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Topological Derivative-Based Optimization of
Micro-Structures Considering Different Multi-Scale

Models

E.A. de Souza Neto1, S. Amstutz2, S.M. Giusti3 and A.A. Novotny3

Abstract: A recently proposed algorithm for micro-structural optimization, based
on the concept of topological derivative and a level-set domain representation, is
applied to the synthesis of elastic and heat conducting bi-material micro-structures.
The macroscopic properties are estimated by means of a family of multi-scale con-
stitutive theories where the macroscopic strain and stress tensors (temperature gra-
dient and heat flux vector in the heat conducting case) are defined as volume av-
erages of their microscopic counterparts over a Representative Volume Element
(RVE). Several finite element-based examples of micro-structural optimization are
presented. Three multi-scale models, providing an upper and a lower bound for
the macroscopic properties as well as the classical periodic medium solution, are
considered in the optimization process. These models differ only in the kinemat-
ical constraints (thermal constraints in the heat conducting case) imposed on the
RVE. The examples show that, in general, the obtained optimum micro-structure
topology depends on the particular model adopted.

Keywords: Otimization of micro-structures, synthesis of micro-structures, multi-
scale modelling, topological derivative, sensitivity analysis.

1 Introduction

The prediction of macroscopic heat conduction and mechanical properties of ma-
terials from the knowledge of their underlying microstructures has long been a
subject of great interest in applied mechanics (Hashin and Shtrikman (1963); Hill
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(1965); Gurson (1977); Bensoussan, Lions, and Papanicolau (1978); Sanchez-Palencia
(1980); Germain, Nguyen, and Suquet (1983)). A particularly interesting branching
of this field of research is the application of homogenization-based theories for the
prediction of macroscopic properties in the design of microstuctures that produce
in some sense an optimized macroscopic behaviour. The use of such theories in this
context is reported, among others, by Sigmund (1994); Silva, Fonseca, and Kikuchi
(1997); Kikuchi, Nishiwaki, Fonseca, and Silva (1998); Hyun and Torquato (2001).
In the methodology employed by these authors – which can now be regarded as con-
ventional – the prediction of macroscopic properties is generally obtained through
the concept of periodic homogenization, whose mathematical roots are traced back
to the work of Bensoussan, Lions, and Papanicolau (1978). Of particular relevance
here is the fact that the topology optimization algorithms in such cases rely invari-
ably on some form of regularization of the problem posed by the topology change
that occurs when a portion of the microscopic domain is replaced with either a void
or a material whose properties differ from those of the original matrix. Despite their
success in many reported applications, the main drawback of the regularization ap-
proach is probably the fact that it usually leads to relatively complex algorithms
featuring a number of problem-dependent artificial parameters and post-processing
procedures for topology design.

In the present paper we adopt of a radically different approach that relies on ex-
act formulae for the sensitivity of the macroscopic elastic and heat conducting re-
sponses to topological changes of the microscopic domain. These exact formulae
have been proposed in Giusti, Novotny, de Souza Neto, and Feijóo (2008) and
Giusti, Novotny, de Souza Neto, and Feijóo (2009a) and rely on the concepts of
topological asymptotic analysis and topological derivative (Sokołowski and Żo-
chowski (1999)) – which provide the correct mathematical framework for the cal-
culation of sensitivities under singular topological changes typical of microstruc-
tural optimization problems. This concept has been successfully used, for example,
in the topology optimization of load-bearing structures (Allaire, Jouve, and Toader
(2004); Amstutz and Andrä (2006); Novotny, Feijóo, Taroco, and Padra (2007)). Its
main advantage lies in the fact that the sensitivities are obtained in exact form and,
hence, allow the use of much simpler optimization algorithms which in particular
do not rely on artificial algorithmic parameters. Here, the algorithm proposed by
Amstutz and Andrä (2006) is adapted for use in the microstructural optimization
context. A series of numerical examples is presented which show the effectiveness
of the approach. For comparison, three different homogenization-based models are
used in the estimation of the macroscopic properties in the optimization problem.
These models differ solely in the constraints imposed upon the possible displace-
ment (or temperature) field of the microstructure and provide: the conventional
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Figure 1: Macroscopic continuum with a locally attached microstructure.

periodic media prediction; an upper bound and; a lower bound for the elasticity (or
conductivity) tensor.

The paper is organized as follows. The family of multi-scale constitutive theories
used in the estimation of the elastic and heat conduction macroscopic constitutive
responce is briefly described in Section 2. In Section 3 an overview of the topolog-
ical derivative concept is given and the formulae for the topological derivatives of
the macroscopic elasticity and heat conductivity tensors relevant to the present con-
text are presented. The algorithm for topological optimization is briefly described
in Section 3. The numerical examples are presented in Section 5 and, finally, some
concluding remarks are made in Section 6.

2 Multi-scale constitutive modelling

This section reviews the multi-scale constitutive framework used here to estimate
the macroscopic elasticity and thermal conductivity tensors from the knowledge
of the underlying material microstructure. The approach is based on the ideas in-
troduced by Germain, Nguyen, and Suquet (1983) and applied in the computa-
tional context, among others, by Michel, Moulinec, and Suquet (1999) and Miehe,
Schotte, and Schröder (1999). An axiomatic foundation for this class of models is
discussed by de Souza Neto and Feijóo (2006). The starting point of the theory is
the assumption that any point x of the macroscopic continuum (refer to Fig.1) is as-
sociated to a local Representative Volume Element (RVE) whose domain Ωµ , with
boundary ∂Ωµ , has characteristic length Lµ , much smaller than the characteristic
length L of the macro-continuum domain, Ω. For the present purposes it is conve-
nient to consider RVE domains consisting of a matrix Ωm

µ , containing inclusions of
different materials occupying a domain Ωi

µ .
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2.1 The elasticity case

Using the concept of homogenization the macroscopic strain tensor ε at a point x
of the macroscopic continuum is defined as the volume average of its microscopic
counterpart εµ over the domain of the RVE:

ε :=
1

Vµ

∫
Ωµ

εµ =
1

Vµ

∫
∂Ωµ

uµ ⊗s n, (1)

where Vµ is the volume of the RVE, uµ is the displacement field of the RVE, n is
the outward unit normal to ∂Ωµ , ⊗s denotes the symmetric tensor product and

εµ = ∇
suµ . (2)

Likewise, the macroscopic stress tensor σ , is defined as the volume average of the
microscopic stress field σµ over the RVE, i.e.

σ :=
1

Vµ

∫
Ωµ

σµ(uµ). (3)

Without loss of generality, the field uµ may be split into a sum

uµ (y) = u+uµ (y)+ ũµ (y) , (4)

of a constant (rigid) RVE displacement coinciding with the macroscopic displace-
ment u(x), a field

uµ (y) := εy (5)

and a displacement fluctuation field ũµ(y) which, for convenience, is made to sat-
isfy∫

∂Ωµ

ũµ = 0. (6)

With the split (4), the microscopic strain field can be written as a sum

εµ = ε +∇
sũµ , (7)

of a homogeneous strain (uniform over the RVE) coinciding with the macroscopic
strain and a field ∇sũµ corresponding to a fluctuation of the microscopic strain
about the homogenized (average) value.
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In the present paper we focus on RVEs consisting of a matrix Ωm
µ , containing in-

clusions occupying a domain Ωi
µ made of materials modelled as isotropic linear

elastic. Hence, we have the constitutive law

σµ(uµ) = Cµ∇
suµ . (8)

where Cµ is the fourth-order isotropic elasticity tensor

Cµ =
Eµ

1−ν2
µ

[(
1−νµ

)
I+νµ (I⊗ I)

]
, (9)

with I and I denoting the second- and fourth-order identity tensors, respectively,
and Eµ and νµ the Young’s modulus and Poisson ratio fields, here assumed to be
given by

Eµ :=
{

Em
µ if y ∈Ωm

µ

E i
µ if y ∈Ωi

µ

and νµ :=
{

νm
µ if y ∈Ωm

µ

ν i
µ if y ∈Ωi

µ .
(10)

The combination of (1), (4) and (8) together with the Hill-Mandel Principle of
Macro-Homogeneity (Hill (1965); Mandel (1971)) in the virtual work statement
of equilibrium of the RVE, yields the RVE mechanical Equilibrium Problem which
consists in finding, for a given macroscopic strain ε , an admissible displacement
fluctuation field ũµ ∈Uµ such that∫

Ωµ

σµ(ũµ) ·∇s
η =−

∫
Ωµ

σµ(uµ) ·∇s
η ∀η ∈Uµ , (11)

where the (as yet not defined) space Uµ of kinematically admissible displacement
fluctuation (and virtual displacement) fields of the RVE is a subspace of U ∗

µ – the
minimally constrained space of kinematically admissible displacement fluctuations
compatible with the strain averaging assumption (1):

Uµ ⊂U ∗
µ :=

{
v ∈ [H1(Ωµ)]2 :

∫
Ωµ

v = 0 ,
∫

∂Ωµ

v⊗s n = 0
}

. (12)

The macroscopic stress response is obtained by solving problem (11) for the given
ε first and then using (4), (8) and (3) to calculate σ .

The characterization of a multi-scale model of the present type is completed with
the choice of a suitable space Uµ of kinematically admissible displacement fluctu-
ations. The adopted space defines the kinematical constraints to be imposed upon
the RVE and the resulting macroscopic constitutive response is generally dependent
on this choice. Three commonly adopted choices are
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• Linear RVE boundary displacements or simply linear model. For this class
of models the choice is

Uµ = U L
µ :=

{
ũµ ∈U ∗

µ : ũµ (y) = 0 ∀y ∈ ∂Ωµ

}
. (13)

The displacements on ∂Ωµ are uµ = u+ εy.

• Periodic RVE boundary fluctuations model or simply periodic model. This
is typically associated with the modelling of periodic media. The RVE do-
main in this case has to satisfy geometrical constraints as the macroscopic
continuum is generated by the periodic repetition of the RVE – here usually
referred to as the unit cell. The space of kinematically admissible displace-
ment fluctuations is defined as

Uµ = U P
µ :=

{
ũµ ∈U ∗

µ : ũµ(y+) = ũµ(y−) ∀(y+,y−) ∈ P
}

, (14)

where P is the set of pairs of points on opposing sides of the boundary ∂Ωµ

(fig. 2 illustrates a rectangular and a hexagonal RVE) defined to satisfy the
periodicity constraint.

Figure 2: Typical RVE geometries for periodic media. Square and hexagonal cells.

• Minimally constrained or uniform RVE boundary traction model. In this case
we impose the minimum kinematical constraint compatible with the strain
averaging assumption:

Uµ = U U
µ := U ∗

µ . (15)

It can be shown (de Souza Neto and Feijóo (2006)) that this choice of con-
straint produces a uniform traction field on ∂Ωµ , i.e.

σµ(y)n(y) = σn(y) ∀y ∈ ∂Ωµ , (16)

where σ is the macroscopic stress tensor.
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Remark 1 Note that the spaces of displacement fluctuations (and virtual displace-
ment) listed above satisfy

U L
µ ⊂U P

µ ⊂U U
µ . (17)

Then, in general, in the solution of the equilibrium problem (11) the choice of the
linear boundary displacement constraint produces the stiffest solution whereas the
minimaly constrained kinematics assumption produces the most compliant one. In
this sense, within this multi-scale framework the use of the linear and the minimum
constraint provide, respectively, an upper and a lower bound for the response of the
material. The situation here is completely analogous to that described by Ostoja-
Starzewski and Schulte (1996) for the heat-conduction problem. The use of these
bounds as well as the (generally intermediate) prediction obtained under the peri-
odicity assumption in the synthesis of microstructures will be discussed in section
5.

A closed formula for the macroscopic elasticity tensor C can be easily obtained
by conveniently re-writing (11) as a superposition of linear problems associated
with the individual Cartesian components of the macroscopic strain tensor (Michel,
Moulinec, and Suquet (1999)). The final formula reads

C = C+ C̃, (18)

where C is the volume average elasticity tensor:

C =
1

Vµ

∫
Ωµ

Cµ , (19)

and C̃ is a contribution that depends generally on the choice of space Uµ :

C̃ :=
[

1
Vµ

∫
Ωµ

(σµ(ũµkl ))i j

]
(ei⊗ e j⊗ ek⊗ el) , (20)

where {ei} is the orthonormal basis of the Euclidean space and (σµ(ũµkl ))i j de-
notes the i j-component of the fluctuation stress associated with the displacement
fluctuation field ũµkl ∈Uµ that solves the linear variational equation∫

Ωµ

σµ(ũµkl ) ·∇
s
η =−

∫
Ωµ

Cµ(ek⊗ el) ·∇s
η ∀η ∈Uµ , (21)

for k, l = 1,2 (in the two-dimensional case).
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2.2 The heat conduction case

Multi-scale constitutive theories to predict the heat conductivity properties of ma-
terials whose constituents are modelled by the Fourier Law can be obtained within
a framework completely analogous to that of linear elastic materials described in
the above. In the heat conduction case, the fundamental macroscopic quantities
taken as volume averages of the microscopic counterpart fieds can be chosen as the
temperature gradient and the heat flux:

∇xθ :=
1

Vµ

∫
Ωµ

∇θµ (22)

and

q :=
1

Vµ

∫
Ωµ

qµ (23)

where θ and q denote, respectively, macroscopic temperature and heat flux and
θµ and qµ are the corresponding microscopic fields of the RVE. This approach
follows closely that of Germain, Nguyen, and Suquet (1983) and has been re-
cently employed by Özdemir, Brekelmans, and Geers (2008) and Giusti, Novotny,
de Souza Neto, and Feijóo (2009b).

Similarly to (4), without loss of generality, the microscopic temperature field θµ

can be split into a sum

θµ(y) = θ +θ µ(y)+ θ̃µ(y), (24)

of a constant temperature field (coinciding with the macrosopic temperature θ(x)),
a homogeneous gradient temperature field, θ µ(y) := ∇xθ · y, and a temperature
fluctuation field, θ̃µ(y). In addition, we also assume that

θ =
1

Vµ

∫
Ωµ

θµ . (25)

Following the split (24), the microscopic temperature gradient can be expressed as
a sum

∇θµ = ∇xθ +∇θ̃µ , (26)

of a homogeneous gradient (uniform over the RVE) coinciding with the macro-
scopic temperature gradient and a field ∇θ̃µ corresponding to a fluctuation of the
microscopic temperature gradient about the homogenised value.
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Crucial to the theory is a heat conduction version of the classical Hill-Mandel Prin-
ciple of Macro-Homogeneity for solids (Hill (1965); Mandel (1971)). Here we
postulate the following analogous relation (Giusti, Novotny, de Souza Neto, and
Feijóo (2009b)):

q ·∇xθ =
1

Vµ

∫
Ωµ

qµ ·∇θµ , (27)

which must hold for any admissible microscopic temperature field.

Remark 2 Equation (27) is at variance with Germain, Nguyen, and Suquet (1983)
who postulated the following micro-macro dissipation equivalence relation:

q · ∇xθ

θ
=

1
Vµ

∫
Ωµ

qµ ·
∇θµ

θµ

, (28)

as the heat conduction counterpart of the original mechanical Hill-Mandel Macro-
homogeneity Principle. We remark, however, that the use of (27) can be justified as
follows. Firstly, recall that the basic requirement of positive thermal dissipation at
the macro-scale, imposed by the second law of thermodynamics, is expressed by

−q · ∇xθ

θ
≥ 0. (29)

Analogously, at the micro-scale, the inequality

−qµ ·
∇θµ

θµ

≥ 0, (30)

must hold point-wise. If (30) indeed holds point-wise at the RVE level, then, triv-
ially, since θµ is positive,

−qµ ·∇θµ ≥ 0. (31)

The use of (27) ensures, in turn, that

−q ·∇xθ ≥ 0, (32)

so that the macroscopic dissipation inequality (29) holds at the corresponding
macro-continuum point. In summary, if positive dissipation is assured point-wise at
the RVE level, then version (27) of the Hill-Mandel Principle of Macro-homogeneity
for heat conduction problems ensures positive dissipation at the macroscopic level.
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In the present work, we focus on microstructures whose constituents’ heat conduc-
tion behaviour is modelled by the classical Fourier Law:

qµ(θµ) =−Kµ∇θµ , (33)

where Kµ is the microscopic heat conductivity tensor field. In particular, we shall
model the matrix and inclusions as two distinct homogeneous isotropic materials,
so that

Kµ = kµ I :=

 km
µ I if y ∈Ωm

µ

ki
µ I if y ∈Ωi

µ ,
(34)

where km
µ and ki

µ denote, respectively, the thermal conductivity coefficients of the
matrix and inclusions materials.

The additive decomposition of θµ together with Fourier Law gives

qµ(θµ) = qµ(θ µ)+qµ(θ̃µ) , (35)

where qµ(θ µ) is a uniform thermal flux field and qµ(θ̃µ) is a thermal flux fluctua-
tion field associated with the temperature fluctuation θ̃µ .

In a manner completely analogous to that of linear elastic microstuctures, by com-
bining the classical variational statement of thermal equilibrium with postulate (27)
and the additive split (26), we obtain (Giusti, Novotny, de Souza Neto, and Feijóo
(2009b)) the RVE thermal equilibrium problem which consists of finding, for a
given macroscopic temperature gradient ∇θ , an admissible temperature fluctuation
field θ̃µ ∈ Vµ such that∫

Ωµ

qµ(θ̃µ) ·∇η =−
∫

Ωµ

qµ(θ µ) ·∇η ∀η ∈ Vµ , (36)

where Vµ denotes the (yet to be chosen) functional space of admissible tempera-
ture fluctuation fields (and virtual temperatures) that define the thermal constraint
assumed within the RVE. The space Vµ must be a subspace of the minimally con-
strained space V ∗µ of temperature fluctuations compatible with the temperature gra-
dient averaging assumption (22):

Vµ ⊂ V ∗µ :=
{

v ∈ H1(Ωµ) :
∫

Ωµ

v = 0,
∫

∂Ωµ

vn = 0
}

. (37)

Possible definitions of Vµ analogous to (13–15) used in the mechanical multi-scale
model are



Topology Design of Micro-Structures 33

• Linear RVE boundary temperature model or simply linear model. The choice
here is

Vµ = V L
µ :=

{
θ̃µ ∈ W̃ ∗

µ : θ̃µ(y) = 0 ∀y ∈ ∂Ωµ

}
. (38)

• Periodic RVE boundary fluctuations model or simply periodic model. In this
case,

Vµ = V P
µ :=

{
θ̃µ ∈ W̃ ∗

µ : θ̃µ(y+) = θ̃µ(y−) ∀(y+,y−) ∈ P
}

. (39)

• Minimally constrained or Uniform normal RVE boundary heat flux model.
In this case, the choice is

Vµ = V U
µ := V ∗µ . (40)

It can be shown (Giusti, Novotny, de Souza Neto, and Feijóo (2009b)) that
this definition implies a uniform normal flux on the boundary of the RVE:

qµ(y) ·n(y) = q ·n(y) ∀y ∈ ∂Ωµ . (41)

where q is the macroscopic heat flux vector.

Remark 3 Similarly to the comments made in Remark 1, we have

V L
µ ⊂ V P

µ ⊂ V U
µ . (42)

It has been shown by Ostoja-Starzewski and Schulte (1996) that the linear bound-
ary temperature and uniform boundary flux models lead, respectively, to an upper
and a lower bound for the macroscopic conductivity tensor.

Finally, a closed form for the macroscopic heat conductivity tensor can be obtained
in a completely analogous manner to that of the elasticity case. The final formula
is

K = K+ K̃, (43)

where

K =
1

Vµ

∫
Ωµ

Kµ (44)
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is the volume average conductivity tensor and K̃ is the contribution associated to
the choice of space Vµ , given by

K̃ :=
[

1
Vµ

∫
Ωµ

(qµ(θ̃µ j))i

]
ei⊗ e j , (45)

where (qµ(θ̃µ j))i is the i-component of the microscopic flux fluctuation field asso-
ciated with the temperature fluctuation θ̃µ j ∈ Vµ that solves∫

Ωµ

qµ(θ̃µ j) ·∇η =−
∫

Ωµ

Kµe j ·∇η ∀η ∈ Vµ . (46)

for j = 1,2.

3 Topology sensitivity of the homogenized elasticity and conductivity tensors

Crucial to the algorithm used here in the topology optimization of microstructures
are the mathematical concepts of topological asymptotic analysis and topological
derivative. These concepts have been originally introduced by Sokołowski and Żo-
chowski (1999) and provide the correct mathematical framework whereby exact
expressions may be derived for the sensitivity of functionals whose value depend
on a given domain to singular topological changes of the domain. The notion of
topological derivative has proved extremely useful in the treatment of a wide range
of problems in mechanics, optimization, inverse analysis and image processing
(see for instance, Amstutz, Horchani, and Masmoudi (2005); Céa, Garreau, Guil-
laume, and Masmoudi (2000); Garreau, Guillaume, and Masmoudi (2001); Hin-
termüller and Laurain (2008, 2009); Nazarov and Sokołowski (2003); Novotny,
Feijóo, Taroco, and Padra (2007)). Here, we apply this concept to problems of mi-
crostructural optimization where the underlying cost functions are defined in terms
of the homogenized elasticity and heat conductivity tensors discussed in the previ-
ous section.

The topological derivative is an extension of the conventional notion of derivative.
The main idea is briefly reviewed in the following. Let ψ be a generic functional
whose value depends on a given domain and let it have sufficient regularity so that
the following expansion is possible

ψ (ρ) = ψ (0)+ f (ρ)DT ψ +o( f (ρ)) , (47)

where ψ(0) is the value of the functional for a domain Ω and ψ(ρ) is the value of
the functional for a domain Ωρ that differs from Ω by a topological perturbation of
size ρ . The non-negative scalar ρ parametrizes the domain so that the original do-
main Ω is retrieved when ρ =0. In addition, f (ρ) is a function such that f (ρ)→ 0



Topology Design of Micro-Structures 35

with ρ → 0+ and o( f (ρ)) contains all terms of higher order in f (ρ). Expression
(47) is the topological asymptotic expansion of ψ and DT ψ is defined as the topo-
logical derivative of ψ at the unperturbed (or original) domain Ω. For the study of
asymptotic expansion of inclusion of finite size, we refer the reader to Pólya and
Szegö (1951); Eshelby (1957) and Willis (1981).

In the present context, the domain of interest is the RVE domain and the pri-
mary functionals whose topological derivatives are needed are the two-dimensional
macroscopic elasticity and heat conductivity tensors, C and K. The dependence of
these functionals on the domain of the RVE is defined through relations (18–21)
and (43–46), respectively. The topological perturbation to be considered consists
of the introduction of a circular inclusion of radius ρ centred at an arbitrary point
ŷ ∈Ωµ . More precisely, the perturbed domain is obtained by first introducing a cir-
cular hole Hρ of radius ρ centred at ŷ ∈Ωµ and, then, replacing this region with a
circular inclusion Iρ of a different material property. The topologically perturbed
domain is defined as (see to Fig. 3)

Figure 3: Topological perturbation at the microscopic level.

Ω
ρ

µ =
(
Ωµ\Hρ

)
∪Iρ , (48)

with the corresponding microscopic constitutive tensor fields given by

Cρ

µ =

{
Cµ in Ωµ \Hρ

γCCµ in Iρ ,
and Kρ

µ =

{
Kµ in Ωµ \Hρ

γKKµ in Iρ ,
(49)

where the (given) scalar parameters γC,γK ∈ ℜ+ define the contrast between the
constitutive responses of matrix and inclusion.

The topological derivatives of C and K with respect to perturbations of the above
type are given in the following theorems.

Theorem 1 The topological asymptotic expansion of the macroscopic elasticity
tensor in the present context is given by

Cρ = C+
πρ2

Vµ

DT C+o(ρ2), (50)
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where Cρ denotes the macroscopic elasticity tensor associated with the topologi-
cally perturbed RVE domain Ω

ρ

µ and the fourth order tensor field DT C over Ωµ is
the topological derivative of C at the unpertubed domain Ωµ . Its explicit formula
is

DT C = Hσµ(uµi j) ·σµ(uµkl ) (ei⊗ e j⊗ ek⊗ el), (51)

with the canonical stress tensors σµ(uµi j) given by

σµ(uµi j) = Cµ(ei⊗ e j)+σµ(ũµi j) (52)

where ũµi j are the solutions to the set of canonical variational problems (21). The
isotropic fourth-order tensor H is defined as

H =− 1
Eµ

(
1− γC

1+αγC

)[
4I− 1− γC(α−2β )

1+βγC
(I⊗ I)

]
, (53)

with

α =
1+νµ

1−νµ

and β =
3−νµ

1+νµ

. (54)

Proof A complete proof of this theorem is given in Giusti, Novotny, and de Souza Neto
(2010).

Theorem 2 The topological asymptotic expansion of the macroscopic thermal con-
ductivity tensor in the present context reads

Kρ = K+
πρ2

Vµ

DT K+o(ρ2) , (55)

where Kρ is the macroscopic heat conductivity tensor for the perturbed domain
Ω

ρ

µ and the second-order tensor field DT K is the topological derivative of K at the
unperturbed domain Ωµ :

DT K =−2kµ

1− γK

1+ γK
∇θµi ·∇θµ j (ei⊗ e j) , (56)

with ∇θµi the canonical microscopic temperature gradient fields given by

∇θµi = ∇xθ · ei + θ̃µi , (57)

where the scalars θ̃µi are the solutions of the canonical variational problems (46).
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Proof A proof of this theorem is given in Giusti, Novotny, de Souza Neto, and
Feijóo (2009b).

Remark 4 The value of the topological derivative of the macroscopic elasticity
(heat conductivity) tensor at an arbitrary point ŷ ∈ Ωµ is a rigorous first-order
approximation in the volume fraction of inclusion to the change in the macroscopic
elasticity (heat conductivity) tensor resulting from the insertion of an inclusion of
given contrast γC (γK) centred at ŷ.

4 Topological derivative-based microstucture optimization algorithm

The information provided by the topological derivative (see Remark 4) is of an
obvious appeal in the derivation of topology optimization procedures. Such a con-
cept has been recently used with success, for example, in the topology optimization
of load-bearing structures (Allaire, Jouve, and Toader (2004); Amstutz and Andrä
(2006); Novotny, Feijóo, Taroco, and Padra (2007); Turevsky, Gopalakrishnan, and
Suresh (2009)). Since a rigorous first-order accurate measure of the variation of
the cost function due to domain topology changes is available in closed form, al-
gorithms based on this concept are remarkably simpler than procedures based on
the regularization of the problem posed by the singular change of a material point
(or region) into a different material or a hole (Silva, Fonseca, and Kikuchi (1997);
Kikuchi, Nishiwaki, Fonseca, and Silva (1998); Bendsøe and Sigmund (2003); Be-
lytschko, Xiao, and Parimi (2003)). In particular, they do not require the use of
artificial algorithmic parameters or strategies, such as filtering for example (Li and
Atluri (2008)), commonly present in regularized approaches.

In the present paper, we apply these ideas to the topology optimization/synthesis of
bi-material elastic and heat conducting microstructures consisting of the materials
we refer to as matrix and inclusion. The basic problems considered are of the
following types:

Minimize
Ωm

µ⊂Ωµ

J(Ωm
µ ) = h(K)+λ

V m
µ

Vµ

, (58)

in the optimization of the macroscopic elastic properties, and

Minimize
Ωm

µ⊂Ωµ

J(Ωm
µ ) = h(C)+λ

V m
µ

Vµ

, (59)

in the optimization of the macroscopic heat conduction properties. Here, J is a cost
functional whose argument is the domain Ωm

µ occupied by the matrix material, h is a
scalar-valued function of either the macroscopic elasticity tensor or the macrosopic
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heat conductivity tensor which, in turn, are functionals of the domain Ωm
µ defined

respectively through relations (18–21) and (43–46). The fixed parameter λ ≥ 0 is a
Lagrange multiplier used to impose a constraint on the volume fraction V m

µ /Vµ of
matrix material in the RVE. Increasing values of λ produce optimised RVEs with
decreasing matrix volume fraction and the choice λ = 0 places no constraint on the
matrix volume fraction.

In the above defined problems, function h effectively defines which overall property
is to be optimized. With DT C (or DT K) at hand, the exact topological derivative
field of h – the derivative of of h with respect to the volume fraction of a newly
inserted inclusion of given contrast – can be obtained by a straightforward applica-
tion of the conventional rules of differential calculus. Accordingly, the topological
derivative of the cost functional J is given by

DT J = 〈Dh,DT (K)〉+λ . (60)

in the problem of optimization of elastic properties, and

DT J = 〈Dh,DT (C)〉+λ . (61)

in the optimization of heat conductivity properties, where Dh denotes the (conven-
tional) derivative of h with respect to its argument and 〈·, ·〉 the appropriate product.

4.1 The algorithm

The algorithm used in Section 5 in the solution of problems of type (58) and (59)
has been originally proposed and applied by Amstutz and Andrä (2006) to topology
optimization in the context of two-dimensional elasticity and flow through porous
media. The procedure relies crucially on the use of the topological derivative of
the cost function to define a feasible descent direction together with a level-set
domain representation. Of particular relevance is the fact that the algorithm is of
very simple computational implementation and, in addition, due to the use of a
level-set representation, shows a remarkable ability to produce general topological
domain changes rather uncommon in this context. We remark that the successful
application of level-set domain representation is also reported in the context of
regularised approaches to topology optimization (Wang, Lim, Khoo, and Wang
(2007)).

With the adoption of a level-set domain representation, the current domain Ωm
µ is

defined by a level-set function ψ ∈ L2(Ωµ) such that

Ω
m
µ = {y ∈Ωµ |ψ(y) < 0}, (62)
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whereas the domain occupied by the inclusion material is defined as

Ω
i
µ = {y ∈Ωµ |ψ(y) > 0}. (63)

A sufficient condition for local optimality in the present case (Amstutz and Andrä
(2006)) is that the following equivalence relation holds:

∃τ > 0 such that g = τ ψ, (64)

where the field g over the RVE domain is defined as

g :=

{
−DT J(Ωm

µ )(y) if y ∈Ωm
µ

DT J(Ωm
µ )(y) if y ∈Ωi

µ .
(65)

Starting from a given initial guess ψ0 for the level-set function (correponding to
an initial guess to the topology of the RVE) the algorithm generates a sequence of
level-set functions (a sequence of RVE topologies) whose aim is to satisfy (64) or,
equivalently,

θ := arccos
[
〈g,ψ〉

‖g‖L2 ‖ψ‖L2

]
= 0, (66)

approximately, where θ is the angle between the vectors g and ψ in L2(Ωµ). With-
out loss of generality, ψ0 is chosen as a unit vector of L2(Ωµ). The algorithmic
iterations are defined by the update formula

ψn+1 =
1

sinθn

{
sin[(1− kn)θn]ψn + sin(knθn)

gn

‖gn‖L2

}
, n = 0,1,2, · · · , (67)

where kn ∈ [0,1] is a step size determined by a simple line-search procedure in
order to decrease the value of the cost function. By construction, (67) produces a
sequence of level-set functions of unit L2 norm.

A standard finite element approximation is used in the calculation of C (or K).
Details of implementation of the RVE constraints are given in Giusti, Blanco,
de Souza Neto, and Feijóo (2009). The topological derivatives (51) or (56) are
computed first within each element and then extrapolated/smoothed in a standard
fashion to the nodes of the mesh. The same global finite element shape functions
are used to define the level-set functions. The material properties are also assigned
to nodes. Hence, nodes for which ψ < 0 are assigned the properties of the matrix
material and nodes with ψ > 0 the properties of the inclusion material. The itera-
tions (67) are assumed to have converged when, for some n, the angle θn is smaller
than a pre-specified tolerance.
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5 Examples. Topological optimization of micro-structures

Numerical examples of optimization of macroscopic elastic and heat conduction
properties are presented in this section. The algorithm outlined in the preceed-
ing section is used. For comparison, in all examples the optimization procedure
is carried out having the linear, periodic and minimally constrained models as the
underlying theories whereby the macroscopic properties to be optimized are esti-
mated. As we shall see, different multi-scale models lead in general to different
optimized microstructures.

In all cases the RVE geometry is a unity square Ωµ = (0,1)× (0,1). The initial
guess for the level-set function corresponds to a uniform matrix containing a circu-
lar disc of inclusion material with radius r = 0.25 centred at the centre of the RVE
(see fig. 4(a)). The dark- and light-coloured areas correspond respectively to the
matrix and inclusion domains. For the heat conduction cases the heat conductivi-
ties of the phases of the microstructure are km

µ = 1 and ki
µ = 0.01. For the elasticity

cases, the Young’s moduli and Poisson ratios are given by Em
µ = 1, E i

µ = 0.01 and
νm

µ = ν i
µ = 0.3. That is, in both types of problems a contrast parameter of 0.01

is used. In all examples, a coarser uniform mesh (fig. 4(b)) with 3281 nodes and
6400 three-noded triangular elements is used first. When convergence is achieved,
a uniform mesh refinement step is perfomed and the algorithm executed again to
convergence taking the topology of the coarser mesh as the initial guess. This pro-
cess is repeated until convergence is achieved with a final mesh of high resolution
containing 205441 nodes and 409600 elements. The convergence criterion adopted
is θ ≤ 1◦.

(a) (b)

Figure 4: (a) Initial guess for optimum topology, and; (b) Inital mesh.
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5.1 Horizontal heat conductivity maximization

In this first example, we wish to maximize the macroscopic heat conductivity in the
horizontal direction. Accordingly we define simply

h(K) := (K−1)11. (68)

The Lagrange multiplier is taken as λ = 45. The resulting optimized topologies
are shown in fig. 5 and the evolution of the cost function during the iterations is
shown in fig. 6. The topologies presented in figs. 5(a) 5(b) coincide with the clas-

(a) linear model (b) periodic model (c) uniform model

Figure 5: Maximization of the horizontal heat conductivity. Optimized RVE
topologies
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Figure 6: Horizontal heat conductivity maximization. Convergence history.

sical topologies proposed by Voigt (1889) and Reuss (1929) in the context of linear
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elastic microstructures. To derive the well-established lower and upper bounds
for overall elastic constants, these authors considered the microcell composed of
strips of two different materials. In the present context of heat conductivity, the
upper (lower) bound is obtained when the strips are aligned with (orthogonal to)
the direction of the heat flux. The present result obviously corresponds to the up-
per bound. It is worth noting that the microstructure generated under the minimal
RVE constraint assumption, shown in fig. 6(c), is of much greater complexity than
the ones obtained under the the more constraining periodicity and linear boundary
temperature assumptions.

5.2 Orthotropic heat conductivity maximization

The aim here is to maximize the heat conductivity in the horizontal and vertical
directions simultaneously. Here the volume fraction of the inclusion phase is fixed
as 0.422 and the parameter λ is obtained accordingly. The function h(K) is defined
as

h(K) := 1
2 [(K−1)11 +(K−1)22]. (69)

The optimized topologies obtained in this case are shown in fig. 7 and the con-
vergence history in fig. 8. The topologies obtained for the periodic and uniform
boundary flux models, shown respectively in figs. 7(b) and 7(c), are similar to
that analyzed by Hashin and Shtrikman (1963) in the context of linear elasticity.
These authors obtained microstructures known as coated spheres assemblages or
Hashin-Shtrikman micro-structures that provide lower and upper bounds for the
elastic properties of bi-material composites. In the present context of heat conduct-
ing materials, the upper bound corresponds to a microstructure consisting of disks
of the lower conductivity phase coated by a layer (ring) of the higher conductivity
material. For the lower bound, the disks and rings are made respectively of the
higher and lower conductivity materials. In the present example, the upper bound
is retrieved. A further insight into the influence of the choice of homogeniza-
tion model on the properties of the obtained optimized topologies can be gained
from Table 1. For each of the three optimized topologies obtained (corresponding
to the rows of the table), the value of the function h (that measures the property
to be minimized) are computed according to the linear, periodic and uniform flux
boundary conditions. The columns shows that the minimum value of h computed
according to a particular model corresponds to the topology optimized having the
same model as the estimator of the macroscopic properties. That is, as one should
expect, the algorithm synthesizes topologies that are closer to the optimum in the
particular metric defined by the chosen homogenization model. Another interest-
ing fact is that very little difference among the values of h computed according to
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(a) linear model (b) periodic model (c) uniform model

Figure 7: Orthotroic heat conductivity maximization.
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Figure 8: Orthotropic heat conductivity maximization.

the three models is observed for the more complex topology generated using the
uniform boundary flux model (the last row of the table). As the homogenization
process using the linear (uniform) model provides an upper (lower) bound for the
conductivity tensor components (upon which h depends), this tight variation in the
bounds of h suggests a higher degree of reliability of the predicted optimized prop-
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topology homogenization model for computation of h
generated with linear periodic uniform
linear 3.24 4.54 7.03
periodic 3.54 3.61 6.11
uniform 3.63 3.64 3.66

Table 1: Orthotropic heat conduction maximization. Value of function h using
different homogenization models for the obtained optimized topologies.

erty obtained by the algorithm with the uniform model in this case (note that large
variations in the predicted h occur for the other topologies).

5.3 Horizontal rigidity maximization

In this first numerical example of elastic microstructure optimization, we consider
the function h(C) given by

h(C) := (C−1)1111. (70)

Its minimization corresponds to the maximization of the longitudinal elastic mod-
ulus. The Lagrange multiplier is chosen as λ = 30. The optimized topologies for
each multi-scale model considered are shown in fig. 9 and the convergence history
of the cost function can be seen in fig. 10. The topologies presented in figs. 9(a)

(a) linear model (b) periodic model (c) uniform model

Figure 9: Horizontal rigidity maximization.

and 9(b) coincide with the classical topology proposed by Voigt (1889) and Reuss
(1929) as an upper bound for the overall elastic modulus, where the stiffer material
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is aligned with the direction along which the maximization of the elastic modulus is
sought (refer to comments made in example 5.1). Again, it should be noted that the
topology obtained under the uniform boundary traction assumption (minimal kine-
matical constraint) is far more complex than the ones generated under the more
kinematically constrained assumptions.
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Figure 10: Horizontal rigidity maximization. Convergence history.

5.4 Bulk modulus maximization

To maximize the bulk modulus, we define

h(C) := (C−1)1111 +2(C−1)1122 +(C−1)2222. (71)

The volume fraction of inclusion material is fixed as 0.32 and the parameter λ

determined accordingly. The corresponding optimized topologies are shown in fig.
11 and the convergence history of the cost function is depicted in fig. 12.

The topologies obtained for the linear and periodic models are very similar to the
one analyzed by Hashin and Shtrikman (1963).

The upper bound topologies synthesized is these cases are of the coated spheres as-
semblage type or Hashin-Shtrikman micro-structure (Avserth, Mukerji, and Mavko
(2005); Milton (2002)). They consist of disks of the most compliant material coated
with rings of stiffer material. The optimized RVE obtained under the uniform
boundary traction assumption is of particular resemblance to the coated spheres
assemblage of Hashin and Shtrikman (1963). The result suggests a fractal nature
of the optimum microstructure whose details are captured with higher resolution in
the optimization process as the mesh is refined. Similarly to the analysis conducted
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(a) linear model (b) periodic model (c) uniform model

Figure 11: Bulk modulus maximization.
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Figure 12: Bulk modulus maximization. Convergence history.

in the orthotropic heat conductivity example (refer to Table 1), we plot in Table 2
the values of the function h using the three homogenization models for each of the
optimized microstructures obtained. The conclusions here are analogous to those
of the heat conduction counterpart example. In particular, here we also find that the
the use of the uniform boundary traction model in the optimization algorithm yields
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topology homogenization model for computation of h
generated with linear periodic uniform
linear 8.01 10.58 26.70
periodic 9.16 9.30 18.27
uniform 9.32 9.34 9.46

Table 2: Bulk modulus maximization. Value of function h using different homoge-
nization models for the obtained optimized topologies.

a microstructural topology whose lower and upper bounds (related to the last row
of Table 2) for the predicted optimized property (the bulk modulus in the present
case) are very close and, hence, appears to provide a more reliable indication of the
actual optimal topology.

5.5 Shear modulus maximization

For the maximization of the shear modulus, we define simply

h(C) := 4(C−1)1212. (72)

The volume fraction of inclusion is fixed as 0.70. The optimized topologies ob-
tained for each multi-scale model are shown in fig. 13 and the convergence history
of the correponding cost function is plotted in fig. 14. Again, the topology ob-
tained for the minimally constrained model are of a far greater complexity than the
ones obtained with the less kinematically constrained models. It is worth mention-
ing that here we also observed that, similarly to the results reported in Tables 1
and 2, the smallest difference between the upper and lower bounds for the shear
modulus (a difference of 6%) occurs for the optimized topology obtained under the
minimally constrained (uniform boundary traction) assumption.

5.6 Poisson’s ratio minimization

Here we consider the definition

h(C) :=−(C−1)1122, (73)

and take λ = 0.5. The optimized topologies are shown in fig. 15 and the conver-
gence behaviour of the cost function can be seen in fig. 16. The corresponding
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(a) linear model (b) periodic model (c) uniform model

Figure 13: Shear modulus maximization.
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Figure 14: Shear modulus maximization. Convergence history.

homogenized elasticity tensors in matrix representation are

CL =
(

0.0663 −0.0243 0
−0.0243 0.0663 0

0 0 0.0127

)
,

CP =
(

0.0718 −0.0302 0
−0.0302 0.07018 0

0 0 0.0084

)
, (74)

CU =
(

0.0698 −0.0250 0
−0.0250 0.0698 0

0 0 0.0123

)
,
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(a) linear model (b) periodic model (c) uniform model

Figure 15: Poisson’s ratio minimization.

respectively, for the linear, periodic and minimally constrained models. The asso-
ciated Poisson’s ratios are negative in al cases:

ν
L =−0.366, ν

P =−0.421 and ν
U =−0.359. (75)

The results show that, regardless of the particular class of multi-scale model used
to predict the macroscopic response, the optimized microstrucre features the aux-
etic behavior of the star-shaped encapsulated inclusions analyzed, among others,
by Almgreen (1985); Lakes (1987); Theocaris, Stavroulakis, and Panagiotopoulos
(1997); Stavroulakis (2005). This type of micro-cell is known as nonconvex-shaped
or re-entrant corner microstructures.

5.7 Poisson’s ratio maximization

The target in this last example is the maximization of the Poisson’r ratio. In the
corresponding cost function we define

h(C) :=
(C−1)1122

(C−1)1111
+

(C−1)1122

(C−1)2222
. (76)



50 Copyright © 2010 Tech Science Press CMES, vol.62, no.1, pp.23-54, 2010

0 10 20 30 40 50 60

Linear

Periodic

Uniform

-7,00

-6,00

-5,00

-4,00

-3,00

-2,00

-1,00

0,00

1,00

2,00

Figure 16: Poisson’s ratio minimization. Convergence history.

Again, we choose λ = 0.5. The results for all multi-scale models adopted are shown
in fig. 17. The history of the cost function throughout the optimization iterations
is plotted in the graph of fig. 18. The matrix representation of the corresponding
homogenized elasticity tensor at the end of the optimization process is given by

CL =
(

0.0734 0.0599 0
0.0599 0.0734 0

0 0 0.0364

)
,

CP =
(

0.0849 0.0714 0
0.0714 0.0849 0

0 0 0.0265

)
, (77)

CU =
(

0.1233 0.1072 0
0.1072 0.1233 0

0 0 0.0453

)
.

which results in the Poisson’s ratios:

ν
L = 0.816, ν

P = 0.841 and ν
U = 0.870. (78)

We observe here that for the three multi-scale models considered exhibit, the syn-
thesized microstructure at the end of the optimization procedure has a pantograph-
like topology. This type of microstructure allows a maximum transfer of strain
energy from one direction to the direction orthogonal to it.

6 Conclusions

A microstructural optimization algorithm based on the concept of topological deriva-
tive and a level-set domain representation has been applied to the synthesis of
elastic and heat conducting bi-material microstructures. For comparison, differ-
ent multi-scale constitutive models have been used in the estimation of the macro-
scopic material properties of interest to the optimization process: (a) the classical
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(a) linear model (b) periodic model (c) uniform model

Figure 17: Poisson’s ratio maximization.
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Figure 18: Poisson’s ratio maximization. Convergence history.

periodic boundary constraint model, typical of the description of periodic media;
(b) the linear boundary constraint model which provides an upper bound for the
macroscopic heat conductivity and elasticity tensors; and (c) the minimum con-
straint model which, in turn, provides a lower bound for these tensors. The study
has shown that the final optimized topology synthesized by the algorithm depends
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(sometimes strongly) on the particular model adopted. In particular, the use of the
minimally constrained model generally leads to more complex optimized topolo-
gies. Interestingly, the results also appear to suggest that the optimized macroscopic
properties for such more complex topologies lie within tighter bounds than those
obtained with the the linear and periodic boundary constraint models. Further in-
vestigation is currenty under way to establish the extent of such a tendency.
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