency, a medium with particular randomly distributed dam-
ages/inhomogeneities will have forbidden bands for wave length. This may have
special applications in industry. The simplification method of stochastic equations
with multiple coefficients can also be used to other stochastic problems. And the
dispersion equation and its properties obtained in this study may give theoretical
support to the nonlinear NDE community for predicting fatigue life.
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1 Introduction

For many materials such as metals, more than 80% of the total fatigue life of mate-
rials will be consumed before a macro-crack appears. Thus, it is critically important
to evaluate qualitatively the fatigue life of engineering structures in service. Many
works (Morris, Buck, and Inman, 1979; Yost and Cantrell, 1990; Deng, Scharf,
and Barnard, 1997; Cantrell and Yost, 2000; Kim, Qu, Jacobs, Littles, and Savage,
2006; Pruell, Kim, Qu, and Jacobs, 2009) have demonstrated experimentally the
strong correlation between fatigue life and the second order harmonic. Thus the
nonlinear ultrasonic test offers a great potential to characterize and quantify the
fatigue life.

Dislocations have long been recognized as the main source of higher order har-
monics (Granato and Lucke, 1956; Hikata, Chick, and Elbaum, 1965). However,
systematic studies on establishing a quantitative relationship between dislocations
and higher order harmonics were not conducted until the 1980s. In a series of pa-
pers (Cantrell and Yost, 2000; Cantrell, 2004, 2006), Cantrell and his colleagues
formulated a theory that establishes the relationship between second order harmon-
ics and dislocation densities, dislocation dipoles, precipitates, micro-cracks, etc.
Although dislocation dynamics (initiation, annihilation, motion, accumulation, and
localization) is responsible for fatigue damage, the precise information about their
types, distribution, or even the density, is not clear to the metal fatigue community,
primarily because the large number of dislocations and the fact that the character-
istic length of dislocations is typically in the nanometer range, so that experimental
measurements/observations of every individual dislocation is very difficult (more
information on dislocation dynamics could be found in Ghoniem’ review paper
(Ghoniem and Cho, 2002)).

Although the precise information about dislocations in the fatigue process is hard
to get, the stochastic information, e.g. correlation length and density distribu-
tion, can be obtained experimentally (Kozlowski, Paszkiewicz, Korbutowicz, and
Tlaczala, 2001; Beigmohamadi, Niyamakom, Farahzadi, Kremers, Michely, and
Wuttig, 2008; Jacques, Le Bolloc’h, and Ravy, 2009). Therefore, a nonlinear
model built upon stochastic process will have the potential to practically predict
the fatigue life. Some useful numerical methods have been developed to tackle the
linear/nonlinear stochastic problems (Radhika, Panda, Manohar, and Source, 2008;
Tian, Yang, and Source, 2008; Manjuprasad, Manohar, and Source, 2007; Stroud,
Krishnamurthy, and Smith, 2002). Kim and Qu et al. (Kim, Qu, Jacobs, Littles, and
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Savage, 2006) have formulated a delicate nonlinear model which considers various
dislocations as initial plastic deformation randomly distributed. However, a pro-
cedure which can analytically analyze the properties of nonlinear stochastic wave
propagation problems is still unavailable today.

To understand the basic properties of the nonlinear wave in random media, e.g.
the dispersion curves, we propose a simplified nonlinear stochastic model based on
the Hikata nonlinear strain-stress relation (Hikata, Chick, and Elbaum, 1965), and
to consider the random properties of the damaged material, the coefficients of the
Hikata relation is changed to random variables.

Once we build and solve the stochastic equation which relates the damage factor—a
measure of the total fatigue damage—and the nonlinearity parameter, which could
be got from the first and the second terms of the linearized stochastic equation, and
get the relationship between the damage factor and the cumulative plastic strain,
then we can use many existing models (Mediratta, Ramaswamy, and Rao, 1986;
Singh, Sundararaman, Chen, and Wahi, 1991; Laird and Feltner, 1967; Santner and
Fine, 1977) in fatigue that relate the cumulative plastic strain in a material to its
fatigue life.

Figure 1 is a scheme of how to predict the fatigue life using our model. Our model
is on the third stage, i.e. the stage from the nonlinear parameter to the damage
factor .

Figure 1: scheme of predicting fatigue life from nonlinear ultrasonic test

Although the model we proposed is greatly simplified, the one dimensional non-
linear stochastic model is still unlikely to be solved directly. Thus the perturbation
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method is used to linearize the model. Linear elastic or electromagnetic stochastic
wave problems have long been studied. Karal and Keller (Karal Jr and Keller, 1964)
analyzed propagation of any type of wave in a linear random medium by small per-
turbation method. Frisch (Frisch, 1970) investigated thoroughly the mathematical
foundation of the diagram method and the smoothing method and their application
to multiple scattering problems. Sobczyk (Sobczyk, 1985) gave a detailed descrip-
tion on the linear stochastic differential equation theory, including modeling of
continuous and discrete random media, and also reviewed various methods to ana-
lyze the wave propagation, e.g. the Born approximation, geometical optics, Rytov
method, parabolic approximation, smoothing method, functional approach etc. Af-
ter comparing various methods, Pao-Liu Chow (Chow, 1975) have concluded that
the smoothing method is the most useful analytical method to tackle the random
wave propagation problem. Turner and his colleagues used the first order smooth-
ing approximation (FOSA) method to investigated propagation and scattering of
elastic waves in heterogeneous media with local isotropy (Turner and Anugonda,
2001) and in solids with uniaxially aligned cracks (Yang and Turner, 2003a). How-
ever the smoothing method available today is very complex for problems with 2
random coefficients or more, even for a non-dissipative medium, because it needs
all the auto- and cross-correlations of the random variables. This has greatly limited
the practical application of the smoothing method.

In this study, we utilize the Liouville substitution to transform the equation with 2
random coefficients into an equation with 1 random coefficient. By this way, we
only need to know one auto-correlation function, thus the problem is greatly sim-
plified. Then the transformed equation is solved analytically by the FOSA method.
At last, the Green function and the dispersion equation are obtained explicitly. To
analyze the properties of the dispersion equation, several kinds of dispersion curves
of a thin aluminium (also for silicon crystal, titanium alloy) rod are plotted numer-
ically. Analysis and discussion of these plots are then followed.

2 Mathematical modeling and analysis

We use the nonlinear stress-strain relation introduced by Hikata (Hikata, Chick, and
Elbaum, 1965),

σ(x, t,γ) = A(x,γ)
∂u(x, t,γ)

∂x
+

1
2

B(x,γ)
(

∂u(x, t,γ)
∂x

)2

(1)

Where σ is the stress, A is the second-order elastic constant, and B is the nonlin-
ear coefficient, which is the combination of the second and the third-order elastic
constants. In Hikata’s paper (Hikata, Chick, and Elbaum, 1965), A,B were taken
as constants. However, A,B should not only vary with space, but also be random
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in materials with randomly distributed dislocations and micro-cracks. So we intro-
duce a random variable γ here.

It should be pointed out that the u in equation (1) is the displacement from initial
to current state rather than from natural to current state, thus it can still be viewed
as infinitesimal.

Substituting equation (1) into the wave equation

ρ(x,γ)
∂ 2u(x, t,γ)

∂ t2 =
∂σ(x, t,γ)

∂x
(2)

yields,

ρ(x,γ)
∂ 2u(x, t,γ)

∂ t2 =
∂A(x,γ)

∂x
∂u(x, t,γ)

∂x
+A(x,γ)

∂ 2u(x, t,γ)
∂x2 +

1
2

∂B(x,γ)
∂x

(
∂u(x, t,γ)

∂x

)2

+

B(x,γ)
∂u(x, t,γ)

∂x
∂ 2u(x, t,γ)

∂x2 (3)

It should be noticed that in equation (3), ρ is a also function of space and random
variable because of the randomly distributed dislocations and micro-cracks. And
from now on, we will omit some variables in the functions for convenience if there
is no confusion.

It is very hard to solve the nonlinear stochastic equation (3) directly, as a con-
sequence, we have to linearize it. The perturbation method is used to linearize
equation (3). The amplitude ς of an input ultrasonic harmonic wave is taken as the
small parameter for the perturbation. The displacement due to the input ultrasonic
waves can be expressed by this series:

u = ςu1 + ς
2u2 + . . . (4)

Substituting equation (4) into equation (3), we could get the first two terms of the
series,

O(ς) : ρ
∂ 2u1

∂ t2 −
∂

∂x

(
A

∂u1

∂x

)
= 0 (5)

O(ς2) : ρ
∂ 2u2

∂ t2 −
∂

∂x

(
A

∂u2

∂x

)
=

1
2

∂B
∂x

(
∂u1

∂x

)2

+B
∂u1

∂x
∂ 2u1

∂x2 (6)

It could be seen that the operators for the first and second terms are the same with
the corresponding linear random medium , therefore, their dispersion equations
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should be the same. And we could also show further by perturbation method that
all the dispersion equations for the higher terms should be the same with the first
order equation.

Applying Fourier transformation to equation (5) and (6), we get,

O(ς) : ρω
2U1 +

∂

∂x

(
A

∂U1

∂x

)
= 0 (7)

O(ς2) : ρω
2U2 +

∂

∂x

(
A

∂U2

∂x

)
= − 1

2
√

2π

∂B
∂x

(
∂U1

∂x
∗ ∂U1

∂x

)
(ω)−

1√
2π

B
(

∂U1

∂x
∗ ∂ 2U1

∂x2

)
(ω) (8)

In which,

U1,2(x,ω) =
1√
2π

∫
∞

−∞

u1,2(x, t)e−iωt dt (9)

And,(
∂U1

∂x
∗ ∂U1

∂x

)
(ω) =

∫
∞

−∞

∂

∂x
U1(x,ϕ)

∂

∂x
U1(x,ω−ϕ)dϕ

=
∫

∞

−∞

(
∂

∂x
u1(x, t)

)2

e−iωt dt (10)(
∂U1

∂x
∗ ∂ 2U1

∂x2

)
(ω) =

∫
∞

−∞

∂

∂x
U1(x,ϕ)

∂ 2

∂x2U1(x,ω−ϕ)dϕ

=
∫

∞

−∞

∂

∂x
u1(x, t)

∂ 2

∂x2 u1(x, t)e−iωt dt (11)

3 The Green function and the dispersion equation

Since the operators for U1,U2 are the same, we choose to get the dispersion equation
from equation (7).

There are two random coefficients in equation (7), so we apply the Liouville sub-
stitution (Heading, 1962) to transform it into an equation with just one random
coefficient. Define two new coefficients : a,z

a =

√
A
ρ

z =
√

Aρ (12)

Since A is the second order elastic constant, a,z can be viewed as the velocity of
sound and the characteristic impedance respectively.
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Define two transformations:

y =< a >
∫ x

0

1
a(ξ )

dξ V1(y) =
√

zU1(x,ω) (13)

With these transformations, the heterogeneous elastic medium has been modeled
with two new random parameters: the velocity of sound a and the impedance z. We
assume the medium to be statistically homogeneous, therefore the mean value of a
does not depend on x.

Applying the transformations to equation (7), we get (see appendix A for the cal-
culation)

∂ 2V1

∂y2 +
(

ω2

< a >2 + e(y)
)

V1 = 0 (14)

In which

e(y) =− 1√
z

∂ 2√z
∂y2 (15)

Introduce two new functions, ζ (y),k2
0

ζ (y) = e(y)−< e(y) > i.e. < ζ (y) >= 0 (16)

k2
0 =

ω2

< a >2 + < e(y) > (17)

Here, we can see that < e(y) > is a measure of the impact of the random damage
on the squared wave number ,so we name it damage factor. Normally, the random
disturbances is small, i.e. | < e(y) > | < ω2

<a>2 . Hence, the right side of equation
(17) should be positive.

Applying equation (16) and (17), equation(14) can be rewritten as,

∂ 2V1

∂y2 +
(
k2

0 +ζ (y)
)

V1 = 0 (18)

We use the first order smoothing approximation(FOSA)(Karal Jr and Keller, 1964;
Kröner, 1967) to solve this stochastic ODE. The FOSA (see appendix B for the
derivation) is considered as the simplest and, meanwhile, the most useful method
available to tackle stochastic wave problems (Chow, 1975).

The FOSA equation is,(
L0(y)−< L1(y,γ)L0(y)−1L1(y,γ) >

)
< u(y,γ) >= g(y) (19)
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If G0(y,y1) is the Green function of the operator L0, then

L−1
0 f (y) =

∫
G0(y,y1) f (y1)dy1 (20)

and equation (19) takes the form

L0(y) < u(y,γ) >−
〈

L1(y,γ)
∫

G0(y,y1)L1(y1,γ) < u(y1,γ) > dy1

〉
= g(y) (21)

Or

L0(y) < u(y,γ) >−
∫

G0(y,y1)R(y,y1) < u(y1,γ) > dy1 = g(y) (22)

In which, R(y,y1) is the correlation function of L1(y,γ)

R(y,y1) =
∫

L1(y,γ)L1(y1,γ)dγ (23)

Equation (22) can also be rewritten as

< u(y,γ) >=L−1
0 g(y)+L−1

0

∫
G0(y,y1)R(y,y1) < u(y1,γ) > dy1⇒ (24)

< u(y,γ) >=
∫

G0(y,y1)g(y1)dy1 +
∫∫

G0(y,y1)R(y1,y2)×

G0(y1,y2) < u(y2,γ) > dy1 dy2 (25)

Taking g(y) in equation (25) as the Dirac delta function gives the Green function
for < u(y,γ) >:

g(y1) =δ (y1− y0)

< G(y,y0,γ) >=G0(y,y0)+
∫∫

G0(y,y1)R(y1,y2)×

G0(y1,y2) < G(y2,y0,γ) > dy1 dy2 (26)

The L0, and L1 of equation (18) are

L0 =
∂ 2

∂y2 + k2
0 L1 = ζ (y) (27)

The Green function of L0 is,

G0(y− y0) =
e−ik0|y−y0|

2ik0
(28)
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And we assume that the random field L1(x,γ) is statistically homogeneous, thus its
covariance function depends only on the difference of the arguments, i.e.

R(y,y1) =
∫

ζ (y,γ)ζ (y1,γ)dγ = R(y− y1) (29)

According to equation (28) and (29), equation (26) can be rewritten as

< G(y− y0) >=G0(y− y0)+
∫∫

G0(y− y1)R(y1− y2)×

G0(y1− y2) < G(y2− y0,γ) > dy1 dy2 (30)

Since equation (30) is of the convolution type, it can be solved by using the Fourier
transform (Frisch, 1970). Applying the non-unitary Fourier transform to equation
(30) yields

< G(y− y0) > =
1

2π

∫
< G(k) > eik(y−y0) dk (31)

G0(y− y0) =
1

2π

∫
< G0(k) > eik(y−y0) dk (32)

And∫∫
G0(y− y1)R(y1− y2)G0(y1− y2) < G(y2− y0,γ) > dy1 dy2

=
1

(2π)3

∫∫∫∫∫
G0(k)M(k1) < G(k2) >× (33)

ei(k(y−y1)+k1(y1−y2)+k2(y2−y0)) dy1 dy2 dk dk1 dk2

=
1

2π

∫
G0(k)M(k) < G(k) > eik(y−y0) dk (34)

In which, M is the mass or self-energy operator (Frisch, 1970),

M(y1− y2) = R(y1− y2)G0(y1− y2) (35)

M(k1) =
∫

M(y1− y2)e−ik1(y1−y2) dk1 (36)

With equations (31), (32) and (34), equation (30) becomes

< G(k) >= G0(k)+G0(k)M(k) < G(k) > (37)

Then < G(k) > could be got from the above equation

< G(k) >=
[
G−1

0 (k)−M(k)
]−1

(38)
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Substituting G0 in equation (28) into equation (32) yields

G0(k) =
∞∫
−∞

e−ik0|y−y0|

2ik0
e−ik(y−y0) d(y− y0) =

k
k0(k0

2− k2)
(39)

Now, take the random operator L1 as Uhlenbeck-Ornstein process (Frisch, 1970).
It is known that this process is a centered, stationary, Gaussian and Markovian
random function and its correlation function is

R(y,y1) =
∫

L1(y,γ)L1(y1,γ)dγ = ε
2e−

|y−y1 |
Rc (40)

In which, ε =
√

< L1
2 > and it is the standard deviation of the random heterogene-

ity. And Rc is the integral radius of the correlation (the correlation length), which
physically means the scale of heterogeneity. Conventionally Rc is defined as

Rc =
1

2R(0)

∞∫
−∞

R(r)dr (41)

The Fourier transform of the mass operator M(y1− y2) is

M(k) =
∞∫
−∞

M(y1− y2)e−ik(y1−y2) d(y1− y2)

=
Rcε2

2ik0

(
1

1+ iRc(k0 + k)
− 1

1+ iRc(k0− k)

)
(42)

Substituting equation (42) and (39) into (38) , we obtain

< G(k) >=
[

k0(k0
2− k2)
k

−

Rcε2

2ik0

(
1

1+ iRc(k0 + k)
− 1

1+ iRc(k0− k)

)]−1

(43)

According to the Residue Theorem in complex analysis, the inverse Fourier trans-
form of < G(k) > will be determined by the zeros of the dominator of equation
(43). Therefore, the dispersion equation for the nonlinear stochastic wave problem
is

k0(k0
2− k2)
k

− Rcε2

2ik0

(
1

1+ iRc(k0 + k)
− 1

1+ iRc(k0− k)

)
= 0 (44)



Dispersion of One Dimensional Stochastic Waves 233

The phase velocity is given by the real part of k and the attenuation by the imaginary
part (Turner and Anugonda, 2001). Thus to plot the dispersion curves, we only need
to use the real part of k.

4 Numerical examples and discussions

As an example, we give several plots of the dispersion curves of a pure Aluminum
thin rod with randomly distributed micro-damages or inhomogeneities. We take
5000 m/s as the initial longitudinal wave velocity < a > of the undamaged Alu-
minum thin rod. To be simple, the correlation length Rc and the standard deviation
ε are set on 0.00001 m and 1 m−2 respectively. In the following plots c,k,ω,< e >
denote the phase velocity (m∗ s−1), the wave number (m−1), the circular frequency
(s−1), and the damage factor (m−2) respectively. The numerical plots of the pure
Aluminum thin rod clearly show that:

1. If there is no damage, i.e. < e >= 0 m−2, the phase velocity is the initial
longitudinal wave velocity 5000 m/s (figure 2, the dash dot line)

Figure 2: Dispersion curve of the thin Aluminium rod. Dash dot line: without
random damage < e >= 0 m−2; Solid line: with random damage < e >= 50 m−2

; Solid box points: experiment by Kinra et al (Kinra, Ker, and Datta, 1982) with
volume fraction of random inclusions as 5%; Box points: experiment by Kinra et
al (Kinra and Rousseau, 1987) with volume fraction of random inclusions as 5%.

2. The phase velocity c for a wave number k will decrease when the damage
factor < e > increases (figure 3).
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Figure 3: Phase velocity c—damage factor < e > curve when wave number k is
30 m−1

This trend agrees qualitatively well with Turner’s theatrical result ((Yang and
Turner, 2003b)).

3. The phase velocity c will increase to the initial longitudinal wave velocity for
a damage factor < e > when the wave number k increases (see figure 2, fig-
ure 4, and figure 5). As we can see from figure 2 and figure 5 that, this trend
agrees qualitatively well with Kinral’s experiments (the normalized data are
from Kinral papers (Kinra, Ker, and Datta, 1982; Kinra and Rousseau, 1987)
and Kim’s paper (Kim, Ih, and Lee, 1995) ). Karal’s experiments were done
on various composites with inclusions, however, since materials with ran-
dom damages/inhomogeneities can be viewed as composites with random
inclusions, the well fitness of the theocratical prediction and the experiments
proves partly the correctness of our theory.

It is also noticed that, to fit the experiment data, the damage factor < e >
goes from 50 m−2 to 170 m−2 when the volume fraction of random inclu-
sions in Kinra’s experiment goes from 5% to 15%. This indicates that the
damage factor < e > is also strongly correlated with the volume fraction of
the random damages/inclusions in a material. A physical explanation for the
damped wave velocity is that the damages or inhomogeneities distributed ac-
cording to the correlation function will resonate, therefore, the energy carried
by the wave will be partly transmitted to the randomly distributed damages
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Figure 4: Phase velocity c—wave number k—damage factor < e > surface

Figure 5: Dispersion curve of the thin Aluminium rod. Dash dot line: without ran-
dom damage < e >= 0 m−2; Solid line: with random damage < e >= 170 m−2;
Solid box points: experiment by Kinra et al (Kinra and Rousseau, 1987) with vol-
ume fraction of random inclusions as 15%.
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or inhomogeneities. Thus the wave is damped.

4. It is interesting to note that, the phase velocity c stays at 0 when the wave
number k is smaller than a particular value for a damage factor < e >. For
example, the phase velocity c would be 0 for waves with wave number k
smaller than 17 m−1 when the randomness factor < e > is 300 m−2 (figures 4
and 6). Unlike the common waveguides we familiar with, e.g. strings on an

Figure 6: Circular frequency ω—wave number k—damage factor < e > surface

elastic foundation (Graff, 1991) and thin plates (Achenbach, 1973), which
have cutoff frequency, the thin rod with randomly distributed damages has
cutoff wave number (also see figure 2 and figure 5). And the upper limit of
the cutoff wave number goes larger when the damage factor increases (figures
4 and 6). A mathematical explanation for this phenomenon is that the circular
frequency ω becomes a negative pure imaginary number (see the imaginary
part the solid line in figure 7 ) when the wave number k is below 17 m−1. If
we describe the wave in the form of a plane wave, A ∗ exp(i(kx−ωt)), the
wave becomes A ∗ exp(−ωIt) ∗ exp(ikx) when the circular frequency ω be-
comes a negative pure imaginary number −iωI (ωI is a real positive number
here). Therefore, this wave decreases gradually to zero when time goes on,
so this wave can not propagate further, as a consequence, it’s phase veloc-
ity becomes zero. A physical explanation is similar to the explanation for
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Figure 7: Frequency spectrum of the thin aluminium rod. Diamond point line:
without random damage < e >= 0 m−2; Solid line: with random damage < e >=
300 m−2

the damped wave velocity, but the energy carried by the wave will be fully
transmitted to the randomly distributed damages or inhomogeneities. Thus,
waves with wave number below a value can not propagate further.

It is known that there is phonon which has forbidden bands for frequency.
According to our study here, a medium with particular randomly distributed
damages/inhomogeneities will have forbidden bands for wave length, that is,
a wave with wave length in the forbidden bands can not propagate through
the medium.

5. When doing experiments, the frequency rather than the wave number of the
ultrasonic wave is used as the controlling signal, so we give some plots with
circular frequency ω as variable here (figures 8, 9, 10). And it could be seen
from these plots that:

(a) There is no cutoff frequency (figure 8,9 );

(b) The phase velocity c will increase to the initial longitudinal wave veloc-
ity for a damage factor < e > when the circular frequency ω increases
(figure 9);

(c) The phase velocity c for a circular frequency ω will decrease slowly to
0 when the damage factor < e > increases (figure 10).
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Figure 8: Phase velocity c—circular frequency ω—damage factor < e > surface

Figure 9: Solid line: with random damage, < e > is 300 m−2; Diamond point line:
without random damage, < e >= 0 m−2
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Figure 10: phase velocity c—damage factor < e > curve when circular frequency
ω is 20000 1/s

The dispersion properties found for the pure aluminum can be applied to other ma-
terials as well. As examples, we present here the dispersion curves and frequency
spectrums of a silicon crystal thin rod and a titanium alloy (Ti6Al4V Grade 5)
thin rod. We take 8433 m/s as the initial longitudinal wave velocity < a > for
the undamaged silicon crystal thin rod, and 5078 m/s as that of the titanium alloy
(Ti6Al4V Grade 5) thin rod. The correlation length Rc and the standard deviation
ε for both materials are set on 0.00001 m and 1 m−2 respectively. The computed
results are figures 11, 12, 13, and 14. From these plots, we can see that the dis-
persion properties for silicon crystals and titanium alloys are similar to that of pure
aluminum.

5 Conclusion

Second, or higher, order harmonics have great potential in fatigue life prediction. In
this study, the dispersion properties of nonlinear waves in random media is studied.
An one dimensional nonlinear model based on the nonlinear Hikata stress-strain
relation (Hikata, Chick, and Elbaum, 1965) is used. And for practical course, the
randomness of the damages/heterogeneities is considered by letting the coefficients
of the dynamic equation to be stochastic functions. The perturbation method is
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Figure 11: Dispersion curve of the thin silicon crystal rod. Solid line: with random
damage, < e > is 300 m−2; Diamond point line: without random damage, < e >=
0 m−2.

Figure 12: Frequency spectrum of the thin silicon crystal rod. Diamond point
line: without random damage, < e >= 0 m−2; Solid line: with random damage,
< e >= 300 m−2.
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Figure 13: Dispersion curve of the thin titanium alloy rod. Solid line: with random
damage, < e > is 300 m−2; Diamond point line: without random damage, < e >=
0 m−2.

Figure 14: Frequency spectrum of the thin titanium alloy rod. Diamond point
line: without random damage, < e >= 0 m−2; Solid line: with random damage,
< e >= 300 m−2.
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used to linearize the nonlinear stochastic equation. We show easily in this study
that the dispersion equations for all higher order terms will be the same with the
corresponding linear random medium by perturbation method. Then, the Liouville
transformation is applied to transform the stochastic equation with two random
coefficients into an equation with one random coefficient. Next, the widely used
FOSA method is utilized to solve the stochastic equation. At last, without using any
other approximations, the Green function and the closed form dispersion equation
for all frequencies have been obtained explicitly.

As an example, several dispersion surfaces/curves of a thin aluminium rod are plot-
ted numerically. These plots show that the phase velocity for the same wave num-
ber will decrease when the damage factor increases and will increase to the velocity
of the undamaged thin rod for a given damage factor when the circular frequency
increases. Comparison with Karal’s experiment (Karal Jr and Keller, 1964) and
Turner’s theoretical result (Yang and Turner, 2003a) show that the damage factor
< e > is strongly correlated with the volume fraction and the density of the random
damages/inclusions in a material. And very excitingly, we find that there is cutoff
wave number which is rarely found before and the upper limit of which will in-
crease with the damage factor. Just like phonon which has forbidden bands for fre-
quency, a medium with particular randomly distributed damages/inhomogeneities
will have forbidden bands for wave length. This may have special applications in
civil or military industry. The dispersion properties found above can also be applied
to other materials. The simplification method of stochastic equations with multi-
ple coefficients into equations with just one coefficient can also be used to other
stochastic problems. And since the nonlinear model in this study has considered
the randomness of the heterogeneities, the dispersion equation and its properties
obtained in this study may give theoretical support to the nonlinear NDE commu-
nity for predicting fatigue life.
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Appendix A: Calculation of the Liouville transformation

From equation (12), we know that

A = az ρ =
z
a

(45)

And, since < a > does not depend on x, thus d<a>
dx = 0.
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From equation (13), we have

dy
dx

=
< a >

a
(46)

dU1

dx
=

d(V z−
1
2 )

dx
=

d(V z−
1
2 )

dy
dy
dx

=

(
d(z−

1
2 )

dy
V1 + z−

1
2

dV1

dy

)
< a >

a
(47)

d2U1

dx2 =− < a >

a2
da
dx

(
d(z−

1
2 )

dy
V1 + z−

1
2

dV1

dy

)
+

< a >2

a2

(
d2(z−

1
2 )

dy2 V1 +2
d(z−

1
2 )

dy
dV1

dy
+ z−

1
2

d2V1

dy2

)
(48)

Substituting equation (45) and the above relations in equation (7) gives

H1
dV1

dx
+H2

d2V1

dx2 +H3V1 = 0 (49)

Where

H1 =
d(az)

dx
< a >

a
z−

1
2 − z < a >

a
da
dx

z−
1
2 +2

z < a >2

a
d
dy

(z−
1
2 )

=
< a >

a
z−

1
2

(
d(az)

dx
− z

da
dx
−a

dz
dx

)
=0 (50)

H2 =
√

z
a

< a >2 (51)

H3 =
< a >

a
d(az)

dx
d
dy

(z−
1
2 )− z < a >

a
da
dx

d
dy

(z−
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z < a >2
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dy2 (z−
1
2 )+ω

2
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z
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dx
d
dx
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da
dx

d
dx
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dx

d
dx

(z−
1
2 )−

< a >2
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√

z
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dy2 (52)
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In which, the following relations were used to get equation (51) and equation (52)

< a >

a
d(z−

1
2 )

dy
=

d(z−
1
2 )

dx
=−1

2
z−

3
2

dz
dx

(53)

d(z−
1
2 )

dy
=−1

z
d
√

z
dy

(54)

d2(z−
1
2 )

dy2 =
1
z2

dz
dy

d
√

z
dy
− 1

z
d2√z
dy2 (55)

Therefore, equation (49) can be written as

√
z

a
< a >2 d2V1

dx2 +
(

ω
2
√

z
a
− < a >2

a
d2√z
dy2

)
V1 = 0 (56)

And the above equation can be rewritten as,

∂ 2V1

∂y2 +
(

ω2

< a >2 +− 1√
z

∂ 2√z
∂y2

)
V1 = 0 (57)

Appendix B: To get the FOSA by CDAM

There are several ways to get the FOSA: the diagram method, the method of
smoothing and the correlation discard approximation method (CDAM) (Frisch,
1970; Sobczyk, 1985). The CDAM is easier to understand, thus we choose the
CDAM to get the FOSA here. Consider this equation:

L0(y)u(y,γ)+L1(y,γ)u(y,γ) = g(y) (58)

Where L0(y) is a given deterministic differential operator with respect to spatial
coordinates and L1(y,γ) is a given centered random field, i.e. < L1(y,γ) >= 0.
Averaging both sides of equation (58) gives

L0(y) < u(y,γ) > + < L1(y,γ)u(y,γ) >= g(y) (59)

The equation includes not only < u >, but also the moment < L1u >. To find the
equation for < L1u >, multiply both sides of equation (58) by L1(y1,γ) and take
the average. The resulting equation is

L0 < L1(y1,γ)u(y,γ) > + < L1(y1,γ)L1(y,γ)u(y,γ) > =< L1(y1,γ) > g(y)
= 0 (60)
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Which, however, contains the third order moment, whence it is necessary to find
another equation for it, etc. So, now we need to introduce truncations or closure as-
sumptions. One of the closure assumptions is the correlation discard approximation
method (CDAM), according to which,

< L1(y1,γ)L1(y,γ)u(y,γ) >≈< L1(y1,γ)L1(y,γ) >< u(y,γ) > (61)

Note that this assumption is equivalent to

< L1(y1,γ)L1(y,γ)∆u(y,γ) >= 0 (62)

∆u(y,γ) = u(y,γ)−< u(y,γ) >

which means that the correlation between the field fluctuation and the product of
the values of a random coefficient (at different points) is neglected. Approximation
in equation (61) is known as Bourret’s local independence hypothesis.

From equation (60) and the CDAM assumption (61) , we could get

< L1(y1,γ)u(y,γ) >=−< L1(y1,γ)L0(y)−1L1(y,γ) >< u(y,γ) > (63)

If y,y1 in above equation are at the same point, then the above equation becomes

< L1(y,γ)u(y,γ) >=−< L1(y,γ)L0(Y )−1L1(y,γ) >< u(y,γ) > (64)

Substituting equation (64) in equation (59) yields the first order smoothing approx-
imation (FOSA)(
L0(y)−< L1(y,γ)L0(y)−1L1(y,γ) >

)
< u(y,γ) >= g(y) (65)


