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A Triangular Plate Element with Drilling Degrees of
Freedom, for Large Rotation Analyses of Built-up

Plate/Shell Structures, Based on the Reissner Variational
Principle and the von Karman Nonlinear Theory in the

Co-rotational Reference Frame

Y.C. Cai1,2, J.K. Paik3 and S.N. Atluri2

Abstract: This paper presents an elementary finite element method for geomet-
rically nonlinear large rotation analyses of built-up plate/shell structures compris-
ing of thin members. The tangent stiffness matrix of the element in the updated
Lagrangian co-rotational reference frame is developed, based on the von Karman
nonlinear theory of plates, and the Reissner variational principle, allowing for un-
symmetric stresses and drilling rotations, useful in the analysis of built-up plate and
shell structure. The finite rotation of the co-rotational reference frame relative to a
globally fixed Cartesian frame, is simply determined from the finite displacement
vectors of the nodes of the element in the global reference frame, thus allowing
for an elementary transformation of the tangent stiffness matrix from the updated
co-rotational reference frame to the globally fixed Cartesian frame. The element
employed here is a 3-node plate element with 6 degrees of freedom per node, in-
cluding 1 drilling degree of freedom and 5 degrees of freedom [3 displacements,
and the derivatives of the transverse displacement around two independent axes
in the plane of the plate in the co-rotational reference frame]. The (18×18) tan-
gent stiffness matrices of the plate element in the updated Lagrangian co-rotational
reference frame are derived, based on the assumptins that: (1) the inplane stress re-
sultants Nαβ (unsymmetric) are constant in each element; (2) the bending moments
Mαβ (symmetric) are linear and C0 within each element; and (3) the transverse rota-
tions θi (including the drilling degrees of θ3) are linear and C0 within each element.
When compared to the primal approach wherein C1 continuous trial functions for
transverse displacements over each element are necessary, the trial functions for
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the transverse bending moments and the rotations are very simple in the current ap-
proach, and can be assumed to be linear within each element. The present (18×18)
tangent stiffness matrices of the plate, based on the Reissner variational principle
and the von Karman type simplified nolinear plate theory in the co-rotational refer-
ence frame, lead to analyses, which are much simpler and more physically-based,
than many others in the literature for large rotation/deformation analysis of built-
up plate/shell structures [such as component plates joined at an angle]. Numerical
examples demonstrate the accuracy and robustness of the present method.

Keywords: large deformation, thin plate/shell, explicit tangent stiffness, updated
Lagrangian formulation, Reissner variational principle, drilling degrees of free-
dom.

1 Introduction

Most of the developments on computational (mostly finite element) analysis of
large deformations (rotations) of plates and shells in the period 1980-2010 have
concentrated on highly mathematical discourses on differential geometry and group-
theoretical considerations of finite rotations, etc [see for instance Atluri (1984),
Atluri and Cazzani (1994), Simo(1993), Iura and Atluri (Special Issue of CMES,
2003)]. Among the non-standard (i.e., other than those based on the classical po-
tential energy method) finite element approaches, Punch and Atluri (1984) exam-
ined the performance of linear and quadratic Serendipity hybrid-stress 2D and 3D
beam elements. Kondoh, Tanaka and Atluri (1986), Kondoh and Atluri (1987),
Shi and Atluri(1988), Iura and Atluri (1988), Crisfield (1990) presented the deriva-
tions of explicit expressions of the tangent stiffness matrices for beams undergoing
large displacements, without employing either numerical or symbolic integration.
A number of plate/shell elements have also been developed for the analyses of
plate/shell structures [see a survey by Yang, Saigal, Masud, and Kapania (2000)].
Shi and Voyiadzis (1991), Huang, Shenoy and Atluri (1994), and Pian (1964) pro-
posed some hybrid plate element based on assumed strain distributions or hybrid
principles. A few studies, such as Allman (1988), Iura and Atluri (1992), Nguyen-
Van, Mai-Duy and Tran-Cong (2009) employed the drilling degrees of freedom in
plate/shell elements, using the potential energy principle to avoid the problem of
singularity in the stiffness matrix. Atluri and his co-workers (Atluri 1980; Atluri
1984; Atluri and Cazzani 1994) extensively studied the large rotations in plates and
shells, and attendant mixed variational principles involving the rotation tensor as
a direct variable along with the stress-resultant tensor and the stress-couple tensor.
These diverse theories and methods of the plate/shell have now been widely applied
to a variety of problems.
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Although a large number of different efforts have been made, some inherent dif-
ficulties related to the linear/nonlinear analyses of 3D frame/plate/shell structures
still need to be further overcome. The objective of the present paper is to pro-
vide an essentially elementary engineering treatment of plates and shells undergo-
ing large deformations and rotations without resorting to the highly mathematical
tools of differential geometry, and group –theoretical treatment of finite rotations,
as in most of the prior literature. This paper presents an elementary finite element
method for large deformation /large rotation analyses of built-up plate/shell struc-
tures comprising of thin members. The tangent stiffness matrix of the element in
the updated Lagrangian co-rotational referenced frame is developed based on the
von Karman nonlinear theory of plates, and the Reissner variational principle, al-
lowing for unsymmetric stresses and drilling rotations, to facilitate the analysis of
built-up plate and shell structures. The finite rotation of the co-rotational reference
frame relative to a globally fixed Cartesian frame, is simply determined from the fi-
nite displacement vectors of the nodes of the element in the global reference frame,
thus allowing for a simple transformation of the tangent stiffness matrix from the
updated co-rotational reference frame to the globally fixed Cartesian frame. The el-
ement employed here is a 3-node plate element with 6 degrees of freedom per node,
including 1 drilling degree of freedom and 5 degrees of freedom [3 displacements,
and the derivatives of the transverse displacement around two independent axes in
the plane of the element in the updated Lagrangian reference frame]. The (18×18)
tangent stiffness matrices of the plate element in the updated Lagrangian reference
frame are derived, based on the assumptions that: (1) the inplane stress resultants
Nαβ (unsymmetric) are constant in each element; (2) the bending moments Mαβ

(symmetric) are linear and C0 within each element; and (3) the transverse rotations
θi (including the drilling degrees of θ3) are linear and C0 within each element.
When compared to the primal approach wherein C1 continuous trial functions for
transverse displacements over each element are necessary, the trial functions for
the transverse bending moments and the rotations are very simple in the current ap-
proach, and can be assumed to be linear within each element. The present (18×18)
tangent stiffness matrices of the plate are much simpler than those of many oth-
ers in the literature for large rotation/deformation analysis of plate/shell structures.
Numerical examples demonstrate the accuracy and robust of the present method.

In summary, the present method for large deformation /large rotation analysis of
built-up plate and shell structures is based on the incorporation of all the following
simple features, each of which has an elementary engineering basis:

1. The use of the mathematical theories of differential geometry, and group
theoretical methods to characterize finite rotations is eliminated;
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2. The tangent stiffness matrix of a 3 noded, 18 d.o.f. plate element, in the
updated Lagrangian reference frame, is developed based on the von Karman
nonlinear plate theory.

3. Drilling degrees of freedom at each of the 3-nodes of the plate element are
part of the 18 d.o.f. of the element. This facilitates the analysis of built-up
plate and shell structures.

4. The tangent stiffness matrix of the plate element in the updated Lagrangian
reference frame is derived based on the Reissner variational principle. In this
variational principle, Nαβ (which are unsymmetric) are assumed to be con-
stant within each 3-noded element; Mαβ (which are symmetric) are assumed
to be linear within each element; the drilling rotation, as well as the deriva-
tives of the transverse displacement in each in-plane direction of the plate
in the updated Lagrangian co-rotational reference frame are assumed to be
linear in each element.

5. In the present mixed formulation, the transverse displacement in the inte-
rior of the element does not appear and need not to be assumed. This is in
contrast to the potential energy principle wherein a C1 continuous transverse
displacement needs to be assumed over the element.

6. The finite rotation of the base-vectors in the plane of the plate-element and
that normal to it, in the updated Lagrangian co-rotational frame, from the
base vectors of the global Cartesian reference frame, is simply determined
from the finite displacement vectors of the nodes of the element, in a very
elementary way. Thus, complicated descriptions of finite rotation vectors
and group theoretical methods, are simply avoided.

7. The transformation of the (18×18) tangent stiffness matrix of the plate ele-
ment from the reference axes in the updated Lagrangian reference frame to
the global Cartesian reference frame is accomplished in a very elementary
way.

Thus, each of the above steps is quite elementary, but their simultaneous employ-
ment leads to a simplified analysis of large rotations and large displacements of
built-up plate and shell structures. While one or a few of the above steps may have
been explored in prior literature, by others as well as the authors, a combination
of all the above steps is new, and is the contribution of the present work. While
the present work is limited to elastic materials undergoing large deformations, the
extension to inelasticity is straight forward and will be pursued in forthcoming pub-
lications.
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2 Von-Karman nonlinear theory for a plate undergoing moderately large de-
formations in the updated Lagrangian co-rotational reference frame

We consider a fixed global reference frame with axes x̄i (i = 1,2,3) and base vec-
tors ēi. The plate in its undeformed state, with local coordinates x̃i (i = 1,2,3) and
base vectors ẽi, is located arbitrarily in space, as shown in Fig.1. The current con-
figuration of the plate, after arbitrarily large deformations, is also shown in Fig.1.
The local coordinates in the reference frame in the current configuration are xi and
the base vectors are ei (i = 1,2,3).
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Figure 1: Updated Lagrangian co-rotational reference frame for a plate element

As shown in Fig.2, we consider the large deformations of a typical thin plate. A
von-Karman type deformation is assumed for the continued deformation from the
current configuration, in the co-rotational frame of reference ei (i = 1,2,3) in the
local coordinates xi (i = 1,2,3). If h is the characteristic thick of thin plate, and
ui (x j) are the displacements of the plate from the current configuration in the
eidirections, the precise assumptions governing the continued deformations from
the current configuration are (α = 1,2;β = 1,2,3)
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Figure 2: Large deformation analysis model of a plate element

1. h
L ≤ 1 (the plate is thin);

2. u3/h∼ O(1);

3.
(

∂u3
∂xα

)
� 1;

4. uα/h� 1;

5. ∂uα

∂xβ

are much smaller than ∂u3
∂xα

;
(

∂uα

∂xβ

)2
≤
(

∂u3
∂xα

)2
only

(
∂u3
∂xα

)2
are retained

as nonlinear terms in the co-rotational frame of reference;

6. All strains Eαβ ≤ 1 [where Eαβ are strains from the current configuration, in
the xα coordinates];

7. The material is linear. For an elastic-plastic material, the rate relation is bi-
linear.

Thus, the generally 3-dimensional displacement state in the ei system is simplified
to be of the type

u1 = u10 (xα)− x3
∂u3

∂x1

u2 = u20 (xα)− x3
∂u3

∂x2

(1)
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where

u3 = u30 (x1,x2)
u10 = u10 (x1,x2)
u20 = u20 (x1,x2)

(2)

2.1 Strain-displacement relations

Considering only von Karman type nonlinearities in the rotated reference frame
ei (xi), we can write the Green-Lagrange strain-displacement relations in the up-
dated Lagrangian co-rotational frame ei in Fig.1 as:

E11 =
∂u1
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)2
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1
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)2
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+
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E12 =
∂u1

∂x2
+θ3 +

1
2

[
∂u1

∂x1

∂u1

∂x2
+
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∂u3
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]
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1
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(3)

where θ3 = 1
2

(
∂u2
∂x1
− ∂u1

∂x2

)
is the drilling degree of freedom.

Eq.(3) is also called the Kirchhoff hypothesis of deformation for thin plates, where
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“normals remain normal”, and the strain-displacement relations are attributed to
von Karman.

2.2 Stress-Strain relations

The stress-measure conjugate to these strains is the second Piola-Kirchhoff stress
tensor S1

[
S1

i j

]
.

For an isotropic linear elastic material,

S1
11 = 2µE11 +λ (E11 +E22) = (2µ +λ )E11 +λE22 (4)

where

µ =
E

2(1+ν)

λ =
Eν

(1+ν)(1−2ν)

(5)

E is the elastic modulus; ν is the Poisson ratio.

We also note that

S1
33 = 2µE33 +λ (E11 +E22)

can be large.

Nevertheless, use of 3-D constitutive law for plate is not desirable. We want S1
33
∼=

0, S1
13
∼= 0and S1

23
∼= 0. [Note, however, that while the transverse shear-stesses S1

13
and S1

23 are assumed to be zero, their integrals in thickness direction, namely Q1
13

and Q1
23 the transverse shear forces in the x3 direction, cannot be zero. Otherwise,

the plate cannot be in equilibrium. This is an inherent inconsistency in the plate
theory.]

Thus, while the geometric theory of strain in the Kirchhoff plate leads to:

Eαβ 6= 0 E3i = 0

implying a state of “plane strain”, a mechanical theory of stress leads to the as-
sumption that:

S1
αβ
6= 0 S1

3i
∼= 0

implying a state of “plane stress”. This is an inherent/unavoidable inconsistency in
the engineering theory of plates.
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We assume a state of plane-stress to derive the stresses from strains in a thin plate
as

S1
11 =

E
1−ν2 [E11 +νE22]

S1
22 =

E
1−ν2 [E22 +νE11]

S1
12 =

E
1+ν

E12

S1
21 =

E
1+ν

E21 6= S1
12

S1
33 =S1

13 = S1
23 = 0 (They can be determined from

equilibrium equations)

(6)

If the mid-surface of the plate is taken as the reference plane in the co-rotational
updated Lagrangian reference frame, the generalized forces of the plate in Fig.2
can be defined as

N11 =C
[

u10,1 +ν u20,2 +
1
2

(u30,1)
2 +

ν

2
(u30,2)

2
]

N22 =C
[

u20,2 +ν u10,1 +
1
2

(u30,2)
2 +

ν

2
(u30,1)

2
]

N12 =(1−ν)C
[

u10,2 +θ3 +
1
2

u30,1u30,2

]
N21 =(1−ν)C

[
u20,1−θ3 +

1
2

u30,1u30,2

]
M11 =−D [u30,11 +ν u30,22]
M22 =−D [u30,22 +ν u30,11]
M12 =M21 =−(1−ν)Du30,12

(7)

where , i denotes a differentiation with respect to xi, C = Eh
1−ν2 , and D = Eh3

12(1−ν2) .

The matrix form of the above equations is

σσσ = Dεεε (8)

where σσσ are the element generalized stresses, εεε are the element generalized strains,
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and

σσσ =



σ1
σ2
σ3
σ4
σ5
σ6
σ7


=



N11
N22
N12
N21
M11
M22
M12


(9)

εεε =
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ε3
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ε6
ε7


= εεε

L +εεε
N =



u10,1
u20,2

u10,2 +θ3
u20,1−θ3
−u30,11
−u30,22
−2u30,12


+



(u30,1)
2/2

(u30,2)
2/2

u30,1u30,2/2
u30,1u30,2/2

0
0
0


(10)

D =



C νC 0 0 0 0 0
νC C 0 0 0 0 0
0 0 C1 0 0 0 0
0 0 0 C1 0 0 0
0 0 0 0 D νD 0
0 0 0 0 νD D 0
0 0 0 0 0 0 D1


(11)

where C1 = (1−ν)C and D1 = (1−ν)D/2.

3 Updated Lagrangian formulation in the co-rotational reference frame ei,
to determine the tangent stiffness matrix in the ei frame

3.1 The use of the Reissner variational principle in the co-rotational updated
Lagrangian reference frame

If τ0
i j are the initial Cauchy stresses in the co-rotational updated Lagrangian ref-

erence coordinates ei of Fig.1, S1
i j are the additional (incremental) second Piola-

Kirchhoff stresses in the same co-rotational updated Lagrangian reference frame
with axes ei, Si j = S1

i j + τ0
i j are the total stresses, and ui are the incremental dis-

placements in the co-rotational updated-Lagrangian reference frame, the functional
of the Reissner variational principle (Reissner 1953) [see also Atluri and Reissner
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(1989)] for the incremental S1
i j and ui in the co-rotational updated Lagrangian ref-

erence frame is given by [Atluri 1979, 1980]

ΠR =
∫
V

{
−B
(
S1

11,S
1
12,S

1
21,S

1
22
)
+

1
2

τ
0
i juk, iuk, j +[S11u1, 1 +S22u2, 2

+S12 (u1, 2 +θ3)+S21 (u2, 1 −θ3)]−ρbiui}dV −
∫
Sσ

T̄iuidS
(12)

Where V is the volume in the current co-rotational reference state, Sσ is the surface
where tractions are prescribed, bi = b0

i +b1
i are the body forces per unit volume in

the current reference state, and T̄i = T̄ 0
i + T̄ 1

i are the given boundary tractions.

The conditions of stationarity of ΠR, with respect to variations δS1
i j and δui lead

to the following incremental equations in the co-rotational updated- Lagrangian
reference frame.

∂B
∂S1

11
= u1,1;

∂B
∂S1

22
= u2,2;

∂B
∂S1

12
= u1,2 +θ3;

∂B
∂S1

21
= u2,1−θ3 (13)

[
S1

k j +
1
2
(
τ

0
i j + τ

0
ji
)

uk,i

]
, j

+ρb1
k =−

(
τ

0
k j
)
, j
−ρb0

k ; S12 = S21 (14)

n j

[
S1

k j +
1
2
(
τ

0
i j + τ

0
ji
)

uk,i

]
− T̄ 1

k =−n jτ
0
k j + T̄ 0

k at Sσ (15)

In Eq.(12), the displacement boundary conditions,

ui = ūi at Su (16)

are assumed to be satisfied a priori, at the external boundary, Su. Eq.(14) leads to
equilibrium correction iterations.

If the variational principle embodied in Eq.(12) is applied to a group of finite ele-
ments, Vm,m = 1,2, · · · ,N, which comprise the volume V , ie, V = ∑Vm,then

ΠR =∑
m

∫
Vm

{
−B
(
S1

11,S
1
12,S

1
21,S

1
22
)
+

1
2

τ
0
i juk, iuk, j +[S11u1, 1 +S22u2, 2

+S12 (u1, 2 +θ3)+S21 (u2, 1 −θ3)]−ρbiui}dV −
∫
Sσ

T̄iuidS

 (17)
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Let ∂Vm be the boundary of Vm, and ρm be the part of ∂Vm which is shared by the
element with its neighbouring elements. If the trial function ui and the test function
∂ui in each Vm are such that the inter-element continuity condition,

u+
i = u−i at ρm (18)

(where + and – refer to either side of the boundary ρm) is satisfied a priori, then it
can be shown (Atluri 1975,1984; Atluri and Murakawa 1977; Atluri, Gallagher and
Zienkiewicz 1983) that the conditions of stationarity of ΠR in Eq.(17) lead to:

∂B
∂S1

11
= u1,1;

∂B
∂S1

22
= u2,2;

∂B
∂S1

12
= u1,2 +θ3;

∂B
∂S1

21
= u2,1−θ3 in Vm (19)
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0
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0
ji
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]
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(
τ

0
k j
)
, j
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k ; S12 = S21 in Vm (20)

{
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1
2
(
τ

0
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0
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]}+
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{

n j
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k j +
1
2
(
τ

0
i j + τ

0
ji
)

uk,i

]}−
=−

[
n jτ

0
k j
]+− [n jτ

0
k j
]− at ρm (21)

n j

[
S1

k j +
1
2
(
τ

0
i j + τ

0
ji
)

uk,i

]−
T̄ 1

k =−n jτ
0
k j + T̄ 0

k at Sσm (22)

Eq.(21) is the condition of traction reciprocity at the inter-element boundary, ρm.
Eqs.(20) and (21) lead to corrective iterations for equilibrium within each element,
and traction reciprocity at the inter-element boundaries, respectively.

Carrying out the integration over the thickness of each plate element, and using
Eqs.(3) and (6), Eq.(17) can be easily shown to reduce to:

ΠR = ∑
elem


∫
A

(
−1

2
σσσ

T D−1
σσσ

)
dA

+
1
2

∫
A

[
N0

11u2
30,1 +N0

22u2
30,2 +

(
N0

12 +N0
21
)

u30,1u30,2
]

dA

+
∫
A

(
N̂11ε

L
1 + N̂22ε

L
2 + N̂12ε

L
3 + N̂21ε

L
4 + M̂11ε5 + M̂22ε6 + M̂12ε7

)
dA−Q̄q

}
= ∑

elem
(−ΠR1 +ΠR2 +ΠR3−ΠR4)

(23)
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where

ΠR1 =
1
2

∫
A

(
σσσ

T D−1
σσσ
)

dA

ΠR2 =
1
2

∫
A

[
N0

11u2
30,1 +N0

22u2
30,2 +

(
N0

12 +N0
21
)

u30,1u30,2
]

dA

ΠR3 =
∫
A

(
N̂11ε

L
1 + N̂22ε

L
2 + N̂12ε

L
3 + N̂21ε

L
4 + M̂11ε5 + M̂22ε6 +M̂12ε7

)
dA

ΠR4 =Q̄q

(24)

D is given in Eq.(11), C = D−1, σσσ is given in Eq.(9),

σ
0
i j =

[
N0

11 N0
22 N0

12 N0
21 M0

11 M0
22 M0

12

]T
is the initial element-generalized- stress in the co-rotational reference coordinates
ei, and σ̂σσ = σσσ0 +σσσ =

[
N̂11 N̂22 N̂12 N̂21 M̂11 M̂22 M̂12

]T is the total ele-
ment generalized stresses in the co-rotational reference coordinates ei. Q̄ is the
nodal external generalized force vector (consisting of force as well as moments) in
the global Cartesian reference frame, and q is the incremental nodal generalized
displacement vector (consisting of displacements as well as rotations) in the global
Cartesian reference frame. It should be noted that while ΠR in Eq.(23) represents
a sum over the elements, the relevant integrals are evaluated over each element in
it’s own co-rotational updated Lagrangian reference frame.

By integrating by parts, the second item of the right hand side of Eq.(23) can be
written as

∫
A

N̂11ε
L
1 dA =

∫
A

N̂11u10,1dA =−
∫
A

N̂11,1u10dA+
∮
Se

n1N̂11u10de

∫
A

N̂22ε
L
2 dA =

∫
A

N̂22u20,2dA =−
∫
A

N̂22,2u20dA+
∮
Se

n2N̂22u20de

∫
A

N̂12ε
L
3 dA =

∫
A

N̂12 (u10,2 +θ3)dA =
∫
A

N̂12θ3dA−
∫
A

N̂12,2u10dA+
∮
Se

n2N̂12u10de

∫
A

N̂21ε
L
4 dA =

∫
A

~N21 (u20,1−θ3)dA =−
∫
A

N̂21θ3dA−
∫
A

N̂21,1u20dA+
∮
Se

n1N̂21u20de
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∫
A

M̂11ε5dA =

−
∫
A

M̂11u30,11dA =−
∫
A

M̂11,11u30dA+
∮
Se

n1M̂11,1u30de−
∮
Se

n1M̂11u30,1de

∫
A

M̂22ε6dA =

−
∫
A

M̂22u30,22dA =−
∫
A

M̂22,22u30dA+
∮
Se

n2M̂22,2u30de−
∮
Se

n2M̂22u30,2de

∫
A

M̂12ε7dA =

−2
∫
A

M̂12u30,12dA =−2
∫
A

M̂12,21u30dA+2
∮
Se

n1M̂12,2u30de−2
∮
Se

n2M̂12u30,1de

(25)

where Se is the boundary counter of the element e, ni is the outward norm.

The condition of stationarity of ΠR in Eq.(23) leads to:

D−1
σ = εεε

L (26)

in each element

N̂11,1 + N̂12,2 = 0

N̂22,2 + N̂21,1 = 0

N̂12− N̂21 = 0

M̂11,11 + M̂22,22 +2M̂21,21 +
(
N0

11u30,1
)
,1 +

(
N0

22u30,2
)
,2

+
1
2
[(

N0
12 +N0

21
)

u30,1
]
,2 +

1
2
[(

N0
12 +N0

21
)

u30,2
]
,1 = 0

(27)
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and the nodal equilibrium equations, which arise out of the term:

∑
elem


∮
Se

n1N̂11δu10de+
∮
Se

n2N̂22δu20de+
∮
Se

n2N̂12δu10de+
∮
Se

n1N̂21δu20de

+
∮
Se

n1M̂11,1δu30de−
∮
Se

n1M̂11δu30,1de+
∮
Se

n2M̂22,2δu30de−
∮
Se

n2M̂22δu30,2de

+2
∮
Se

n1M̂12,2δu30de−2
∮
Se

n2M̂12δu30,1de

+
∮
Se

n1N0
11u30,1δu30de+

∮
Se

n2N0
22u30,2δu30de

+
1
2

∮
Se

n2
(
N0

12 +N0
21
)

u30,1δu30de+
1
2

∮
Se

n1
(
N0

12 +N0
21
)

u30,2δu30de+ Q̄δq


= 0

(28)

It can be seen that the Reissner functional for von-Karman nonlinear theory of the
plate in the current configuration, involves only the variables:

(1) 4 Nαβ (unsymmetric), and 3 Mαβ (symmetric) in each element. Nαβ are as-
sumed as being constants, and Mαβ are assumed to be linear in each element.

(2) The squares of rotations u30,α can directly be assumed as being linear in each
element [i.e. there is no need to assumed a C1continuous u30 directly].

(3) The drilling degree of freedom θ3 in the element, as well as the in plane dis-
placements uα0 can be assumed to be linear in each element.

These assumptions are discussed in detail below.

3.2 Trial functions for Nαβ ;Mαβ ;u30,α ;θ3; and uα0 in each element

We consider the triangular element with three nodes, as shown in Fig.1. The trial
functions for σσσ , in each element, are assumed as

N11 = β1

N22 = β2

N12 = β3

N21 = β4
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M11 = M2 = β5 + xβ6 + yβ7

M22 =−M1 = β8 + xβ9 + yβ10

M12 = β11 + xβ12 + yβ13

(29)

The matrix form of the Eq.(29) is

σσσ = Pβ (30)

where

βββ =
[
β1 β2 β3 · · · β11 β12 β13

] T (31)

P =



1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 x y 0 0 0 0 0 0
0 0 0 0 0 0 0 1 x y 0 0 0
0 0 0 0 0 0 0 0 0 0 1 x y


(32)

In a same way, the initial stress σσσ0 can be expressed as

σσσ
0 = Pβ

0 (33)

where

βββ =
[
β 0

1 β 0
2 β 0

3 · · · β 0
11 β 0

12 β 0
13

] T (34)

For the second item ΠR2 in the functional of Eq.(23), only the squares of u30,1 and
u30,2 occur within each element. Thus, θ1 = u30,2 and θ2 = −u30,1 are assumed
directly to be linear within each element, in terms of their respective nodal values.
This is enormously simple and advantageous in contrast to the primal approach
wherein u30 were required to be C1 continuous over each element, and thus were
assumed to be Herimitian polynomials over each element. In this paper, however,
we assume:

uθ =
{

θ1
θ2

}
= Nθ aθ =

[
L1 0 L2 0 L3 0
0 L1 0 L2 0 L3

]


1θ1
1θ2
2θ1
2θ2
3θ1
3θ2


(35)
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where Li are the area coordinates of the triangular plate elements. Li can be ex-
pressed as

Li =
1

2A
(ai +bix1 + cix2) (36)

ai = x jym− xmy j

bi = y j− ym

ci =−x j + xm

(37)

where A is the area of the triangular element, x = x1,y = x2, (xi,y j) are the coordi-
nates of the nodes of the element, and i = 1,2,3; j = 2,3,1;k = 3,1,2.

Assuming that ‘a’ represents the vector of generalized displacements of the nodes
of the triangular plate element in the co-rotational updated Lagrangian reference
frame ei of Fig.1, the displacement vectors of node i are:

ia =
[

iu1
iu2

iu3
iu4

iu5
iu6
]T

=
[

iu10
iu20

iu30
iθ1

iθ2
iθ3
]T [i = 1,2,3]

(38)

The relation between aθ and a can be expressed as

aθ = Tθ a (39)

where

Tθ =

1Tθ 0 0
0 2Tθ 0
0 0 3Tθ

 (40)

iTθ =
[

0 0 0 1 0 0
0 0 0 0 1 0

]
(41)

For the third item ΠR3 in the functional of Eq.(23), the trial functions for the dis-
placements along the boundary of the element, for instance, on boundary 1-2 in
Fig.3, are separately chosen as

(1)ub =


(1)u10
(1)u20
(1)u30
(1)θs

= (1)Nb
(1)a =

[
1Nb

2Nb
]{1b

2b

}
(42)

where

ib =
[

iu10
iu20

iu30
iθs

iθn
]T (43)
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iNb =


φi 0 0 0 0
0 φi 0 0 0
0 0 H0

i 0 −H1
i

0 0 0 φi 0

 (44)

φ1 = 1−ξ ,φ2 = ξ ,

H0
1 = 1−3ξ

2 +2ξ
3,H1

1 = d1
(
ξ −2ξ

2 +ξ
3)

H0
2 = 3ξ

2−2ξ
3,H1

2 =−d1
(
ξ

2−ξ
3) (45)

where θs = ∂u30/∂n,θn = −∂u30/∂ s, d1 is the length of boundary 1-2 and ξ =
s/d1.

The relation between (θs,θn) and (θ1,θ2) on boundary 1-2 in Fig.3 can be ex-
pressed as{

θs

θn

}
=
[

cosα sinα

−sinα cosα

]{
θ1
θ2

}
(46)

x1

x2

1

2

3

s

α

o

nθ

sθ

 

Figure 3: Triangular plate element

The stresses (1)σσσ along the boundary can be obtained by using Eq.(29), along with
the expressions of{

x = x1 + c3ξ

y = y1−b3ξ
(47)
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where b3 and c3 are defined in Eq.(37).

Similarly, other trial functions (i)ub (i = 2,3) and (i)σσσ along the boundary of the
element can be obtained by cyclic permutation.

The drilling degrees θ3 are also assumed directly to be linear within each element
in a same way of θ1 and θ2 in Eq.(35).

3.3 Explicit expressions of the tangent stiffness matrix for each element

Because of the assumption of the trial functions of the stresses in Eq.(29), the fol-
lowing items in Eq.(25) become∫
A

N̂11,1u10dA = 0,
∫
A

N̂22,2u20dA = 0,
∫
A

N̂12,2u10dA = 0,

∫
A

N̂21,1u20dA = 0,
∫
A

M̂11,11u30dA = 0,
∫
A

M̂22,22u30dA = 0,

∫
A

M̂12,21u30dA = 0

(48)

Thus, Eq.(24) can be rewritten as

ΠR1 =
1
2

∫
A

(
σσσ

T D−1
σσσ
)

dA =
1
2

∫
A

(
βββ

T PT CPβ
)

dA (49)

ΠR2 =
1
2

∫
A

[
N0

11u2
30,1 +N0

22u2
30,2 +

(
N0

12 +N0
21
)

u30,1u30,2
]

dA

=
1
2

∫
A

[
N0

11θ
2
2 +N0

22θ
2
1 −
(
N0

12 +N0
21
)

θ1θ2
]

dA

=
1
2

∫
A

uT
θ σσσ

0
θ uθ dA =

1
2

∫
A

aT TT
θ NT

θ σσσ
0
θ Nθ Tθ adA

(50)

where

σσσ
0
θ =

[
N0

22 −N0
12

−N0
21 N0

11

]
(51)

in ΠR2, only the squares of u30,1 and u30,2 appear within each element. Thus, θ1 =
u30,2 and θ2 =−u30,1 are simply assumed to be C0 continuous within each element.

Letting Ann = TT
θ

NT
θ

Nθ Tθ , ΠR2 can be rewritten as

ΠR2 =
1
2

∫
A

aT AnnadA (52)
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ΠR3 =
∮
Se

n1N̂11u10de+
∮
Se

n2N̂22u20de+
∮
Se

n2N̂12u10de+
∮
Se

n1N̂21u20de

+
∮
Se

n1M̂11,1u30de−
∮
Se

n1M̂11u30,1de+
∮
Se

n2M̂22,2u30de−
∮
Se

n2M̂22u30,2de

+2
∮
Se

n1M̂12,2u30de−2
∮
Se

n2M̂12u30,1de+
∫
A

N̂12θ3dA−
∫
A

N̂21θ3dA

=
(
βββ +βββ

0)T Rσ a
(53)

where Rσ is a 13× 18 constant matrix, and can be explicitly expressed with the
coordinates of the nodes of the triangular element, by using the trial functions in
Eqs. (29), (35) and (42). Please see the Matlab codes at the appendix for obtaining
the explicit expression of the matrix Rσ .

ΠR4 = aT F (54)

By invoking δ ΠR = 0, we can obtain

δΠR = ∑
elem

δβββ
T

−
∫
A

PT CPβdA+Rσ a

+

∑
elem

δaT

RT
σβββ +

∫
A

AnnadA+RT
σβββ

0−F


(55)

Let

H =
∫
A

PT CPdA, G = Rσ ,KN =
∫
A

AnndA,F0 = GT
βββ

0 (56)

then

δΠR = ∑
elem

δβββ
T {−Hβ +Ga} − ∑

elem
δaT {GT

βββ +KNa−F+F0}= 0 (57)

Since δ βββ T in Eq.(57) are independent and arbitrary in each element, one obtains

βββ = H−1Ga (58)

and

∑
elem

δaT {(KL +KN)a−F+F0}= 0 (59)
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where

KL = GTH - 1G (60)

KN =
∫
A

AnndA (61)

The components of the element tangent stiffness matrix, KL and KN , respectively,
can be derived explicitly after some simple algebra. KL is the usual linear symmet-
ric (18×18) stiffness matrix of the plate in the co-rotational reference frame and
can be explicitly expressed by using H in Eq.(56) and G = Rσ which is obtained at
the appendix. However, the nonlinear stiffness matrix KN is asymmetric (18×18)
stiffness matrix because of the introduction of the drilling degrees of freedom. In
Eq.(60), H is a (13×13) matrix, and G is a (13×18) matrix. The number of stress
parameters (nσ ) in the development of the present element is 13, the number of
displacement coordinates (nq) for the element is 18, and the number of rigid-body
modes (nπ) for the element is 6. Thus, as shown in Xue, Karlovitz and Atluri
(1985), the necessary condition for satisfying the element stability [LBB] condi-
tion, namely, nσ ≥ nq− nπ is satisfied. Furthermore, it has been verified that the
present element does not possess any Kinematic (zero-energy) deformation modes.

It is clear from the above procedures, that the present (18×18) tangent stiffness
matrices of the plate in the co-rotational reference frame, based on the Reissner
variational principle and von Karman type strains, are very simple and can be ex-
plicitly derived.

4 Transformation between deformation dependent co-rotational local base
vectors [ei], and the global [ēi] frames of reference

As shown in Fig.1, x̄i (i = 1,2,3) are the global coordinates with unit basis vectors
ēi. By letting xi and ei be the co-rotational reference coordinates for the deformed
plate element, the basis vectors ei are chosen such that

e1 =
(
χχχ

2
0−χχχ

1
0
)
/
∥∥χχχ

2
0−χχχ

1
0
∥∥

e13 =
(
χχχ

3
0−χχχ

1
0
)
/
∥∥χχχ

3
0−χχχ

1
0
∥∥

e3 = (e1× e13)/‖e1× e13‖
e2 = e3× e1

where χχχ i
0 (i = 1,2,3) are the position vectors of the nodes 1,2,3 respectively of the

element in the current reference state, in the global Cartesian frame [χχχ i
0 = x̄i

jē j].
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Thus, we find

e1 =
(
x̄12

1 ē1 + x̄12
2 ē2 + x̄12

3 ē3
)
/l12 = ã1ē1 + ã2ē2 + ã3ē3

e3 = c̃1ē1 + c̃2ē2 + c̃3ē3

e2 = e3× e1

(62)

where x̄ jk
i = x̄ j

i − x̄k
i , l jk =

[(
x̄ jk

1

)2
+
(

x̄ jk
2

)2
+
(

x̄ jk
3

)2
] 1

2

,

b̃1 =
x̄13

1
l13 , b̃2 =

x̄13
2

l13 , b̃3 =
x̄13

3
l13 (63)

c̃1 =
ã2b̃3− ã3b̃2

lc , c̃2 =
ã3b̃1− ã1b̃3

lc , c̃3 =
ã1b̃2− ã2b̃1

lc (64)

and

lc =
[(

ã2b̃3− ã3b̃2
)2 +

(
ã3b̃1− ã1b̃3

)2 +
(
ã1b̃2− ã2b̃1

)2
] 1

2
(65)

Then ei and ēi have the following relations:
e1
e2
e3

=

ã1 ã2 ã3
d̃1 d̃2 d̃3
c̃1 c̃2 c̃3


ē1
ē2
ē3

 (66)

where

d̃1 = c̃2ã3− c̃3ã2, d̃2 = c̃3ã1− c̃1ã3, d̃3 = c̃1ã2− c̃2ã1 (67)

λλλ 0 =

ã1 ã2 ã3
d̃1 d̃2 d̃3
c̃1 c̃2 c̃3

 (68)

Thus, the transformation matrix λλλ for the plate element, between the 18 general-
ized coordinates in the co-rotational reference frame ei, and the corresponding 18
coordinates in the global Cartesian reference frame ēi, is given by

λλλ =



λλλ 0 0 0 0 0 0
0 λλλ 0 0 0 0 0
0 0 λλλ 0 0 0 0
0 0 0 λλλ 0 0 0
0 0 0 0 λλλ 0 0
0 0 0 0 0 λλλ 0

 (69)
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Then the element matrices are transformed to the global coordinate system using

ā = λλλ
T a (70)

K̄ = λλλ
T Kλ (71)

F̄ = λλλ
T F (72)

where ā,K̄, F̄ are respectively the generalized nodal displacements, element tangent
stiffness matrix and generalized nodal forces, in the global coordinates system. The
Newton-Raphson method is used to solve the nonlinear equation of the plate in this
implementation.

5 Numerical examples

5.1 Buckling of the thin plate

The (18×18) tangent stiffness matrix for a plate in space should be capable of pre-
dicting buckling under compressive axial loads, when such an axial load interacts
with the transverse displacement in the plate. We consider the plate with two types
of boundary conditions as shown in Figs.4a and 4b. Assume that the thickness of
the plate is h = 0.01, and a = b = D = 1. The buckling loads of the plate obtained
by the present method using different numbers of elements are shown in Tab.1. It
is seen that the buckling load predicted by the present method agrees well with the
analytical solution (buckling load is Pcr = kπ2D/b2, where k = 4 for Fig.4a and
k = 1.7 for Fig.4b).

b

 

Figure 4: Model of the plate subject to an axial force
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Table 1: Buckling load of the plate

Mesh
Fig.4a Fig.4b

Present method Exact Present method Exact
2×2 38.2754

39.4784

18.7710

16.7783
4×4 40.6186 17.4856
8×8 39.7162 16.9512

16×16 39.5189 16.8084

5.2 A simply supported or clamped square plate

A simply supported or clamped square plate loaded by a central point load P or
a uniform load q is considered for linear elastic analysis. The side length and the
thickness of the square plate are l and h. The results listed in Tab.2 and Tab.3
indicate the good accuracy and convergence rate of the present elements.

Table 2: Central deflection for a square plate clamped along all four boundaries

Mesh Uniform load(
wc×ql4/100D

) Point load(
wc×Pl2/100D

)
2×2 0.0521 0.2083
4×4 0.1148 0.4808
8×8 0.1237 0.5383
16×16 0.1259 0.5548
Exact 0.1260 0.5600

Table 3: Central deflection for a square plate simply supported along all four bound-
aries

Mesh Uniform load(
wc×ql4/100D

) Point load(
wc×Pl2/100D

)
2×2 0.2417 0.9667
4×4 0.3649 1.0940
8×8 0.3959 1.1406
16×16 0.4037 1.1545
Exact 0.4062 1.1160
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5.3 Geometrically nonlinear analysis of a clamped square plate subjected to a
uniform load

The geometrically nonlinear analysis of a clamped plate under uniform load q is
studied. The side length and the thickness of the square plate are l = 100mm and
h = 1mm. The material properties are E = 2.1e06N/mm2 and ν = 0.316. The
analytic central solution of the plate is given by chia (1980):(w0

h

)3
+0.2522

w0

h
= 0.0001333

ql4

Dh
(73)

where wc = 2.5223w0.

The whole plate is modeled and the central deflection wcof the plate for different
meshes is shown in Tab.4. It is observed that the results of the present method
converge quickly to the analytic solution.

Table 4: The central deflection of a clamped square plate subjected to a uniform
load

Mesh
q

0.5 1.3 2.1 3.4 5.5
2×2 0.133382 0.337638 0.522149 0.775787 1.092368
4×4 0.287872 0.664287 0.938416 1.258908 1.617062
8×8 0.306773 0.681918 0.939928 1.234652 1.561745

Analytical 0.322050 0.688258 0.933327 1.214635 1.531733

5.4 Geometrically nonlinear analysis of a clamped circular plate subjected to a
uniform load

The large deformation analysis of a clamped circular plate subjected to a uniformly
distributed load q is considered. The radius of the plate is r = 100 and the thickness
of the plate is h = 2. The material properties are E = 1.0e07 and ν = 0.3. The
analytic central deflection w0 of the plate is given by Chia (1980):

16
3(1−ν2)

[
w0

h
+

1
360

(1+ν)(173−73ν)
(w0

h

)3
]

=
qR4

Eh4 (74)

Due to the double symmetry, only one quarter of the plate is discretized as shown
in Fig.5. Fig.6 shows the comparison of the present result of the central deflection
and the analytic solution by Chia (1980). It is observed that the present result is in
very good agreement with the analytical solution.
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Figure 5: Mesh of one quarter of a clamped circular plate

W
0

/ h

 

Figure 6: Nonlinear results of a clamped circular plate

5.5 Geometrically nonlinear analysis of a clamped circular plate subjected to a
concentrated load

The circular plate subjected to a concentrated load p at the center of the plate is
considered (Zhang and Cheung 2003). The geometric and material property are the
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same as the Section 5.4. Tab.5 gives the nondimensional central deflections w/h
of the circular plate from the present method and the analytical solution by Chia
(1980).

Table 5: Nondimensional central deflection w/h of a clamped circular plate sub-
jected to a concentrated load

pr2/
(
Eh4

)
1 2 3 4 5 6

Present method 0.2120 0.4043 0.5704 0.7130 0.8369 0.9465
Analytical solution 0.2129 0.4049 0.5695 0.7098 0.8309 0.9372

5.6 Large rotations of a plate subject to an end-moment and a transverse load

A plate subject to an end moment M∗ = 6Ma
πEbh3 as shown in Fig.7, is considered

(Oral and Barut 1991). The thickness of the plate is h = 0.01. The widths of the
plate are a = 8 and b = 1. The plate is divided into 16 triangular elements (Fig.7).
When M∗ = 1, the plate is almost curled into a complete circle as shown in Fig.8
and the solutions are in good agreement with the analytical solution.

a x1

x2

 

Figure 7: Model for a plate subject to an end-moment

If a non-conservative, follower-type transverse load P∗ = 6Pa2

πEbh3 is applied at the tip,
instead of M∗, the initial and deformed geometries of the cantilever are shown in
Fig.9.

5.7 Nonlinear analysis of a cantilever plate with conservative end load

The cantilever plate with conservative end load shown in Fig.10 has been analyzed.
The geometry parameters are a = 40m, b = 30m and h = 0.4m. The material proper-
ties are E = 1.2e8N/m2 and ν = 0.3. The load-deflection curve is shown in Fig.11
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Figure 8: Initial and deformed geometries for the plate subject to an end-moment
along x2 = 0

 

Figure 9: Initial and deformed geometries for the plate subject to a transverse load
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where the present solution is compared with the solution by Oral and Barut (1991).
WA and WB in Fig.11 are correspondingly the deflections of point A and point B
along x3.

 

Figure 10: Cantilever plate with end load

5.8 Nonlinear analysis of a cylindrical shell panel

A cylindrical shell panel clamped along all four boundaries shown in Fig.12 is con-
sidered for nonlinear analysis. The shell panel is subjected to inward radial uniform
load q. The geometry parameters are l = 254mm, r = 2540mm, h = 3.175mm and
θ = 0.1rad. The material properties are E = 3.10275kN/mm2 and ν = 0.3. Due to
the double symmetry, only one quarter of the panel is discretized using a mesh of
8×8. The present results of the central deflection together with solutions by Dhatt
(1970) are shown in Fig.13. It is observed that the present method works very well.

5.9 Hinged spherical shell with central point load

The hemispherical shell with an 180 hole shown in Fig.14 is analyzed. The geom-
etry parameters are the radius r = 10m and h = 0.04m. The material properties are
E = 6.825e7kN/m2 and ν = 0.3. Due to the double symmetry, only one quarter
of the shell is discretized using a mesh of 8×8(Fig.15). Fig.16 shows the present
solutions are results are in good agreement with the results of Kim and Lomboy
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Figure 11: Load-deflection curve for the cantilever plate

2l

sym
sym

rθ

 

Figure 12: Model of the shell panel
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Figure 13: Nonlinear results of a clamped cylindrical shell panel
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Figure 14: Model for hemispherical shell with an 180 hole
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(2006) using a mesh of 8×8. The deformed shape of hemispherical shell with a
mesh of 16×16 when F = 200kN is shown in Fig.17.

 

Figure 15: Mesh for the hemispherical shell with an 180 hole

6 Conclusions

Based on the Reissner variational principle and a von Karman nonlinear theory of
deformation in the updated Lagrangian co-rotational reference frame, a simple fi-
nite element method has been developed for large deformation/rotation analyses of
plate/shell structures with thin members. The drilling degrees of freedom are in-
troduced as additional variables to avoid the problem of singularity in the stiffness
matrix for the large deformation and rotation analyses of the plate/shell structures.
The trial functions for the derivatives of transverse displacements and the bending
moments can be simply assumed to be linear within each element in the current ap-
proach. Thus the development of the present element based on the Reissner’s prin-
ciple is much simpler than the plate/shell element based on the primal method. The
explicit expressions for the (18x18) tangent stiffness matrix of each element can
be seen to be derived, in an elementary way, for the geometrically nonlinear analy-
ses of the plate/shell structures. Numerical examples demonstrate that the present
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Figure 16: Nonlinear solutions for hemispherical shell

 

Figure 17: Deformed shape of hemispherical shell when F = 200kN

method is just as competitive, if not more so, as the existing methods, based on the
complicated mathematical theories of differential geometry and group-theoretical
considerations of finite rotations, in terms of accuracy and efficiency.
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Appendix

MatLab codes for generating the explicit expression of the matrix Rσ in Eq.(53)

clear
%trial function of the generalized stresses
syms x y;
syms B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13;
B=[B1;B2;B3;B4; B5;B6;B7; B8;B9;B10; B11;B12;B13];
str1=B1;
str2=B2;
str3=B3;
str4=B4;
str5=B5+x*B6+y*B7;
str6=B8+x*B9+y*B10;
str7=B11+x*B12+y*B13;
str=[str1;str2;str3;str4;str5;str6;str7];
%trial function of the displacements
syms u1 u2 u3 u4 u5 u6 u7 u8 u9;
syms u10 u11 u12 u13 u14 u15 u16 u17 u18;
disp=[u1;u2;u3;u4;u5;u6;u7;u8;u9;u10;u11;...

u12;u13;u14;u15;u16;u17;u18];
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%
syms x1 x2 x3 y1 y2 y3 d1 d2 d3
syms a1 a2 a3 b1 b2 b3 c1 c2 c3 A
%Calculation of the integration of the element side
pr1=SideIntegration(str,disp,1); %side 1-2
pr2=SideIntegration(str,disp,2); %side 2-3
pr3=SideIntegration(str,disp,3); %side 3-1
%Calculation of the integration over the triangular element
prb=AreaIntegration(str,disp);
%
pr=simplify(pr1+pr2+pr3+prb);
Rs=simplify(DealRs(pr)); %matrix Rs
%%
function [pr]=SideIntegration(str,disp,i)
syms B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13;
syms b1 b2 b3 c1 c2 c3 A d1 d2 d3
syms x1 x2 x3 y1 y2 y3 x y s;
%
Fi1=1-s;Fi2=s;
%directions of the element boundaries
e1=c3/d1;k1=-b3/d1;
e2=c1/d2;k2=-b1/d2;
e3=c2/d3;k3=-b2/d3;
%
st5d1=diff(str(5),x);
st6d2=diff(str(6),y);
st7d2=diff(str(7),y);
std=[st5d1 st6d2 st7d2];
%
switch i
case 1 %for side’1-2’

L=d1;ca=e1;sa=k1;
x=x1+c3*s;y=y1-b3*s;

case 2 %for side’2-3’
L=d2;ca=e2;sa=k2;
x=x2+c1*s;y=y2-b1*s;

case 3 %for side’3-1’
L=d3;ca=e3;sa=k3;
x=x3+c2*s;y=y3-b2*s;

end %switch
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%
H10=1-3*s^2+2*s^3; H20=(3*s^2-2*s^3);
H11=(s-2*s^2+s^3)*L; H21=(s^3-s^2)*L;
%
syms ts ts1 ts2 tn1 tn2;
j=i-1;
if i==3 j=-1; end
%
ts1= ca*disp(4+6*(i-1))+sa*disp(5+6*(i-1));
tn1=-sa*disp(4+6*(i-1))+ca*disp(5+6*(i-1));
ts2= ca*disp(10+6*j)+sa*disp(11+6*j);
tn2=-sa*disp(10+6*j)+ca*disp(11+6*j);
%
u10=Fi1*disp(1+6*(i-1))+Fi2*disp(7+6*j);
u20=Fi1*disp(2+6*(i-1))+Fi2*disp(8+6*j);
u30=H10*disp(3+6*(i-1))-H11*tn1+H20*disp(9+6*j)-H21*tn2;
%
ts=Fi1*ts1+Fi2*ts2;
wds=diff(u30,s)/L;
wd1=ca*wds-sa*ts; wd2=sa*wds+ca*ts;
%
str=eval(str);std=eval(std);
N11=str(1);N22=str(2);N12=str(3);N21=str(4);
M11=str(5);M22=str(6);M12=str(7);
M11d1=std(1);M22d2=std(2);
M12d2=std(3);
%
n1=sa;n2=-ca;
pr=int(n1*N11*u10,s,0,1)+int(n2*N22*u20,s,0,1)+int(n2*N12*u10,s,0,1)...

+int(n1*N21*u20,s,0,1)+int(n1*M11d1*u30,s,0,1)-int(n1*M11*wd1,s,0,1)...
+int(n2*M22d2*u30,s,0,1)-int(n2*M22*wd2,s,0,1)...
+2*int(n1*M12d2*u30,s,0,1)-2*int(n2*M12*wd1,s,0,1);

pr=simplify(L*pr);
%%
function [prb]=AreaIntegration(str,disp)
syms B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13;
syms u1 u2 u3 u4 u5 u6 u7 u8 u9 u10;
syms u11 u12 u13 u14 u15 u16 u17 u18;
syms x1 x2 x3 y1 y2 y3;
syms L1 L2 L3 A x y;
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%
N12=str(3);N21=str(4);
L3=1-L1-L2;
x=L1*x1+L2*x2+L3*x3;
y=L1*y1+L2*y2+L3*y3;
%Theta 3
t3=L1*disp(6)+L2*disp(12)+L3*disp(18);
%
pr0=N12*t3-N21*t3;
%integration over the element
ele=eval(pr0);
ele1=int(ele, L1,0,1-L2); %integrate by L1
ele2=int(ele1,L2,0,1); %integrate by L2
prb=simplify(2*A*ele2);
%%
function [Rs]=DealRs(pr)
syms b1 b2 b3 c1 c2 c3 A
syms x1 x2 x3 y1 y2 y3 d1 d2 d3
%
Rs=[d1];
for ii=1:18

u1=0;u2=0;u3=0;u4=0;u5=0;u6=0;u7=0;u8=0;u9=0;u10=0;
u11=0;u12=0;u13=0;u14=0;u15=0;u16=0;u17=0;u18=0;
if ii==1 u1=1; elseif ii==2 u2=1; elseif ii==3 u3=1;
elseif ii==4 u4=1; elseif ii==5 u5=1; elseif ii==6 u6=1;
elseif ii==7 u7=1; elseif ii==8 u8=1; elseif ii==9 u9=1;
elseif ii==10 u10=1; elseif ii==11 u11=1; elseif ii==12 u12=1;
elseif ii==13 u13=1; elseif ii==14 u14=1; elseif ii==15 u15=1;
elseif ii==16 u16=1; elseif ii==17 u17=1;
else u18=1; end
%
disp(’row:’); disp(ii);
for jj=1:13

B1=0;B2=0;B3=0;B4=0;B5=0;B6=0;B7=0;
B8=0;B9=0;B10=0;B11=0;B12=0;B13=0;
if jj==1 B1=1; elseif jj==2 B2=1; elseif jj==3 B3=1;
elseif jj==4 B4=1; elseif jj==5 B5=1; elseif jj==6 B6=1;
elseif jj==7 B7=1; elseif jj==8 B8=1; elseif jj==9 B9=1;
elseif jj==10 B10=1; elseif jj==11 B11=1; elseif jj==12 B12=1;
else B13=1; end



312 Copyright © 2010 Tech Science Press CMES, vol.61, no.3, pp.273-312, 2010

Rs(jj,ii)=eval(pr);
end %for jj

end %for ii

where ai,bi and ci are defined in Eq.(37), d1,d2 and d3 are the length of the element
boundaries, A is the area of the triangular element, and Rs is the matrix Rσ in
Eq.(53).


