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Thin Film Flow Over and Around Surface Topography: a
General Solver for the Long-Wave Approximation and

Related Equations

P.H. Gaskell1, Y.C. Lee2 and H.M. Thompson1

Abstract: The three-dimensional flow of a gravity-driven continuous thin liquid
film on substrates containing micro-scale features is modelled using the long-wave
lubrication approximation, encompassing cases when surface topography is either
engulfed by the film or extends all the way though it. The discrete analogue of the
time-dependent governing equations is solved accurately using a purpose designed
multigrid strategy incorporating both automatic error-controlled adaptive time step-
ping and local mesh refinement/de-refinement. Central to the overall approach is
a Newton globally convergent algorithm which greatly simplifies the inclusion of
further physics via the solution of additional equations of the same form as the
base flow lubrication equations. The range of applicability, efficiency and flexibil-
ity of the approach is demonstrated by solving a hierarchy of problems involving
variations in solute concentration and solid-fluid interactions arising from flow on
flexible susbtrates.

Keywords: Thin films, occlusions, topography, long-wave approximation, multi-
gridding, automatic spatial and temporal error-control.

1 Introduction

Accurately predicting the free-surface disturbance arising from three-dimensional
flow of a continuous thin liquid film on substrates (man-made or naturally occur-
ring) containing regions of mico-scale topography represents a considerable chal-
lenge, both modelling and computation wise, given that the same can persist over
length scales several orders of magnitude greater than the topography itself [De-
cré and Baret (2003); Sellier, Lee, Thompson and Gaskell (2009)]. The problem
becomes even more acute when the features concerned are (i) small, requiring very
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fine mesh resolution, and/or (ii) heterogeneous, covering a wide surface extent, and
(iii) when it is necessary to include essential additional physics.

For the sake of brevity and without appearing to seemingly dismiss the excel-
lent body of related, though sparse, experimental work and large number of two-
dimensional flow analyses that have appeared - see [Craster and Matar (2009)] and
[Veremieiev, Lee, Thompson and Gaskell (2010a)] for a concise but comprehen-
sive summary, together with the references contained therein - attention is restricted
to cases of three-dimensional gravity-driven flow only and associated progress to
date. It is not surprising, given the complexity involved, the two principal methods
of addressing such problems computationally to emerge involve either a long-wave
approximation of the governing Navier-Stokes equations or the assumption at the
outset of steady-state Stokes flow. With regard to the latter the first and important
contribution, and one which remained so for several years, is the that of [Pozrikidis
and Thoroddsen (1991)]. They showed, using a boundary integral equation formu-
lation of the governing equations, that flow over a particle-like topography resulted,
as observed experimentally by [Peurrung and Graves (1991)] when spin coating,
in a significant upstream and downstream free-surface disturbance comprised of
a ‘bow wave’ capillary ridge and an exponentially decaying ‘horseshoe’-shaped
capillary wake.

The above boundary integral equation approach has since been refined further and
an error in its earlier formulation corrected by [Blyth and Pozrikidis (2006)], who
used it to investigate the related problem of flow over a fully submerged three-
dimensional obstacle. More recently [Baxter, Power, Cliffe and Hibberd (2009)],
motivated by thin films in the context of surface cooling and the work of [Sellier,
Lee, Thompson and Gaskell (2009)] addressing film flow when topography in the
form of occlusions is present, see below, have taken the boundary integral formu-
lation a stage further. The key features of the approach of the former is the use of a
Hermitian radial basis function to evaluate the free-surface terms and elimination of
the restriction of small free-surface deformation, thus enabling accurate results to
be obtained in the case of large obstacles lying either within or protruding through
a liquid film.

Turning now to work based on the long-wave, or lubrication, approximation, ar-
guably the first comprehensive and detailed computational study of three-dimensional
thin film flow over surface topography was performed by [Gaskell, Jimack, Sellier,
Thompson and Wilson (2004)]. The results they obtained, using a very efficient
purpose designed multigrid algorithm embodying automatic error-controlled time
stepping [Gaskell, Jimack, Sellier and Thompson (2004)] to solve an implicit finite-
difference analogue for the film thickness and pressure, were found to be in excel-
lent agreement with the corresponding experiments of [Decré and Baret (2003)],
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to within the experimental error reported, and to similarly capture all of the asso-
ciated free-surface features mentioned above. They also quantified the expected
error from the neglect of inertia, and the effect of substrate inclination angle and
topography aspect ratio. In addition, they were able to establish the appropriate-
ness of the theory underpinning the earlier linear analysis of [Hayes, O’Brien and
Lammers (2000)]; namely, that when inertia is negligibly small, superposition can
be used to construct an appropriate free-surface response to complex topography
from the knowledge of the responses to regular elementary topographies.

This multigrid methodology has since been developed and refined considerably to
incorporate automatic errror controlled local mesh adoption and to include addi-
tional physical effects such as evaporation [Gaskell, Jimack, Sellier and Thomp-
son (2006)] and substrate flexibility [Lee, Thompson and Gaskell (2009)]. It has
also been used to investigate the effect of complex topography in relation to the
severity of the resulting free-surface disturbance, as well as the impact of occlu-
sions within the flow domain [Lee, Thompson and Gaskell (2008)]. The latter
feature was investigated subsequently in more detail, [Sellier, Lee, Thompson and
Gaskell (2009)], for a variety of occlusion configurations and comparisons drawn
with equivalent complementary finite element solutions of the weak form of the
lubrication equations obtained using a commercially available software package
[COMSOL (2008)].

The present paper describes a numerical procedure which simplifies the inclusion
of further physics into lubrication analyses of three-dimensional gravity driven thin
film flow over surface topography. The strategy adopted provides a holistic ap-
proach for the posing and accurate solution of these and similar flow problems and
represents a general purpose and efficient numerical solver for degenerate equa-
tions of the lubrication type. The problems of interest and associated mathematical
models are outlined in section 2. This is followed by a description of the overall nu-
merical algorithm formulated to generate solutions both flexibly and efficiently in
section 3. A comprehensive set of results is presented in section 4 with conclusions
drawn in section 5.

2 Problem Specification

2.1 Mathematical Model

Consider for illustrative purposes, as shown in Fig. 1, the simple case of a time-
dependent gravity driven film flow, of constant flux Q0 per unit width and asymp-
totic thickness H0, down a planar surface containing a well-defined topography/occlusion,
of depth/height S0, length LT (� LS) and width WT (�WS), that is inclined at an
angle θ (6= 0) to the horizontal. The film will either flow over (S0 < H0) or around
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Figure 1: Gravity-driven thin film flow: (a) over a small square trench (S0 < H0) and
(b) past a square occlusion (S0 ≥ H0). Schematic of the flow domain and defining
geometry.
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(S0� H0) the feature. The liquid is assumed Newtonian and incompressible, with
constant viscosity, µ , density, ρ , and surface tension, σ . The chosen Cartesian
steamwise, X , spanwise, Y , and normal, Z, coordinates are as indicated and the
solution domain is bounded from below by the inclined surface S(X ,Y ) and from
above at time T by the free-surface F(X ,Y,T ). The film thickness, H(X ,Y,T ), at
any point in the (X ,Y ) plane is given by H = F−S and the resulting laminar flow
is described by the Navier-Stokes and continuity equations, namely:

ρ

(
∂U
∂T

+U .∇U
)

= −∇P + µ ∇
2U +ρ g , (1)

∇.U = 0 , (2)

where U = (U,V,W ) and P(X ,Y,T ) are the fluid velocity and pressure, respectively
and g = g(sinθ ,0,−cosθ) is the acceleration due to gravity where g is the standard
gravity constant.

The task of solving the above equations together with appropriate boundary condi-
tions, written in non-dimensional form using the following scalings:

h =
H
H0

, f =
F
H0

, s =
S

H0
, (x,y,z) = (

X
L0

,
Y
L0

,
Z

H0
),

p =
2P

ρgL0 sinθ
, (u,v,w) = (

U
U0

,
V
U0

,
W

εU0
), t =

U0T
L0

,

is simplified considerably by employing the long-wave approximation, effectively
reducing the dimensionality of the problem by one. The lower-case variables have
the same meaning as their dimensional counterparts; while U0 ( = 3Q0

2H0
, with Q0 =

H3
0 ρgsinθ

3µ
), the surface velocity of the undisturbed fully developed film, and L0 (with

ε = H0
L0
� 1) are the characteristic velocity and in-plane length scales, respectively.

The latter, following previous work [Decré and Baret (2003)], is expressed in
terms of the capillary length-scale, Lc, as:

L0 = βLc = β

(
σH0

3ρgsinθ

)1/3

, (3)

where β is a constant of proportionality. The required lubrication equation for the
film thickness, h, is obtained by first expanding equations (1) and (2) in terms of
ε , neglecting terms of O(ε2) and smaller, and imposing no-slip and zero tangential
stress conditions at z = s, and z = f , respectively; next, integrating the resulting
expressions for u and v between these limits gives the flux vector q = (qx,qy)T ,
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where:

qx =− h3

3µ

(
∂ p
∂x
−2
)

, qy =− h3

3µ

(
∂ p
∂y

)
, (4)

with the pressure, taking the pressure datum to be zero, given by:

p = − 6
β 3 ∇

2( f )+
2
β

61/3N( f − z) ; (5)

N = Ca1/3 cotθ , for fixed liquid properties indicating the influence of the normal
component of gravity, while Ca = µU0

σ
(= ε3

6 = H3
0

6L3
0
� 1) is the Capillary number.

Accordingly, the lubrication equation takes the form

∂ f
∂ t

=−∇ ·q =
∂

∂x

[
h3

3

(
∂ p
∂x
−2
)]

+
∂

∂y

[
h3

3

(
∂ p
∂y

)]
. (6)

Equations (5) and (6) can be combined to yield a single fourth order equation [Diez
and Kondic (2002)]; however, solving them separately is preferred since expe-
rience suggests, and as reported elsewhere [Trottenberg, Oosterlee and Schüller
(2001)], that within the chosen multigrid framework described later, this enables
much larger time-steps to be taken [Daniels, Ehret, Gaskell, Thompson and Decré
(2001)]. Note that, as shown quantitatively in [Gaskell, Jimack, Sellier, Thompson
and Wilson (2004)] and subsequently by [Veremieiev, Lee, Thompson and Gaskell
(2010a)], lubrication theory leads to an accurate description of the flows of interest
for small Reynolds number and provided, in the case of submerged topography,
that s0 is not too large.

The boundary conditions required to close the problem are that the flow is fully
developed both upstream and downstream:

f (x = 0,y) = 1 ,
∂ f
∂x
|x=0 = 0,

∂ f
∂x
|x=1 =

∂ p
∂x
|x=1 = 0, (7)

together with the requirement of zero flux at the boundaries in the spanwise direc-
tion:

∂ p
∂y
|y=0 =

∂ p
∂y
|y=1 =

∂ f
∂y
|y=0 =

∂ f
∂y
|y=1 = 0. (8)

When occlusions are present within the flow the following boundary condition is
applied at the associated static wetting line [Lee, Thompson and Gaskell (2008)]:

∇ fw ·n =
1
ε

tan
(

θs−
π

2

)
, (9)
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where fw(x,y) denotes the static wetting line formed at the occlusion, n is the out-
ward pointing unit normal at the surface of the occlusion and θs the static contact
angle, which in the present work is prescribed to be 90o. The effect of varying static
contact angle has been considered by [Baxter, Power, Cliffe and Hibberd (2009)].
The remaining constraint at the occlusion surface is modelled within the lubrication
framework by a no-flux condition, which is imposed by specifying that the flux, qs,
given by equation (4) is zero there, i.e.

q
s
=−h3

3
(∇p−2i) = 0 . (10)

The recent investigation of [Veremieiev, Thompson, Lee and Gaskell (2010b)],
using a depth averaged form of the Navier-Stokes equations to explore film flow
on planar substrates containing occlusions, has shown this no-flux condition to be
equivalent to applying the common and more strictly rigorous no-slip boundary
condition along the surface of an occlusion.

Topography is defined via arctangent functions [Stillwagon and Larson (1988)] en-
abling the creation of simple primitive shapes. For example, a rectagular trench/peak
topography of length lt , width wt and depth/height |s0| centred at (xt ,yt) has the
form:

s(x,y) =
s0

b0

[
tan−1

(
−ax− lt/2

γlt

)
+ tan−1

(
ax− lt/2

γlt

)]
×[

tan−1
(
−ay−wt/2

γwt

)
+ tan−1

(
ay−wt/2

γwt

)]
, (11)

where γ is an adjustable parameter whose value specifies the steepness of the to-
pography, while ax = xt−x, and ay = yt−y are the latter’s local coordinates in the x
and y directions, respectively; A = wt/lt is the aspect ratio of the topography with:

b0 = 4tan−1
(

1
2γ

)
tan−1

(
A
2γ

)
. (12)

Equation (11) can, as in the present work, be used to create a variety of simple
primitive topographies by modifying ax and ay accordingly. It is relatively straight
forward to create more complex topographical features by combining such simple
primitive shapes [Lee, Thompson and Gaskell (2007)].

2.2 Incorporating additional physics

In many thin film flows of practical interest physical effects such as solute trans-
port, evaporation, thermal gradients, substrate flexibility, etc., are significant. The
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equations describing these features may be stand alone, form a coupled set and/or
be linked to the flow equations themselves.

Considering all possible physical effects is clearly beyond the scope of the present
work. Instead the focus is the design of an efficient methodology enabling the
seamless incorporation of any number of such equations and their effective solu-
tion within the multigrid framework described subsequently. The applicability of
the overall approach is demonstrated via the solution of a hierarchy of problems
incorporating one or both of the following additional physical effects: (i) solute
transport; (ii) substrate flexibility. The extra equations involved are given below.

2.2.1 Solute Transport

The well-mixed approximation [Howison, Moriarty, Ockendon, Terril and Wilson
(1997)] that the diffusion of solute is sufficiently rapid so that its concentration, c,
can be assumed to be uniform across the film, fits naturally within the lubrication
framework. For a liquid whose viscosity can be assumed to be independent of
solute concentration, the governing advection diffusion equation [Gaskell, Jimack,
Sellier and Thompson (2006)] is:

∂c
∂ t

=
[

h2

3µ

(
∂ p
∂x
−2
)]

∂c
∂x

+
[

h2

3µ

(
∂ p
∂y

)]
∂c
∂y

+
d
h

∇ · (h∇c) , (13)

with d = D/L0U0 denoting the dimensionless solvent diffusivity. If in addition,
the lateral diffusion is dominated by convection, that is D� LU0, equation (13)
simplifies further:

∂c
∂ t

=
[

h2

3µ

(
∂ p
∂x
−2
)]

∂c
∂x

+
[

h2

3µ

(
∂ p
∂y

)]
∂c
∂y

. (14)

2.2.2 Substrate Flexibility

Substrate flexibility can be accounted for by relating its deflection, e = E/H0, and
f = h + s + e, to the corresponding hydrostatic and capillary pressures exerted by
the liquid film via a direct application of Newton’s second law [Lee, Thompson
and Gaskell (2009)]. With the flexible substrate taken to be homogeneous, in-
finitely long and thin (thickness λ ) with uniform tension, ζ , in the longitudinal and
transverse directions, to have constant density, ρm, and damping coefficient, η , then
within the limits of the lubrication approximation (ε� 1) the equation to be solved
is:

−ϒ

(
∂ 2e
∂x2 +

∂ 2e
∂y2

)
= −

(
f +

ρm

ρ
λ

)
Bocosθ +

∂ 2 f
∂x2 +

∂ 2 f
∂y2 , (15)
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where Bo = ρgL2
0/σ is the Bond number measuring the ratio of gravitational to

surface tension forces, and ϒ = ζ/σ is the ratio of tension in the flexible substrate
to the surface tension of the liquid. Equation (15), unlike equations (6) and (14),
contains no time derivative terms – this is by virtue of the scaling adopted which
results in such terms having the pre-factor ε2.

The additional boundary conditions required to close the problem following incor-
poration of either, or both, of the above physical effects are:

c(x = 0,y) = c0 and e(x = 0,y) = 0, (16)

for concentration and substrate deflection, respectively.

3 Method of Solution

In what follows only the new key features of the proposed general overall numerical
procedure are provided in detail, with just an overview given of the other salient
points since they are described in considerable detail elsewhere.

3.1 Spatial Discretisation

Equations (5) and (6), together with equations (14) and (15), written in the form of
the following finite-difference analogues, are solved at each node (i, j) of a rectan-
gular computational domain, (x,y) ∈ Ω, with equal, uniform grid spacings, ∆, in
the x and y directions:

∂ fi, j

∂ t
=

1
∆2

[
h3

3

∣∣∣∣
i+ 1

2 , j
(pi+1, j− pi, j)−

h3

3

∣∣∣∣
i− 1

2 , j
(pi, j− pi−1, j)+

h3

3

∣∣∣∣
i, j+ 1

2

(pi, j+1− pi, j)−
h3

3

∣∣∣∣
i, j− 1

2

(pi, j− pi, j−1)
]
−

2
∆

(
h3

3

∣∣∣∣
i+ 1

2 , j
− h3

3

∣∣∣∣
i− 1

2 , j

)
, (17)

pi, j = − 6
β 3∆2

[
fi+1, j + fi−1, j + fi, j+1 + fi, j−1−4 fi, j

]
+

2 3
√

6N
β

fi, j, (18)

∂ci, j

∂ t
=

h2
i, j

12∆2

[
(pi+1, j− pi−1, j)(ci+1, j− ci−1, j)+

(pi, j+1− pi, j−1)(ci, j+1− ci, j−1)
]
−

h2
i, j

3∆
(ci+1, j− ci−1, j), (19)
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ei, j =
1
4

(ei+1, j + ei−1, j + ei, j+1 + ei, j−1)−
∆2

4ϒ

[(
fi, j +

ρm

ρ f
λi, j

)
Bocosθ +(

fi+1, j + fi−1, j + fi, j+1 + fi, j−1−4 fi, j

∆2

)]
. (20)

The h3

3 |i± 1
2 , j and h3

3 |i, j± 1
2

terms are obtained from linear interpolation between neigh-
bouring nodes.

Time integration is performed using the second-order accurate Crank-Nicholson
method to approximate the time-derivative in equations (17) and (19). Re-writing
the right-hand-sides of equations (6) and (14) as functions, R f and Rc, respectively
of the dependent variables involved, leads to equations of the form:

f n+1
i, j −

∆tn+1

2
R f (hn+1

i, j , pn+1
i, j ,hn+1

i±1, j, pn+1
i±1, j,h

n+1
i, j±1, pn+1

i, j±1)

= f n
i, j +

∆tn+1

2
R f (hn

i, j, pn
i, j,h

n
i±1, j, pn

i±1, j,h
n
i, j±1, pn

i, j±1), (21)

cn+1
i, j −

∆tn+1

2
Rc(hn+1

i, j , pn+1
i, j ,cn+1

i, j ,hn+1
i±1, j, pn+1

i±1, j,c
n+1
i±1, j,h

n+1
i, j±1, pn+1

i, j±1,c
n+1
i, j±1)

= cn
i, j +

∆tn+1

2
Rc(hn

i, j, pn
i, j,c

n
i, j,h

n
i±1, j, pn

i±1, j,c
n
i±1, j,h

n
i, j±1, pn

i, j±1,c
n
i, j±1) , (22)

where ∆tn+1 = tn+1− tn and the right hand sides of the above equations are ex-
pressed in terms of known variables at the end of the nth time step, t = tn.

3.2 Multigrid Strategy

Following the multigrid approach employed in [Lee, Thompson and Gaskell (2007)],
a sequence of progressively finer grids (Gk: k = 0,1, ...,K), with uniform grid spac-
ing ∆k, is defined. Each grid level, Gk, has nk = 2k+kc+1 + 1 nodes per unit length
in both co-ordinate directions where kc is a constant defining the resolution of the
coarsest grid level, such that the mesh size associated with it and that on finer grid
levels is ∆k = 2−(k+kc+1). For example, the underlying coarse global grid when
k = 0, using a coarse grid parameter kc = 4, corresponds to uniform grid spacing
∆0 = 1/32. The associated time-dependent, nonlinear, coupled set of governing lu-
brication equations together with any extra equations embodying additional physics
are solved efficiently using a combined full approximation storage (FAS) and Full
Multigrid (FMG) technique.

Relaxation/smoothing on grid Gk is performed using a fixed number of pre- and
post- Red-Black Gauss-Seidel Newton iterations. With u representing the vector
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of unknowns of the equation set (18) plus (20) to (22) the same can be expressed
more generally as:

Nk(un+1
k ) = Fk(un

k) (23)

where Nk = (N f
k ,N p

k ,N c
k ,N e

k ), uk = ( fk, pk,ck,ek)T , Fk = (r f
k ,rp

k ,rc
k,r

e
k) and

rk corresponding to the right-hand-side of the above equations; the solution in the
form of a linearised Newton iterative step on Gk can then be written as:

∆uk = J −1
k (Fk(un

k)−Nk(un+1
k )) , (24)

where Jk is the Jacobian of the system. The latter is solved simultaneously for
the increments ∆uk, which in turn are used to obtain a new approximation for the
discretised solution on Gk, as:

ũn+1
k = un+1

k +∆uk , (25)

a process that is repeated at all points of the solution domain on Gk.

The relaxation/smoothing process requires the determination of Jk together with
its inverse. For the solution of equations (5) and (6) only, this was done in the past
by expressing the component derivative terms forming the elements of Jk analyt-
ically. The same procedure was followed when investigating the effects of evap-
oration on gravity-driven film flows over topography [Gaskell, Jimack, Sellier and
Thompson (2006)], which required the solution of an additional transport equation
coupled to the flow equations via a solute concentration dependent viscosity.

The disadvantages and hence loss of generality inherent in the above approach is
that: (i) every time an existing equation within an equation set is modified or one
or more other equations representing a different physical effect are added to it, the
associated Newton iterative step has to be re-written/written manually and hard-
coded into the overall solver; (ii) as the number of simultaneous linear equations to
be solved for numerically and the level of interdependence between them increases
the provision of a good initial guess from which to begin iterating becomes restric-
tively more important; (iii) for a given equation set, it may not always be possible
to derive analytic expressions for all of the elements forming Jk.

Clearly, a more robust and flexible approach is required in order to arrive at a more
generally applicable numerical procedure, one which is capable of solving any
number of such equations, coupled or otherwise, easily, removing the need for
modifications to the underlying algorithm. In the present work this goal is achieved
by solving the equations using the Newton method, while at the same time avoiding
the solution descending into a local minimum, as described below.
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3.3 A General Newton Globally Convergent Solver

A problem having Ni transport equations, involving ui,k unknowns for i = 1,2,3, ...Ni

on Gk, can be written as:

gi,k(u1,u2, ...,uNi) = 0 , (26)

where gi,k denotes the number of equations or functions that need to be solved
simultaneously. In the present context, c.f. equation (23), these can be written as:

gk(uk) = Nk(un+1
k )−Fk(un

k) = 0, (27)

in which uk denote the vector of ui,k unknowns and gk represents the system of
residual equations to be minimised.

With regard to equations (5), (6), (14) and (15), the corresponding residual equation
(27) in each case will be:

g1,k = N p
k (un+1

k )−F p
k (un

k) = 0,

g2,k = N f
k (un+1

k )−F f
k (un

k) = 0,

g3,k = N c
k (un+1

k )−F c
k (un

k) = 0,

g4,k = N e
k (un+1

k )−F e
k (un

k) = 0.

Employing a Newton approach, based on forward-differences, and neglecting terms
of order (∆uk)2 and higher, leads to:

gk(uk +∆uk) = gk(uk)+Jk ·∆uk , (28)

where gk(uk + ∆uk) = 0, so that one obtains a system of linear equations for the
Newton step, c.f. equation (24), of the form:

∆uk =−J −1
k ·gk(uk) , (29)

which is solved by LU decomposition. The corrections are then added to the solu-
tion vector as per equation (25).

Each derivative in the Jacobian, Jk, is computed numerically from the forward
difference approximation, equation (28), in which a small value χ ∼ 10−8 is added
individually to each variable in uk to yield:

Jk ≈
gk(uk + χ)−gk(uk)

χ
. (30)
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The solution ∆uk of equation (29) above relies on the assumption that it is relatively
smooth, so as to provide a good initial guess for gk(uk). In such a situation a rea-
sonable strategy to ensure convergence is to require that the Newton step decreases
the product:

ξk =
1
2
J 2

k · (∆uk)2 =
1
2

gk(uk) ·gk(uk) , (31)

which at the same time provides a descent direction for ξk, such that its gradient
satisfies:

∇ξk ·∆uk = (gk(uk) ·Jk) · (−J −1
k ·gk(uk)) =−gk(uk) ·gk(uk) < 0 . (32)

Therefore, when close to the required solution, the system of equations is solved
using a full Newton step, which converges quadratically and ensures that ξk de-
crease.

If at any stage, the conditions in equations (31) and (32) are violated, a backtrack-
ing routine is performed along the Newton direction to minimise ξk until an accept-
able Newton step can be identified from which the roots of gk(uk) can be found.
The backtracking algorithm is employed to determine an appropriate size of ∆uk
required to reduce ξk at each iteration and follows the suggestion of [Press, Teukol-
sky, Vetterling and Flannery (2003)]. A search is performed along the Newton
direction such that:

uk,new = uk,old +η∆uk ; 0 < η ≤ 1 , (33)

in order to find an appropriate value of η so that ξk(uk,new) decreases sufficiently.

By defining

ψk(η)≡ ξk(uk,old +η∆uk) , (34)

so that

ψ
′
k(η) = ∇ξk ·∆uk , (35)

the backtracking strategy is initialised by making use of the current solution, with
(η = 1) and without (η = 0) a full Newton step, to determine new values for η that
minimise equation (35).

The first backtracking step is performed using a quadratic representation of ψk in
terms of η :

ψk(η)≈
[
ψk(1)−ψk(0)−ψ

′
k(0)

]
η

2 +ψk(0)η +ψk(0) , (36)



90 Copyright © 2010 Tech Science Press CMES, vol.62, no.1, pp.77-112, 2010

whose value is a minimum when:

η =− ψk(0)
2
[
ψk(1)−ψk(0)−ψ ′k(0)

] . (37)

In subsequent backtracking operations, a cubic representation is employed, utilising
the previous value ψk(η1) and its predecessor ψk(η2):

ψk(η)≈ c1η
3 + c2η

2 +ψk(0)η +ψk(0) , (38)

where:[
c1

c2

]
=

1
η1−η2

[
1/η2

1

−η2/η2
1

−1/η2
2

η1/η2
2

]
·
[

ψk(η1)−ψ ′k(0)η1−ψk(0)
ψk(η2)−ψ ′k(0)η2−ψk(0)

]
. (39)

The minimum of the cubic expression, equation (38), is given by:

η =
−c2 +

√
c2

2−3c1ψ ′k(0)

3c1
. (40)

in which 0.1η1 ≤ η ≤ 0.5η1.

3.4 Spatial and Temporal Adaptivity

Another key component of the solution strategy is the inclusion of both error con-
trolled spatial and temporal adaptivity, the former automatically determines where
fine grids are needed to capture details of a rapidly evolving flow. Adaptive grid
refinement is implemented via a relative local truncation error τ

k−1
k ≥ ε , where ε

is a user-specified tolerance; large values of τ
k−1
k indicating regions of significant

error between solutions on successive grid levels and where corresponding further
local mesh refinement is required. For further details the reader is referred to [Lee,
Thompson and Gaskell (2007)].

Automatic adaptive time-stepping, on the other hand, is achieved by employing a
temporal error control algorithm based on predictor-corrector stages, as explained
in [Gaskell, Jimack, Sellier and Thompson (2004)]. The method employed pro-
vides an implicit and second order accurate alternative to existing schemes, see for
example [Diez and Kondic (2002)], by using time-stepping based on local error
estimates, obtained from the difference between the current and predicted solutions
and which act as an indicator of whether to increase or decrease the time step in a
controlled manner. This provides an efficient means of minimising the computa-
tional expense associated with repeated time step failure.
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4 Results and Discussion

Solutions to a sequence of gravity-driven thin film flow problems, ranging in com-
plexity from the simple case of flow past a single well defined occlusion to ones
involving multiple occlusions/complex topography, solute transport and/or sub-
strate flexibility, are presented and explored. In all cases the substrate is taken
to be inclined at 30o to the horizontal and the initial condition before integrat-
ing forward in time to a final steady-state is that of a planar free-surface, namely
f = 1, everywhere. The liquid involved in the majority of cases is water (viscosity,
µ = 0.001 Pa s, density, ρ = 1000 kg m−3 and surface tension, σ = 0.07 N m−1),
with Q0 = 1.635×10−6 m2 s−1, having an asymptotic far-field thickness H0 = 100
µm. These flow parameters give a value for N of 0.12 implying that the normal
component of gravity has little effect on the resultant free-surface shape. Also,
unless stated otherwise, the topography steepness factor, γ = 0.01, with automatic
mesh adaptivity starting at k = 1, utilising 4 levels of local refinement, the finest
grid level corresponding to k = 5 has ∆5 = 1/1024; ε = 0.1κk, where κk is the
L2-norm of the residual on grid level k.

The first problem considered forms a useful benchmark and involves flow over
a rigid substrate containing a localised small square occlusion, with dimensions
lt = wt = 1.54, centered at (xt ,yt) = (30.77,50); Lc = L0 = 0.78 mm (for β = 1).
Both space adaptive and fixed fine mesh results were generated and comparisons
drawn with ones obtained for the same problem using the multigrid solver described
in [Lee, Thompson and Gaskell (2007)].

Fig. 2(a) shows a three-dimensional colour map and iso-contours of the result-
ing steady-state free-surface shape, clearly delineating the characteristic horse-shoe
bow-wave formed upstream of and surrounding the occlusion; just ahead of the oc-
clusion there is a gradual rise in the film height, up to a maximum value 16.5%
above the asymptotic film thickness at the point at which the film meets the oc-
clusion’s upstream face. The height of the free-surface decreases away from this
maximum along its sides, dropping to a minimum value 6.1% below the asymp-
totic film thickness immediately behind and downstream of it. The streamwise
free-surface profile along y = 50, see Fig. 2(b), provides a quantitative measure of
the free-surface disturbance as well as highlighting the deviation, as a function of
the number of adaptive mesh levels employed, from the grid-independent reference
full mesh solution obtained using 1025 × 1025 points; in the vicinity of the up-
stream static wetting line the deviation is found to be 7.3%, 3.0% and 1.3% for
adaptive multigrid solutions with the finest grid level in each case corresponding
to k = 2,3 and 4, respectively. With k = 5 both solutions correspond exactly. In
addition, it is interesting to note that the free-surface disturbance generated by this
small square occlusion is maintained significantly further downstream than is the
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(a)

(b)
Figure 2: Flow past a small square occlusion: (a) three-dimensional colour map
and iso-contours showing the steady-state free-surface disturbance which results;
(b) steamwise free-surface profiles through the centre of the occlusion comparing
the results obtained with different levels of local mesh refinement against the mesh
independent solution obtained without the latter - the finest mesh in both cases
corresponding to one having 1025× 1025 points and k = 5. The flow direction in
the top figure is from upper left to lower right, while in the bottom one it is from
left to right.
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case for a fully submerged square peak/trench topography of the same in-plane di-
mensions [Decré and Baret (2003); Gaskell, Jimack, Sellier, Thompson and Wilson
(2004)].

Fig. 3 illustrates, in the form of iso-contours, the evolution of the free-surface, f ,
in time as it proceeds to steady-state. In order to aid visualisation of the corre-
sponding adaptive mesh structures only two levels of mesh refinement are shown;
the location of the occlusion is as indicated. Note that the same rule is applied to
all subsequent figures showing adaptive meshes. A key feature of automatic adap-
tive local mesh refinement/de-refinement is that the mesh evolves with the solution,
actively refining and de-refining in an error controlled manner at every time-step,
following the development of the flow. The mesh structure at two different times
and once steady-state is reached is shown in Figs. 3(b), (d) and (f), respectively.
Figs. 3(a) and (b) reveal how the bow-wave initially forms upstream and bends to
the left and right of the occlusion, while liquid surges past it displacing the same in
the region immediately downstream of the obstruction forming a moving capillary
ridge in the direction of flow that eventually exits the solution domain.

Fig. 4 shows that the multigrid strategy adopted achieves the desired O(N) effi-
ciency (where N is the number of unknowns) and that in addition automatic mesh
refinement leads to significant further computational savings. Although the pro-
posed solver incurs a small overall penalty computation time wise, but less so when
mesh adaptivity is employed, this is viewed as a small price to pay for increased
flexibility and the general extendability of the approach. This is exemplified further
in relation to the problems solved subsequently.

The next problem examines a case of transient flow for the same thin film of water
past multiple occlusions comprised of a central blockage with a skewed elliptical
cross section (rotated at 45o to the horizontal, with major and minor axes of dimen-
sionless length 5.0 and 2.5, respectively, and centered at (xt ,yt) = (25,50)) and
two rectangular blockages located slightly further downstream and to either side
(lt = 10,wt = 5 centred at (xt ,yt) = (50,2.5) and (xt ,yt) = (50,97.5)) forming part
of the streamwise periodic boundary defined along y = 0 and y = ws. The solution
domain has dimensions ls = 200 and ws = 100.

Starting from the computed steady-state for flow past the system of occlusions,
with Lc = L0 = 0.78 mm (β = 1), the film thickness at the inlet boundary, x = 0, is
then pulsed sinusoidally according to the expression:

h = 1+ sin
(

2πt
Lt

)
for

(
0≤ t ≤ Lt

2

)
, (41)

with Lt = 20 specifying the periodic frequency, which generates the travelling wave
shown in Fig. 5.
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(a) (b)

(c) (d)

(e) (f)
Figure 3: Evolution of the flow, from left to right, past a square occlusion shown
at t = 12 (top), t = 36 (middle) and t = 60 corresponding to steady-state (bottom).
Iso-contours (left); associated local mesh structures (right).



Thin Film Flow Over and Around Surface Topography 95

Figure 4: Flow past a small square occlusion. CPU time dependence on mesh
density, comparing the results obtained with and without automatic local mesh re-
finement; the "*" denotes the corresponding solutions obtained with the multigrid
method described in [Lee, Thompson, Gaskell (2007)].

Figure 5: Free-surface colour map and iso-contours at the outset of pulsed flow
through a system of occlusions comprised of a central skewed elliptical obstruction
and two rectangular blockages starting from a condition of steady-state flow past
the same. The direction of flow is from lower left to upper right.
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(a) (b)

(c) (d)

(e) (f)
Figure 6: Evolution of pulsed flow through the system of occlusions shown in
Figure 5. Free-surface iso-contours (left) and associated mesh structures (right)
showing how the mesh automatically refines/de-refines as the solution progresses:
t = 5.22 (top); t = 14.36 (middle); t = 32.92 (bottom). The direction of flow is
from left to right.
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Figure 7: Final steady-state streamwise free-surface profiles through the centre of
the skewed ellipse (y = 50, full line) and rectangular (y = 0/100, broken line) oc-
clusion for flow through the system of occlusions shown in Figure 5. The direction
of flow is from left to right.

Fig. 6 shows the free-surface response at various times in the form of contour maps,
together with the corresponding local mesh structures, revealing very effectively
the efficiency of the adaptive meshing procedure in coping with large and vari-
able changes in the solution as the pulse travels through the occlusions. Note how
the higher frequency fluctuation of the travelling wave tends to smooth out quite
quickly due to surface tension effects in regions of high surface curvature. The
latter effect is enhanced by the occlusions in that the free-surface of the pulsed dis-
turbance is distorted further by the presence of the bow-waves upstream of them
and which wrap around their sides; in particular, the disturbance caused by the
skewed ellipse produces a free-surface asymmetry. The streamwise free-surface
profiles along y = 50.0 and y = 0.0/100.0, shown in Fig. 7, reveal that there is re-
spectively an approximate 78% and 95% reduction in film thickness just behind the
two types of occlusion, while on their upstream side the disturbance is found to be
respectively 60% and 165% greater than the far field asymptotic film thickness. It
is important to be aware of the propensity for such effects which, in extreme cases,
could lead to de-wetting behind an occlusion [Baxter, Power, Cliffe and Hibberd
(2009)].

The flow of a thin water film past a splitter occlusion is considered next, the
upstream edge of which is formed by a semi-circle of radius 0.05 centered at
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(a)

(b) (c)
Figure 8: Flow past a splitter occlusion shown once steady-state is reached: (a)
colour map and iso-contours of the free-surface disturbance; (b) the mesh structure
associated with the former; (c) the corresponding mesh structure for the same flow
conditions but when solute transport is included defined by c = 0 and 1 between
0 ≤ y ≤ 0.5 and 0.5 ≤ y ≤ 1.0, respectively at the inlet, x = 0. The flow direction
in the top figure is from lower left to upper right, while in the lower one it is from
left to right.
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Figure 9: Iso-contours of solute concentration (defined by c = 0 and 1 between
0≤ y≤ 0.5 and 0.5≤ y≤ 1.0, respectively at the inlet, x = 0) for the case of flow
past a splitter occlusion at steady-state, showing the symmetry of the same about
the streamwise centre line. The flow direction is from left to right.

(xt ,yt) = (0.5,0.5) with the the main body of it consisting of the rectangular region
0.5≤ x≤ 1.0 and 0.45≤ y≤ 0.55. The size of the solution domain is ls = 1,ws = 1,
yielding a capillary length of, Lc = 0.78 mm; L0 and β are set to 30.53 mm and
39.14, respectively. The resulting steady-state free-surface colour map and el-
evation contours are as shown in Fig. 8(a), revealing that the disturbance is com-
prised of a bow-wave upstream of the blunt-nosed splitter and a greatly elevated
free-surface in the vicinity of the static wetting line. The maximum free-surface
disturbance occurs at the upstream stagnation point on the splitter where the film
thickness is found to be 34.5% greater than the asymptotic far field value; at the exit
of the solution domain (x = 1.0) the difference between the maximum free-surface
elevation and the far field film thickness has reduced markedly to 13.6%.

The addition of solute transport effects, via equation (14), leads to some interest-
ing features with regard to mixing. The flow geometry remains the same with the
solute concentration at the inlet (x = 0) given a value c = 0 between 0 ≤ y ≤ 0.5
and c = 1 between 0.5 ≤ y ≤ 1.0. The initial concentration everywhere else, prior
to integrating forward in time, is taken to be c = 0.5. A contour plot of the resul-
tant solute concentration at steady-state throughout the solution domain is shown
in Fig. 9, which reveals that mixing occurs upstream of the film splitter occlusion
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as expected. Fig. 10(a) shows the spanwise cross-sectional profile of the solute
concentration at the exit, where x = 1, indicating the amount of mixing that occurs
as a function of mixing length, xm, defined as the distance between the inlet and the
start of the occlusion. Notably, a uniform concentration level on either side of the
splitter is only observed for the case when xm = 0.5, suggesting that a minimum
splitter length, lt , with a value between 0.4 to 0.5 is required for this to be achieved.
Extending the length of the domain to twice the original, taking cross-sectional
profiles at x = 2, see Fig. 10(b), is seen to improve the uniformity of solute concen-
tration at the outlets and shows that varying xm can be used to control the resultant
solute concentration level there while maintaining the uniformity of the same.

Since equation (14) is not coupled to the fluid flow equations, the f and p fields
are unaffected and the resultant steady-state free-surface shape is the same; it does,
however have a minor effect on the associated adaptive mesh structure, as shown in
Figs. 8(b) and (c). Comparing the two, it can be seen that the bulk of the mesh re-
finement, which tracks the free-surface surrounding the occlusion, remains largely
unchanged regardless of whether concentration gradients are involved; in the lat-
ter case, additional small amounts of refinement can be observed close to the inlet
and centrally upstream of the occlusion, where fine scale resolution is necessary to
capture the sharp changes in concentration gradient that occur there.

The complexity of the above flow problem is now further increased by replacing a
section of the rigid substrate upstream of the splitter with a flexible patch, the size
of which is taken to be lt = 0.375,wt = 0.375 centered at xt = 0.3125,yt = 0.3125;
with λ = 0.1, ρm = 1000 kg m−3 and setting ϒ = 1. Its introduction, modelled
via equation (15), which unlike the concentration equation is coupled with the flow
equations, has a significant and direct impact on the resulting steady-state free-
surface disturbance. As shown in Fig. 11(a), the dynamic solid-liquid interaction
involved results in flow asymmetry. In particular, the additional liquid lying above
the flexible patch leads to a skewing of the maximum free-surface elevation to the
side of the splitter having the patch located upstream of it and is 51.7% greater than
the asymptotic far-field value. The maximum free-surface elevation on either side
of the splitter at the exit (x = 1.0) is 15.6% and 11.4%, the former corresponding
to the side containing the upstream flexible patch. The inclusion of the latter also
produces a slight dip in film height across it, leading to a minimum free-surface
disturbance there 3.6% below the asymptotic far field value. Fig. 11(b) shows a
colour map and iso-contours of the deformation experienced by the flexible patch,
whose shape is influenced by the height of the liquid film above it; the maximum
and minimum deflection of the patch away from an equivalent rigid planar substrate
being 4.7% and 8.7%, respectively.

The flexible patch also has an impact on the mixing that takes place, albeit small,
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as indicated by the contour levels in Fig. 12, contributing to a change in solute con-
centration levels at the exit; the results is a 1% difference to the overall solute mix
achieved when xm = 0.5 compared to the case where no flexible patch is present.
Fig. 11(c) shows the corresponding adaptive mesh structure at steady-state.

Earlier, the general overall numerical procedure was shown to possess the desired
O(N) efficiency for the benchmark case of flow around a single square occlusion.
The same is now examined in relation to the the film-splitter problem by succes-
sively adding additional physical effects, mirroring each of the scenarios examined
above. The results, presented in Fig. 13, show the same O(N) efficiency to be
maintained. There is, as expected, a corresponding increase in the amount of CPU
expended as the number of equations to be solved increases. Taking the lubrication
equations, (5) and (6), as the base line, including the solution of the concentration
equation (14), and then in addition equation (15) for substrate deflection, leads to
corresponding increases of 25% and 41%, respectively in the CPU time required to
produce accurate solutions.

Considered next is an example of thin film flow over a complex inter-connected
topographical feature, formed from the addition and subtraction of simple topog-
raphy primitives and occlusions as discussed in Section 2. The flow investigated
is associated with the photolithographic fabrication of a micro-patterned micro-
fluidic device [Tourovskaia, Figueroa-Mason and Folch (2006)], the goal being to
maximise the planarity of the photoresist film. The liquid in this particular case has
the following properties: viscosity µ = 8.928 Pa s, density ρ = 1123 kg m−3 and
surface tension σ = 0.048 N m−1. The asymptotic film thickness is H0 = 100 µm,
corresponding to a uniform flow rate per unit width of Q0 = 2.0566×10−10 m2 s−1;
the values taken for Lc and β are 6.6227× 10−4 m and 15.1, respectively, giving
N = 0.144. The complex topography involved, shown in Fig. 14(a), covers an area
of 10 mm× 15 mm in size and is 25 µm heigh other than where the occlusions that
form part of it are located; the flow is solved on a square ls = ws = 3 (30 mm × 30
mm) computational domain.

Fig. 14(b) shows the steady-state free-surface disturbance that result. Notably, it is
not the submerged surface topography that dictates the nature of the disturbance;
the dominant flow features arise from the characteristic bow-waves formations that
results from flow past the circular occlusions. The combined effect of the bow-wave
and the depressions in their wake is clear from the colour map and iso-contours of
Fig. 15(e), where the sum of the individual disturbances give rise to the largest free-
surface elevation occurring at the bottommost occlusion (82.2%) and the largest
depression (−38.4%) just downstream of the leading occlusion at the left hand side
of the domain, indicated by “×” and “O”, respectively. Illustrated also is the ef-
fect of orientating the topography, relative to the direction of flow, on the resulting
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(a)

(b)
Figure 10: Flow, with solute transport (defined by c = 0 and 1 between 0≤ y≤ 0.5
and 0.5≤ y≤ 1.0, respectively at the inlet x = 0) past a splitter occlusion. Spanwise
plots, at steady-state, at the exit of the domain as a function of the mixing length xm:
(a) on a square solution domain, x = 1.0; (b) when the solution domain is doubled
in length, x = 2.0.
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(a)

(b)

(c)
Figure 11: Flow past a splitter occlusion including solute transport (defined by
c = 0 and 1 between 0≤ y≤ 0.5 and 0.5≤ y≤ 1.0, respectively at the inlet x = 0)
together with a flexible patch on the substrate located as shown, once steady-state
is reached: Colour map and iso-contours of (a) the free-surface disturbance and
(b) the deformation experienced by the flexible patch; (c) the corresponding mesh
structure. The flow direction in the top two figures is from lower left to upper right,
while in the bottom one it is from left to right.
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Figure 12: Iso-contours of solute concentration (defined by c = 0 and 1 between
0≤ y≤ 0.5 and 0.5≤ y≤ 1.0, respectively at the inlet, x = 0) for the case of flow
past a splitter occlusion at steady-state when a flexible patch is present upstream of
it. Note the asymmetry induced by the former, c.f. Figure 9. The direction of flow
is from left to right.

Figure 13: Flow past a splitter occlusion as the physical effects incorporated are
increased. CPU time dependence on mesh density, comparing the efficiencies ob-
tained when (i) just the base flow lubrication equations for f and p, (ii) as for (i)
together with the solute concentration equation for, c, and finally (iii) as for (i) and
(ii) plus the effect of substrate deformation equation for, e, are solved for.
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(a)

(b)
Figure 14: Flow over a complex micro-fluidic interconnected topographical feature
constructed using a series of simple primitive shapes and occlusions defined on a
square computational domain: (a) schematic of the geometry involved; (b) Colour
map and iso-contours of the resulting free-surface disturbance at steady-state - the
“×” and “O” denote the location of the maxima and minima disturbance away from
the asymptotic far-field film thickness. The direction of flow is from upper left to
lower right.
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(a) (b)

(c) (d)

(e) (f)
Figure 15: Flow over the complex interconnected topographical feature, Figure
14(a), showing the location of largest (×) and smallest (O) free-surface disturbance
away from that of the asymptotic far field film thickness (left) and the correspond-
ing underlying mesh structure (right), as a function of the inlet orientation angle:
−90o (top); −45o (middle); 0o (bottom). Flow direction is from left to right.
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(g) (h)

(i) (j)
Figure 15: continued. Flow over the complex interconnected topographical feature,
Figure 14(a), showing the location of largest (×) and smallest (O) free-surface dis-
turbance away from that of the asymptotic far field film thickness (left) and the
corresponding underlying mesh structure (right), as a function of the inlet orien-
tation angle: 45o (top); 90o (middle); 0o (bottom). Flow direction is from left to
right.
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(a) (b)

(c) (d)
Figure 16: Flow over an interconnected micro-ciruit like topography positioned on
both rigid and flexible substrate: colour maps and iso-contours of the resulting free
surface disturbance together with the topography definition and deformation expe-
rienced in the case of a flexible substrate at steady-state (left); associated adaptive
mesh structure (right).

free-surface disturbance, showing the position of the associated free-surface max-
ima and minima – see Fig. 15. Included in this figure for completeness are the
corresponding steady-state adaptive mesh configurations in each case. Note that,
as discussed in [Sellier, Lee, Thompson and Gaskell (2009)], the wake structure
that is generated persists far downstream and a solution domain approximately 3 to
4 times larger than the section shown was necessary to ensure that it did not extend
beyond the outflow boundary.

The final problem investigated explores the case of the flow of a thin water film over
both a rigid and flexible substrate containing a complex interconnected topography
reminiscent of a micro-circuit. The topography covers an area given by (lt×wt) =
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(0.5× 0.8), is 5 µm in height and placed at the centre of a ls = ws = 2 square
solution domain with Lc = 0.78 mm and β = 39.14.

Fig. 16(a) shows the resulting steady-state free-surface colour map of the distur-
bance generated when the surface containing the circuit, shown below it, is rigid,
ϒ = ∞. The corresponding free-surface disturbance when the substrate containing
the circuit is flexible, ϒ = 1 and λ = 0.5, is shown in Fig. 16(c). It can be seen
clearly that substrate flexibility leads to a significant reduction in the overall free-
surface disturbance generated, having a positive effect in relation to free-surface
planarisation. Notably, it is the small localised deflections of the flexible substrate,
having maximum value of 0.5% and minimum value of 3.3% from the point of
zero deflection, which lead to this reduction – by as much as 53.5%, compared to
the situation when the substrate is rigid. The deformation experienced by the flexi-
ble substrate itself, is indicated by the iso-contours in Figs. 16 (c). The associated
resulting automatic adaptive mesh structures are shown in Figs. 16(b) and (d). Al-
though they look quite similar, the flexible substrate solution requires the use of a
finer mesh over a greater area. As in the previous example it would be a relatively
simple to task to explore changes to the free-surface deformation resulting as a con-
sequence of altering the orientation of the circuit relative to the flow direction, and
to thus identify the flow configuration required to achieve optimum planarisation
of the free-surface.

5 Conclusion

A coupled system of equations resulting from the application of the long-wave
approximation to the governing Navier-Stokes equations is solved for the case of
gravity driven three-dimensional thin film flow on substrates containing topogra-
phy. The latter can be either completely engulfed by the liquid layer and/or extend
all the way through it. The numerical procedure described and utilised to solve their
discrete analogue makes use of the desirable attributes of adopting an efficient, tried
and tested multigrid framework, including both automatic error controlled adaptive
time-stepping and local mesh refinement/de-refinement, combined with a generally
applicable Newton globally convergent iterative routine. The latter forms a key
component of the overall solution strategy, since it readily facilitates and greatly
simplifies the embodiment and solution of additional single, or multiple, coupled
or otherwise, equations representing further physics and having the same form as
the base flow lubrication equations.

The above approach is used to solve a hierarchy of problems and found to be very
flexible and robust. They range in complexity from the case of thin film flow on
rigid substrates containing simple and complex topography and/or single or multi-
ple occlusions, to ones involving additional physics in the form of solute transport
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together with cases when the substrate itself, or parts of it, is taken to be flexible.
The proposed general purpose numerical procedure:

• Is shown to perform well in all cases, with the benefits of automatic mesh
adaption in particular being abundantly clear. The numerical efficiency achieved
across the board is found to be O(N), where N is the number of unknowns,
as expected from a well posed multigrid based algorithm.

• Provides a convenient methodology for the modelling and investigation of
a wider range of complex, three-dimensional thin film flow problems than
has been considered hitherto. For example, it could be exploited in medical
applications concerned with optimising the delivery of drug laden films or
more generally in the broader area of droplet motion/coalescence which has
enormous significance with respect to the spreading of inks and the deposi-
tion of bio-pesticides. Last but not least, the control of thin film flows in the
context of predicting the conditions for achieving maximum free-surface pla-
narisation is important in relation to the direct patterning of functional layers
apropos micro-chip production.
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