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RKPM with Augmented Corrected Collocation Method for
Treatment of Material Discontinuities
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Abstract: An accurate numerical methodology for capturing the field quantities
across the interfaces between material discontinuities, in the context of reproduc-
ing kernel particle method (RKPM), is of particular interest. For this purpose the
innovative numerical technique, so-called augmented corrected collocation method
is introduced; this technique is an extension of the corrected collocation method
used for imposing essential boundary conditions (EBCs). The robustness of this
methodology is shown by utilizing it to solve two benchmark problems of mate-
rial discontinuities, namely the problem of circular inhomogeneity with uniform
radial eigenstrain, and the problem of interaction between a crack and a circular
inhomogeneity. Moreover, an efficient algorithm for computing the area associated
to each particle for performing nodal quadrature in 2D in the context of RKPM
is proposed. The efficacy of this algorithm in determination of the elastic fields
within a plate weakened by a hole under uniform far-field tension is demonstrated.
This algorithm combined with augmented corrected collocation method provides a
powerful tool for treating problems with material discontinuities.
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1 Introduction

In meshless methods such as element free Galerkin method (EFGM) [Belytschko,
Lu, and Gu (1994)] and reproducing kernel particle method (RKPM) [Liu, Jun, and
Zhang (1995)], the geometry of the problem is discretized merely by introducing
particles rather than using elements. Therefore, the difficulties due to mesh gen-
eration and remeshing encountered in classical finite element method (FEM), for
example when dealing with large deformations or crack propagation, can be cir-
cumvented. Another important feature of meshless methods is that, by choosing
appropriate window function and basis functions, shape functions with any desired
smoothness can be readily constructed. Although this property can be very useful in
solving various type of boundary value problems (BVPs) of solid mechanics and it
obviates the need to any extra post-processing after computing strains and stresses,
it may cause some troubles at interfaces in problems in which there are material dis-
continuities. It should be noted that, at a perfectly bonded interface at which sliding
and debonding are not allowed, the displacements and traction stresses are contin-
uous, whereas the strain components are discontinuous. Consequently, it may lead
one to try to come up with appropriate RKPM shape functions which possess the
necessary discontinuities at the interface. In fact, employing meshless approxima-
tion for which the strains are approximated as continuous functions would result in
unacceptable solutions.

So far, many endeavors and researches have been devoted to somehow treat this
issue. Cordes and Moran (1996) discretized each phase separately by use of mov-
ing least squares (MLS) and then enforced the continuity of the displacements at
the interface of the two phases by means of Lagrange multiplier method. This
process not only requires integration along the interface and possesses the usual
problems of Lagrange multiplier method, but also results in an approximation of
the field quantity with high overshoots and undershoots in its derivatives in the
vicinity of the interface. Overall this methodology has less accuracy than FEM.
Masuda and Noguchi (2006), and Krongauz and Belytschko (1998) modeled the
aforementioned discontinuity by presenting special shape functions for which the
derivatives have jump discontinuity across the interface. Kavashima and Noguchi
(2000) used EFGM and employed the idea of separate discretization of phases,
which was proposed by Cordes and Moran (1996), except they enforced the con-
tinuity of the displacement at the interface by means of penalty method instead
of Lagrange multipliers method. Later, Li, Shen, Han, and Atluri (2003), in the
framework of MLPG, presented a promising method for solving these problems in
multi-dimensional domains which was relatively simple and efficient. Of course
utilizing this method requires paying special care to some small details for deter-
mining the domain of influence of the particles which are located in the vicinity of
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the interface.

In the present work the concept of separate discretization of phases is used, but the
continuity condition of the displacement at the interface is imposed by an augmen-
tation of the corrected collocation method. The efficacy of the proposed generaliza-
tion is studied by investigation of several fundamental examples such as Eshelby’s
problem [Eshelby (1957)], and the problem of crack-circular inclusion interaction
considered by Erdogan, Gupta, and Ratwani (1974). It should be emphasized that
in the current study the discretization is done by RKPM. To this end, it is needed to
compute the nodal domain associated to each particle. It is important to note that
a suitable determination of the nodal domain will directly affect the accuracy of
nodal quadrature. In some of previous studies, for example in the works of Chen,
Han, You, and Meng (2003) and Jin, Li, and Aluru (2001), in order to facilitate the
computations, the nodal domain is considered to be equal to one for all particles.
It is noteworthy to point out that this simplification is not compatible with the con-
cept of discretization in RKPM. Khezri, Hashemian, and Shodja (2009) proposed
an efficient algorithm to compute the nodal domains in the context of RKPM. They
analyzed a benchmark problem in fracture mechanics (an edge-cracked plate un-
der uniform tension) and showed their proposed algorithm leads to more accurate
results in comparison with the case in which all the nodal domains are taken to be
equal to one. In the current study both methods will be applied to the problem of a
plate with a hole under uniform tension.

The framework of the present paper is as follows. The next section is devoted to a
brief review of RKPM and the proposed algorithm for computing the area associ-
ated to each particle (nodal domain). The theory of the augmented corrected collo-
cation method will be comprehensively presented in section 3. Section 4, presents
some descriptive numerical experiments. Isotropic plate with a hole under uniform
tension is examined in section 4.1. The problem of circular inhomogeneity with
uniform radial eigenstrain distribution is addressed in section 4.2. The problem of
center crack in the vicinity of an inhomogeneity is studied in section 4.3. Finally,
conclusions are stated in section 5.

2 Implementation of nodal domain in 2D RKPM

A given function, u(x) defined over a two-dimensional domain, Ω can be repro-
duced by the following formula:

uR (x) =
∫

Ω

ϕ̄a (x,y)u(y)dy, (1)

where uR (x) is the reproduced function, ϕ̄a (x,y) is the corrected kernel function
in which the subscript a is pertinent to the dilation parameter, a(y). The corrected
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kernel function may be expressed as

ϕ̄a (x,y) =
C (x,x−y)

a(y)
ϕ

(
‖x−y‖

a(y)

)
, (2)

where ϕ is the kernel function, ‖.‖ represents Euclidian norm and C (x;x−y) is the
correction function to be determined by the completeness conditions [Liu, Jun, and
Zhang (1995)].

 Figure 1: Determination of the area associated with Jth particle according to the
algorithm given in section 2

Discretization of the integral in equation (1) via trapezoidal rule leads to

uR (x) =
NP

∑
J=1

NJ (x)dJ, (3)

where NP is the number of particles used to discretize Ω and dJ represents nodal
values of the function u(x) at the Jth particle. NJ (x) is the shape function associated
with the Jth particle and is given by

NJ (x) = φ̄a (x,y)∆SJ, (4)

where ∆SJ is the area pertinent to the Jth particle.
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For the computational purposes an algorithm for determination of the particle area
is employed [Khezri, Hashemian, and Shodja (2009)]. As it will be seen in the
results and discussion section, for the problem studied in this paper the proposed
technique has a better overall performance as compared with the other commonly
used techniques for particle area. In some studies, for simplicity of the computa-
tions ∆SJ = 1 is employed; see for example, Jin, Li, and Aluru (2001), and Chen,
Han, You, and Meng (2003). It is noteworthy to mention that for ∆SJ = 1 and
non-shifted basis the reproducing kernel approximation would be identical to the
EFGM [Aluru and Li (2001)].

A brief discussion of the method proposed by Khezri, Hashemian and Shodja
(2009) is given in the remainder of this section. Consider an arbitrary represen-
tative two-dimensional domain, Ω with boundary ∂Ω. This domain is discretized
into a large number of cells using a very fine grid (background mesh) as shown in
Fig. 1. In Fig. 1, the circular points are the particles used to discretize Ω.

As a direct result of application of the trapezoidal rule, a given cell within Ω be-
longs to the associated area of the particle which is nearest to that cell. In this
manner ∆SJ , which is the area associated with a typical particle J, can be calcu-
lated systematically. The accuracy of this procedure is increased by utilization of
finer grids. The algorithm for the proposed methodology is given below

Loop over the constructed cells

1) Loop over the particles

a) Calculate the distances between the particles and the considered cell

b) Determine the nearest particle to the considered cell

2) End particles loop

3) Assign the subjected cell to the area of its nearest particle

End cells loop

3 Treatment of material discontinuities via an augmented corrected colloca-
tion method

This section is aimed to develop a straightforward technique for treatment of ma-
terial discontinuity in an arbitrary domain in the context of RKPM. The proposed
method takes advantage of the concept of corrected collocation method, which was
previously developed for imposing the essential boundary conditions (EBCs) in the
context of meshless methods [Wagner and Liu (2000)].
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In collocation methods the EBCs, which in second order linear elliptic BVP of lin-
ear elasticity are associated with displacements, are satisfied exactly at the bound-
ary particles. Wagner and Liu (2000) came up with the corrected collocation
method which can conveniently enforce the EBCs at the boundary particles in the
context of usual RKPM. This methodology is not applicable to the derivative type
EBCs. Recently, Shodja and Hashemian (2007a, 2007b, 2008) and Hashemian and
Shodja (2008a, 2008b) generalized the corrected collocation method to satisfy the
EBCs which involve not only the unknown function but also the first derivatives
of the unknown function. The mathematical analysis of generalized corrected col-
location method for imposing EBCs, which involve the unknown function and its
derivatives of any order, is provided by Behzadan, Shodja and Khezri (2010). The
present work chooses to satisfy not only the EBCs at the boundary particles, but
also satisfy the continuity of the displacements at the interface particles exactly.
This treatment which leads to enhancement of solution in the vicinity of interfaces
will be referred to as “augmented corrected collocation method”.

For convenience the formulation will be presented for two adjacent phases Ωα and
Ωβ with interface Γ (Fig. 2). The extension to the case of multi-phase follows in a
straightforward manner.

 Figure 2: Medium Ω consisting of two phases

The classical form of the governing BVP on the whole domain, which is the Cauchy-
Navier’s equations of elasticity, can be written as follows

− ∂

∂x j

(
Ci jkl (x)

∂uk

∂xl

)
= bi (x) in Ω i = 1,2,

B.C.

{
EBC: ui (x) = gi (x) ∀x ∈ (∂Ωi)e i = 1,2,

Ci jkl (x) ∂uk
∂xl

n j = ti (x) ∀x ∈ (∂Ωi)t i = 1,2,

(5)
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where ui (x) denotes the components of displacement vector, n is the unit outward
normal vector, and Ci jkl (x) is the elastic constant. Also bi (x), gi (x), and ti (x) , i =
1,2, are given functions corresponding to body forces, prescribed displacements
and prescribed tractions, respectively. ∂Ω denotes the boundary of Ω and (∂Ωi)t
and (∂Ωi)e i = 1,2, are subsets of ∂Ω such that (∂Ωi)t ∩ (∂Ωi)e = /0.

It is well-known that the pertinent weak form is exactly the same as principle of
virtual work in mechanics which can be written as follows:

Find u ∈
(
H1 (Ω)

)2
such that

1)a(u,v) = l (v) ∀v ∈W

2)ui(x) = gi(x) ∀x ∈ (∂Ωi)e i = 1,2

(6)

where

a(u,v) =
∫

Ω

Ci jkl (x)
∂uk

∂xl

∂vi

∂x j
dx

=
∫

Ω

εi j (v(x)) σ
u
i j (x) dx

=
∫

Ω

(ε (v(x)))T
σ

u (x) dx,

(7)

l (v) =
∫

Ω

bi (x)vi (x)dx+
∫

(∂Ω1)t

t1 (x) v1 (x)ds+
∫

(∂Ω2)t

t2 (x) v2 (x)ds, (8)

W =
{

w ∈
(
H1 (Ω)

)2 |wi (x) = 0 ∀x ∈ (∂Ωi)e i = 1,2
}

. (9)

In equation (7), σu (x) is the vector of stress components corresponding to the
actual displacement vector u(x), and ε (v(x)) is the vector of strain components
due to virtual displacement vector v(x) .

From now on we employ the following convention:

For all f unctions f (x) de f ined on Ω

f α := f |Ωα f β := f |
Ωβ

(10)

With regard to the above convention, equation (7) may be written as:

a(u,v) =
∫

Ωα

εi j (vα (x)) σ
uα

i j (x) dx+
∫

Ωβ

εi j

(
vβ (x)

)
σ

uβ

i j (x) dx

:= aα (uα ,vα)+aβ

(
uβ ,vβ

)
.

(11)
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Similarly (8) becomes:

l (v) =
∫

Ωα

bα
i (x) vα

i (x) dx+
∫
(∂Ωα

1 )t

tα
1 (x) vα

1 (x)ds+
∫
(∂Ωα

2 )t

tα
2 (x) vα

2 (x)ds

+
∫

Ωβ

bβ

i (x) vβ

i (x) dx+
∫(

∂Ω
β

1

)
t

tβ

1 (x) vβ

1 (x)ds+
∫(

∂Ω
β

2

)
t

tβ

2 (x) vβ

2 (x)ds

= lα (vα)+ lβ

(
vβ

)
. (12)

Thus, with regard to the notations used in (11) and (12), the weak form of the BVP
under consideration can be restated in the following manner:

Find uα ∈
(
H1 (Ωα)

)2
,

uβ ∈
(

H1
(

Ω
β

))2 (13)

such that

aα (uα ,vα)+aβ

(
uβ ,vβ

)
= lα (vα)+ lβ

(
vβ

)
∀
(

vα ,vβ

)
∈ T,

(14)

uα
i (x) = gα

i (x) ∀x ∈ (∂Ω
α
i )e i = 1,2,

uβ

i (x) = gβ

i (x) ∀x ∈
(

∂Ω
β

i

)
e

i = 1,2.
(15)

Moreover, in view of convention (10), the following conditions hold:

uα (x) = uβ (x) ∀x ∈ Γ, (16)

T =

{(
wα ,wβ

)
∈
(
H1 (Ωα)

)2×
(

H1
(

Ω
β

))2

∣∣∣∣∣∣∣


wα
i (x) = 0 on (∂Ωα

i )e i = 1,2,

wβ

i (x) = 0 on
(

∂Ω
β

i

)
e

i = 1,2,

wα (x) = wβ (x) on Γ


} (17)

In order to discretize the obtained weak form, we employ the RKPM shape func-
tions which are obtained according to certain discretization of the phases. More
strictly speaking each medium is considered as a detached phase and is surveyed
separately in the sense that for each phase a distinct set of particles is considered
and the corresponding shape functions are derived as if the other domain did not
exist. Of course, to enforce the displacement continuity across the interface we
require that the particles of Ω

α and Ω
β share the same coordinates on Γ.
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Therefore, the discretized form of the problem will be as follows:

Find uα,h
i ∈ Span{Nα

I }1≤I≤NPα i = 1,2,

uβ ,h
i ∈ Span

{
Nβ

I

}
1≤I≤NPβ

i = 1,2,
(18)

such that

1)aα

(
uα,h,vα,h

)
+aβ

(
uβ ,h,vβ ,h

)
= lα

(
vα,h

)
+ lβ

(
vβ ,h

)
(19)

∀
(

vα,h,vβ ,h
)
∈ T h,

T h = T ∩

[(
Span{Nα

I }1≤I≤NPα

)2×
(

Span
{

Nβ

I

}
1≤I≤NPβ

)2
]

, (20)

2)uα,h
i (x) = gα

i (x) ∀x ∈ (∂Ω
α
i )e i = 1,2,

uβ ,h
i (x) = gβ

i (x) ∀x ∈
(

∂Ω
β

i

)
e

i = 1,2, (21)

uα,h (x) = uβ ,h (x) ∀x ∈ Γ.

(22)

Where {Nα
I }1≤I≤NPα and

{
Nβ

I

}
1≤I≤NPβ

are shape functions pertinent to particle

distributions in Ωα and Ωβ , respectively. Also the index h is used to emphasize
that we are seeking for an approximate solution. Now, it should be noticed that in
the context of the collocation methods, since the ultimate goal is to satisfy the EBCs
merely at the boundary degrees of freedom (DOFs), instead of the above problem,
the following problem should be solved:

Find uα,h
i ∈ Span{Nα

I }1≤I≤NPα i = 1,2,

uβ ,h
i ∈ Span

{
Nβ

I

}
1≤I≤NPβ

i = 1,2,
(23)

such that (24)

1)aα

(
uα,h,vα,h

)
+aβ

(
uβ ,h,vβ ,h

)
= lα

(
vα,h

)
+ lβ

(
vβ ,h

)
(25)

∀
(

vα,h,vβ ,h
)
∈ Sh,

2)uα,h
i (xα

I ) = gα
i (xα

I ) ∀xα
I ∈ (∂Ω

α
i )e i = 1,2,

uβ ,h
i

(
xβ

I

)
= gβ

i

(
xβ

I

)
∀xβ

I ∈
(

∂Ω
β

i

)
e

i = 1,2, (26)

uα,h (xI) = uβ ,h (xI) ∀xI ∈ Γ,

(27)
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Sh =


(

wα ,wβ

)
∈



(

Span{Nα
I }1≤I≤NPα

)2

×(
Span

{
Nβ

I

}
1≤I≤NPβ

)2




∣∣∣∣∣∣∣
 wα

i (xα
I ) = 0 ∀xα

I ∈ (∂Ωα
i )e i = 1,2,

wβ

i

(
xβ

I

)
= 0 ∀xβ

I ∈
(

∂Ω
β

i

)
e

i = 1,2,

wα (xI) = wβ (xI) ∀xI ∈ Γ


 . (28)

Where xα
I and xβ

I denote the particles belonging to Ωα and Ωβ , respectively.

The DOFs in each phase are numbered separately in the manner described below:

1. First the DOFs to which the EBCs have been associated are numbered. The
total number of these DOFs corresponding to Ωα and Ωβ are denoted by Mα

e

and Mβ
e , respectively. Also we denote by gα,† and gβ ,† the column vectors

with Mα
e and Mβ

e components, respectively such that their ith component is
the prescribed displacement of ith DOF.

2. Second, the DOFs which are located at the interface are numbered. The total
number of these DOFs are denoted by Mα

i and Mβ

i , respectively. Obviously,
with regard to what was said earlier about the interface particles on Γ, we
have Mα

i = Mβ

i .

3. Finally, the remaining DOFs are numbered. The total number of these DOFs
are denoted by Mα

r and Mβ
r , respectively. Also we set

Mα : = Mα
e +Mα

i +Mα
r (Mα = 2NPα),

Mβ : = Mβ
e +Mβ

i +Mβ
r (Mβ = 2NPβ ).

(29)

Equation (22), may be written as:

uα,h (x) =

[
uα,h

1 (x)
uα,h

2 (x)

]

=
[

Nα
1 (x) 0 Nα

2 (x) 0 · · · Nα
NPα (x) 0

0 Nα
1 (x) 0 Nα

2 (x) · · · 0 Nα
NPα (x)

]


dα
11

dα
21
...

dα

1(NPα )
dα

2(NPα )

 .

(30)
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According to the DOFs numbering that was described previously, one can rewrite
the equality (27) as follows

uα,h (x) =
[
Nα

e (x) Nα
i (x) Nα

r (x)
]dα

e
dα

i
dα

r

 := Nα (x)dα :=
[

Nα,1 (x)
Nα,2 (x)

]
dα , (31)

where dα
e , dα

i and dα
r are the vectors of nodal DOFs associated with the EBCs of

Ωα , DOFs at interface, and the remaining DOFs in Ωα , respectively.

Similarly for uβ one can write

uβ ,h (x) = Nβ (x) dβ , (32)

also, obviously

vα,h (x) = Nα (x)cα ,

vβ ,h (x) = Nβ (x)cβ .
(33)

Consequently it can be written that

εεε

(
uα,h (x)

)
= Bαdα ,

(
σ

uα,h
= Dα

εεε

(
uα,h (x)

))
εεε

(
vα,h (x)

)
= Bαcα ,

(34)

where Dα is the elastic coefficient matrix for the phase Ωα , and Bα is a 3×Mα

matrix which is obtained by changing the order of the columns of the following
matrix according to the previously mentioned numbering of DOFs.

∂Nα
1

∂x1
0 · · · ∂Nα

NPα

∂x1
0

0 ∂Nα
1

∂x2
· · · 0

∂Nα

NPα

∂x2
∂Nα

1
∂x2

∂Nα
1

∂x1
· · · ∂Nα

NPα

∂x2

∂Nα

NPα

∂x1

 . (35)

Relations (31) correspond to Ωα ; clearly similar relations hold on Ωβ .

By employing the aforementioned notations one can write

aα

(
uα,h,vα,h

)
=
∫

Ωα

(
εεε

(
vα,h (x)

))T
σ

uα,h
(x)dx

=
∫

Ωα

(cα)T (Bα)T DαBαdα dx

= (cα)T
(∫

Ωα

(Bα)T DαBα dx
)

dα

:= (cα)T Kαdα ,

(36)
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lα

(
vα,h

)
=
∫

Ωα

bα
i (x)vα,h

i (x)dx+
∫
(∂Ωα

1 )t

tα
1 (x) vα,h

1 (x)ds

+
∫
(∂Ωα

2 )t

tα
2 (x) vα,h

2 (x)ds

= (cα)T

[∫
Ωα

(Nα (x))T b(x)dx+
∫
(∂Ωα

1 )t

(
Nα,1 (x)

)T
tα
1 (x) ds

+
∫
(∂Ωα

2 )t

(
Nα,2 (x)

)T
tα
2 (x) ds

]
:= (cα)T fα .

(37)

In the same manner Kβ and fβ are defined, and so equation (23) can be rewritten
as follows

(cα)T (Kαdα − fα)+
(

cβ

)T (
Kβ dβ − fβ

)
= 0. (38)

At this point, we note that

(
vα,h,vβ ,h

)
∈ Sh⇔



{
vα,h (x) = Nα (x)cα

∀xα
I ∈ (∂Ωα

i )e vα,h
i (xα

I ) = 0 i = 1,2
(a)vβ ,h (x) = Nβ (x)cβ

∀xβ

I ∈
(

∂Ω
β

i

)
e

vβ ,h
i

(
xβ

I

)
= 0 i = 1,2

(b)

∀xI ∈ Γ vβ ,h (xI) = vα,h (xI) (c)

(39)

Define a bijective function Qα as follows

Qα : {1,2, . . . ,Mα}→ {(I, j) |1≤ I ≤ NPα , j = 1,2} (40)

Qα (i) = (I, j) if and only if the number of the DOF associated with particle xα
I in

the direction x j is i. Define

∀1≤ I ≤ NPα j = 1,2 Hα

(I, j) := Nα, j (xα
I ) , (41)
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and

ΨΨΨ
α :=



Hα

Qα (1)
...

Hα

Qα (Mα
e )

Hα

Qα (Mα
e +1)

...
Hα

Qα(Mα
e +Mα

i )
Hα

Qα(Mα
e +Mα

i +1)
...

Hα

Qα (Mα )



:=

ψψψα
e,e ψψψα

e,i ψψψα
e,r

ψψψα
i,e ψψψα

i,i ψψψα
i,r

ψψψα
r,e ψψψα

r,i ψψψα
r,r

 . (42)

In the right hand side of the above equality, ψψψα

ξ ,η
represents a matrix of size Mα

ξ
×

Mα
η . Similar definitions and relations hold for the phase β .

With regard to the above notations, condition (36) (a) is equivalent to the following

∀(I, j) ∈ Qα ({1, . . . ,Mα
e }) vα,h

j (xα
I ) = 0

⇔ ∀(I, j) ∈ Qα ({1, . . . ,Mα
e }) Nα, j (xα

I )cα = 0
⇔∀i ∈ {1, . . . ,Mα

e } Hα

Qα (i)c
α = 0

⇔
[
ψψψα

e,e ψψψα
e,i ψψψα

e,r
]

cα = 0.

(43)

Similarly the conditions (36) (b) and (c) are equivalent to the following conditions[
ψψψ

β
e,e ψψψ

β

e,i ψψψ
β
e,r

]
cβ = 0,[

ψψψ
β

i,e ψψψ
β

i,i ψψψ
β

i,r

]
cβ =

[
ψψψα

i,e ψψψα
i,i ψψψα

i,r
]

cα .
(44)

Moreover, condition (24) can be rewritten as followsψψψα
e,e ψψψα

e,i ψψψα
e,r 0 0 0

0 0 0 ψψψ
β
e,e ψψψ

β

e,i ψψψ
β
e,r

ψψψα
i,e ψψψα

i,i ψψψα
i,r −ψψψ

β

i,e −ψψψ
β

i,i −ψψψ
β

i,r

[dα

dβ

]
=

gα,†

gβ ,†

0

 . (45)

Hence, with regard to what has been said so far, the discretized form of the equa-
tions (13)-(17) can be written as follows

Find dα ∈RMα

dβ ∈RMβ

such that
1) (cα)T (Kαdα − fα)+

(
cβ
)T (Kβ dβ − fβ

)
= 0,

(46)
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The above equality must hold for all the vectors cα ∈ RMα

and cβ ∈ RMβ

which
satisfy the following conditions

[
ψψψα

e,e ψψψα
e,i ψψψα

e,r
]

cα = 0,[
ψψψ

β
e,e ψψψ

β

e,i ψψψ
β
e,r

]
cβ = 0,[

ψψψα
i,e ψψψα

i,i ψψψα
i,r
]

cα −
[
ψψψ

β

i,e ψψψ
β

i,i ψψψ
β

i,r

]
cβ = 0

(47)

and

2)

ψψψα
e,e ψψψα

e,i ψψψα
e,r 0 0 0

0 0 0 ψψψ
β
e,e ψψψ

β

e,i ψψψ
β
e,r

ψψψα
i,e ψψψα

i,i ψψψα
i,r −ψψψ

β

i,e −ψψψ
β

i,i −ψψψ
β

i,r

[dα

dβ

]
=

gα,†

gβ ,†

0

 . (48)

Clearly,

cα =

cα
e

cα
i

cα
r

 ∈RMα
∣∣[ψψψα

e,e ψψψα
e,i ψψψα

e,r
]

cα = 0


=


cα

e
cα

i
cα

r

 ∈RMα

∣∣∣∣∣
[

cα
i and cα

r are arbitrary,

cα
e =−

(
ψψψα

e,e
)−1
[
ψψψα

e,icα
i +ψψψα

e,rcα
r

]] .

(49)

If we set

χχχ
α =

ψψψα
e,e ψψψα

e,i ψψψα
e,r

0 I 0
0 0 I

 , (50)

then

χχχαcα =

 0
cα

i
cα

r

⇒ cα = (χχχα)−1

 0
cα

i
cα

r

=(ψψψα
e,e
)−1 −

(
ψψψα

e,e
)−1

ψψψα
e,i −

(
ψψψα

e,e
)−1

ψψψα
e,r

0 I 0
0 0 I

 0
cα

i
cα

r

 .

(51)
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Therefore, we will have

(cα)T (Kαdα − fα)

=
[
(0)T (cα

i )T (cα
r )T ]

(
ψψψα

e,e
)−T 0 0

−
(

ψψψα
e,i

)T (
ψψψα

e,e
)−T I 0

−
(
ψψψα

e,r
)T (

ψψψα
e,e
)−T 0 I


Kα

e,e Kα
e,i Kα

e,r
Kα

i,e Kα
i,i Kα

i,r
Kα

r,e Kα
r,i Kα

r,r

dα −

fα
e

fα
i

fα
r



:=
[
(0)T (cα

i )T (cα
r )T ]Lα

e,e Lα
e,i Lα

e,r
Lα

i,e Lα
i,i Lα

i,r
Lα

r,e Lα
r,i Lα

r,r

dα −

pα
e

pα
i

pα
r


:=
[
(0)T (cα

i )T (cα
r )T ]Aα

1
Aα

2
Aα

3

 .

(52)

Thus,

(cα)T (Kαdα − fα) = (cα
i )T Aα

2 +(cα
r )T Aα

3 . (53)

Similarly for β phase one can write

(
cβ

)T (
Kβ dβ − fβ

)
=
(

cβ

i

)T
Aβ

2 +
(

cβ
r

)T
Aβ

3 . (54)

Thus, the first part of the latter discretized weak form may be restated as follows:

(cα
i )T Aα

2 +(cα
r )T Aα

3 +
(

cβ

i

)T
Aβ

2 +
(

cβ
r

)T
Aβ

3 = 0, (55)

the above equality must hold for all cα
i ∈ RMα

i , cα
r ∈ RMα

r , cβ

i ∈ RMβ

i , and cβ
r ∈

RMβ
r that satisfy the following condition (the third condition in (44))

[
ψψψ

β

i,e ψψψ
β

i,i ψψψ
β

i,r

](
χχχ

β

)−1

 0
cβ

i

cβ
r

=
[
ψψψα

i,e ψψψα
i,i ψψψα

i,r
]
(χχχα)−1

 0
cα

i
cα

r

 . (56)
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Now note that[
ψψψα

i,e ψψψα
i,i ψψψα

i,r
]
(χχχα)−1

=
[
ψψψα

i,e ψψψα
i,i ψψψα

i,r
](ψψψα

e,e
)−1 −

(
ψψψα

e,e
)−1

ψψψα
e,i −

(
ψψψα

e,e
)−1

ψψψα
e,r

0 I 0
0 0 I


=

[
ψψψ

α
i,e
(
ψψψ

α
e,e
)−1︸ ︷︷ ︸

Rα
1

ψψψ
α
i,i−ψψψ

α
i,e
(
ψψψ

α
e,e
)−1

ψψψ
α
e,i︸ ︷︷ ︸

Rα
2

ψψψ
α
i,r−ψψψ

α
i,e
(
ψψψ

α
e,e
)−1

ψψψ
α
e,r︸ ︷︷ ︸

Rα
3

]
.

(57)

With similar definitions for β phase the condition (53) takes the following form

Rβ

2 cβ

i +Rβ

3 cβ
r = Rα

2 cα
i +Rα

3 cα
r , (58)

and so,

cβ

i =
(

Rβ

2

)−1
Rα

2 cα
i +

(
Rβ

2

)−1
Rα

3 cα
r −

(
Rβ

2

)−1
Rβ

3 cβ
r . (59)

Thus, with regard to (52) it can be concluded that

∀cα
i ∈RMα

i ∀cα
r ∈RMα

r ∀cβ
r ∈RMβ

r

(cα
i )T

(
Aα

2 +(Rα
2 )T

(
Rβ

2

)−T
Aβ

2

)
+(cα

r )T
(

Aα
3 +

(
Rα

3

)T
(

Rβ

2

)−T
Aβ

2

)
+
(

cβ
r

)T
(

Aβ

3 +
(

Rβ

3

)T (
Rβ

2

)−T
Aβ

2

)
= 0.

(60)

Consequently

Aα
2 +(Rα

2 )T
(

Rβ

2

)−T
Aβ

2 = 0,

Aα
3 +

(
Rα

3

)T
(

Rβ

2

)−T
Aβ

2 = 0,

Aβ

3 +
(

Rβ

3

)T (
Rβ

2

)−T
Aβ

2 = 0.

(61)

Regarding to the way that Aα
2 , Aα

3 , Aβ

2 and Aβ

3 are defined in (49), the above equa-
tions can be rewritten as follows[

Lα
i,e Lα

i,i Lα
i,r
]

dα −pα
i +(Rα

2 )T
(

Rβ

2

)−T ([
Lβ

i,e Lβ

i,i Lβ

i,r

]
dβ −pβ

i

)
= 0,[

Lα
r,e Lα

r,i Lα
r,r
]

dα −pα
r +

(
Rα

3

)T
(

Rβ

2

)−T ([
Lβ

i,e Lβ

i,i Lβ

i,r

]
dβ −pβ

i

)
= 0,[

Lβ
r,e Lβ

r,i Lβ
r,r

]
dβ −pβ

r −
(

Rβ

3

)T (
Rβ

2

)−T ([
Lβ

i,e Lβ

i,i Lβ

i,r

]
dβ −pβ

i

)
= 0.
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(62)

Finally, considering the above equations and equations (45) one can obtain the
unknown coefficients by solving the following linear system of algebraic equations



Lα
i,e Lα

i,i Lα
i,r (Rα

2 )T
(

Rβ

2

)−T
Lβ

i,e

Lα
r,e Lα

r,i Lα
r,r

(
Rα

3

)T
(

Rβ

2

)−T
Lβ

i,e

0 0 0 Lβ
r,e−

(
Rβ

3

)T (
Rβ

2

)−T
Lβ

i,e

ψψψα
e,e ψψψα

e,i ψψψα
e,r 0

0 0 0 ψψψ
β
e,e

ψψψα
i,e ψψψα

i,i ψψψα
i,r −ψψψ

β

i,e

(Rα
2 )T

(
Rβ

2

)−T
Lβ

i,i (Rα
2 )T

(
Rβ

2

)−T
Lβ

i,r(
Rα

3

)T
(

Rβ

2

)−T
Lβ

i,i

(
Rα

3

)T
(

Rβ

2

)−T
Lβ

i,r

Lβ

r,i−
(

Rβ

3

)T (
Rβ

2

)−T
Lβ

i,i Lβ
r,r−

(
Rβ

3

)T (
Rβ

2

)−T
Lβ

i,r

0 0
ψψψ

β

e,i ψψψ
β
e,r

−ψψψ
β

i,i −ψψψ
β

i,r



[
dα

dβ

]
=



pα
i +(Rα

2 )T
(

Rβ

2

)−T
pβ

i

pα
r +

(
Rα

3

)T
(

Rβ

2

)−T
pβ

i

pβ
r −

(
Rβ

3

)T (
Rβ

2

)−T
pβ

i

gα,†

gβ ,†

0


. (63)

4 Numerical Experiments

4.1 Example 1: Infinite plate with a circular hole under uniform uniaxial ten-
sion

Consider an infinite isotropic plate weakened by a circular hole of radius a. The
plate is subjected to far-field uniform tension q in x1-direction (Fig.3). According
to the elasticity theory [Timoshenko and Goodier (1970)], the displacement field in
terms of polar coordinate system (r,θ) with the origin located at the center of the
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hole is as follows:

ur =
q

4G

{
r
[
(κ−1)

/
2+ cos2θ

]
+

a2

r
[1+(1+κ)cos2θ ]− a4

r3 cos2θ

}
,

uθ =
q

4G

[
(1−κ)

a2

r
− r− a4

r3

]
sin2θ ,

(64)

 

 
Figure 3: A uniform tension field disturbed by a circular hole

where ur and uθ are the radial and tangential displacements, respectively. In ad-
dition we have G = E/(2(1+ν)) and κ = (3−ν)/(1+ν) in which E and ν are
Young’s modulus and Poisson’s ratio, respectively. The corresponding stress field
in Cartesian coordinate system is given by [Zhu and Atluri (1998)]:

σ11 = q
[
1− a2

r2 (3/2 cos 2θ + cos 4θ) + 3a4

2r4 cos 4θ

]
,

σ22 = −q
[

a2

r2 (1/2 cos 2θ − cos4θ) + 3a4

2r4 cos4θ

]
,

σ12 =−q
[

a2

r2 (1/2 sin2θ + sin4θ) − 3a4

2r4 sin4θ

]
.

(65)

For numerical demonstration, E = 1000, ν = 0.3, a = 1, and q = 1 are selected. Due
to symmetry, a quarter of the plate is considered for analysis. The corresponding
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EBCs are

u2(x1,0) = 0 ∀x1 ≥ 1 ,
u1(0,x2) = 0 ∀x2 ≥ 1 .

(66)

For numerical analysis the dimensions of the domain of the problem are considered
to be five times the radius of circular hole in both directions. Using equation (62),
tractions along the edges x1 = 5, 0 ≤ x2 ≤ 5 and x2 = 5, 0 ≤ x1 ≤ 5 are calculated
and imposed as the natural boundary conditions of the problem. The problem has
been solved for two different particle configurations. In the first configuration (Fig.
4) 340 particles and in the second one (Fig. 5) 675 particles are used. The numerical
integration has been performed by employing Gauss quadrature with 6×6 Gaussian
points in each virtually constructed cell which is formed by the particles.

The purpose of this example is to study the efficacy of the proposed algorithm for
determining the area associated with each particle (nodal domain) in nodal quadra-
ture. The results are compared with the case in which the nodal domains are taken
to be equal to one. To this end, σ11(0,x2),1 ≤ x2 ≤ 5 has been calculated by use
of 340 particles and its diagram has been shown in Fig. 6. Magnification of the
result in the vicinity of the hole is shown in Fig. 7. It can be seen that the result
of the proposed method is in reasonable agreement with the exact solution and the
error is reduced with distance from the hole. While the result produced using nodal
domain, ∆SJ = 1 is not as accurate as that of the proposed methodology.

Note that, the stress concentration factors in the vicinity of the hole are defined as:

K11 = lim
r→ a+

(
σ11
∣∣
θ =π/2

)
, K22 = lim

r→ a+
(σ22 |θ =0 ) . (67)

By substituting equation (62) into relations (64) one can easily arrive at the follow-
ing results:

K11 = 3 , K22 =−1 . (68)

Using RKPM, the stress concentration factors for each configuration of particles are
calculated and presented in Tab. 1. It is evident that calculation of nodal domain
via the present algorithm leads to more accurate results. Also from the displayed
data in Tab. 1, it is observed that by nearly doubling the number of particles (from
340 to 675), the results of the proposed algorithm improve remarkably, while such
a convergence rate is not observed when ∆SJ = 1 is used.

4.2 Example 2: Circular inhomogeneity with uniform radial eigenstrain

When the material properties of a subdomain of a body are different from those of
its surrounding matrix, the subdomain is referred to as inhomogeneity. Moreover,
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 Figure 4: Particles configuration pertinent to example 1; 340 particles

 Figure 5: Particles configuration pertinent to example 1; 675 particles
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Figure 6: Stress component σ11 along x1 = 0 using 340 particles

 

 Figure 7: Detailed behavior of σ11 in the vicinity of the hole; magnification of
figure 6
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Table 1: Stress concentration factors corresponding to example 1

NP ∆SJ K11 Error K22 Error

340
Calculated 2.9481 -1.73% -0.9748 2.52%

1 2.8413 -5.29% -0.9418 5.82%

675
Calculated 2.9808 -0.64% -0.9894 1.06%

1 2.8397 -5.34% -0.9436 5.64%

if an eigenstrain field is prescribed within the inhomogeneity, then the subdomain
is referred to as inhomogeneous inclusion, [Mura (1987)].

The circular inhomogeneous inclusion with uniform eigenstrain field is one of the
benchmark problems of material discontinuities; for example, fiber reinforced com-
posites with misfit strains. This problem has been used extensively as a reference
problem in a large number of numerical studies; among them one can mention
[Cordes, Moran (1996)], [Krongauz, Belytschko (1998)], [Li, Shen, Atluri (2003)]
and [Masuda, Noguchi (2006)].

In this example, the robustness of the augmented corrected collocation method has
been examined. Fig.8 presents a schematic description of the problem.

The exact solution for this problem in polar coordinates can be expressed as [Cordes,
Moran (1996)]

ur =

{
C1r, r ≤ R,

C1R2/r, r > R,
C1 =

(µ(1) +λ (1)) ε∗

µ(1) +λ (1) + µ(2) ,

uθ = 0 ,

(69)

where R is the radius of the circular inhomogeneous inclusion with uniform eigen-
strain, ε∗rr = ε∗. The inhomogeneous inclusion and the surrounding matrix are
referred to as phase 1 and 2, respectively. Both phases are isotropic, and µ(i) ,
λ (i),i = 1,2 are Lame constants for phase i. The corresponding strains are

εrr =

{
C1, r < R,

−C1R2/r2, r > R,
εrθ = 0, εθθ =

{
C1, r ≤ R,

C1R2/r2, r > R
(70)

In this example it is assumed that R = 1, and{
E(1) = 1000 ,

ν(1) = 0.28 ,

{
E(2) = 900 ,

ν(2) = 0.33 .
(71)

Due to the axisymmetry of the problem, only a quarter of the domain (0≤ θ ≤ π/2)
whose size is 5× 5 has been selected for numerical modeling. Each phase is dis-
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Figure 8: Circular inhomogeneous inclusion in an infinite body with uniform eigen-
strain ε∗

cretized separately; so the shape functions of the particles located in each phase are
only defined in the corresponding phase. As it is shown in Fig. 9, 302 particles have
been used for the analysis within the first phase and 503 particles have been used in
the second phase. At the interface of the two phases, 82 particles (41 particles for
each phase) are located (Fig. 10). The area associated with each particle for nodal
quadraure (nodal domain) is determined using the proposed algorithm.

Since the selected domain is finite, the displacements in the right and upper edges
of the plate have been calculated using the theoretical solution (66) and have been
considered as EBCs. Also due to the symmetry, we have the following boundary
conditions at the left and lower edges of the plate

u1 (0 , x2) = 0 , u2 (x1 , 0) = 0 . (72)

Note that, at the interface of the two phases the following condition holds

u(1) = u(2) . (73)
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Also notice that both, the EBCs and the continuity condition at the interface are
imposed via the augmented corrected collocation method.

Radial displacement along θ = π/4 has been plotted as a function of r in Fig. 11.
The obtained results show a considerable accordance between the numerical and
exact solutions. The graph is continuous but is not differentiable at the interface of
the two phases which is in agreement with the fact that there is a jump discontinuity
in the radial strain at the interface. To see this in more detail the radial strain along
θ = π/4 has been plotted in Fig. 12. It is seen that, the mentioned discontinuity
has been captured accurately without any undesired oscillation in the vicinity of the
interface which verifies the efficacy of the augmented corrected collocation method.

The radial distributions of the hoop strain and radial stress along θ = π/4 are given
in Figs. 13 and 14, respectively. Although, the variations of hoop strain and hoop
stress are continuous, they are not classically differentiable at the interface. In
both figures the numerical results are in accordance with the exact solution with
noticeable accuracy.

Fig. 15 shows the radial variation of hoop stress along θ = π/4 which exhibits a
jump discontinuity across the interface. The conformity of numerical results and
exact solution, once again confirms the accuracy and the efficacy of the augmented
corrected collocation method.

4.3 Example 3: Interaction between a crack and a circular inhomogeneity

The problem of crack-inhomogeneity interaction, due to its application in com-
posites, is of particular interest. In order to show the ability of the proposed nu-
merical technique in accurate computation of the elastic fields of such an inter-
action problem, a circular fiber in the vicinity of a horizontally oriented slit-like
crack under far field a uniform uniaxial loading σ22(x) = σ0 as shown in Fig. 16
is considered. The analytical solution of this problem is available in the litera-
ture [Atkinson (1972)], [Erdogan, Gupta, and Ratwani (1974)], [Ojaghnezhad and
Shodja (2009)]. In Fig. 16, a f is the radius of the inhomogeneity, ac is the half-
crack length, C1 is the horizontal distance between the centers of the inhomogeneity
and crack, and C2 is the vertical distance between the center of the inhomogene-
ity and the crack plane. The crack-tip which is nearer to the inhomogeneity is
labeled as A and the crack-tip which is located farther away is labeled as B. The
domain occupied by the inhomogeneity is denoted by Φ and its surrounding ma-
trix is denoted by Ω. The shear modulus and Poisson’s ratio of the inhomogeneity
are indicated as µφ and νφ , respectively, whereas the shear modulus and Poisson’s
ratio of the matrix are denoted as µΩ and νΩ , respectively. It is assumed that
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 Figure 9: Configuration of the particles used in example 2; one quarter of the do-
main is considered

 Figure 10: The arrangement of particles in the first phase and in the interface
boundary
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Figure 11: Distribution of radial displacement in example 2

 
Figure 12: Distribution of radial strain in example 2
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Figure 13: Distribution of hoop strain in example 2

 
Figure 14: Distribution of radial stress in example 2
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 Figure 15: Distribution of hoop stress in example 2

a f = 2 , ac = 1 , C2 = 1 , νΩ = 0.35.

Computation of the stress intensity factors (SIFs) at the crack-tips A and B with rea-
sonable accuracy is very important for predicting the crack behavior in the vicinity
of the inhomogeneity. Define the normalized SIF, Kζ at crack-tip ζ = A or B as:

Kζ =
KI

ζ

KS
ζ

= lim
r→0

σ I
ζ

σS
ζ

, (74)

where the superscripts I and S stand for “interacting” and “single”, respectively. KI
ζ

is the SIF at the crack-tip ζ when the crack is interacting with the inhomogeneity,
and KS

ζ
is the pertinent SIF in the absence of inhomogeneity. The corresponding

stress component as the crack-tip ζ is approached (r → 0) in the presence and
absence of the inhomogeneity are σ I

ζ
and σS

ζ
, respectively.

In order to solve the proposed problem by the present methodology, the dimensions
of the plate are chosen reasonably large so that the crack and the inhomogeneity do
not have any interactions with the remote boundaries. To this end, it is assumed that
the plate’s width is 28 units, while the plate’s length depends on the value of C1.
For C1 = 4, 6 and 8 the plate’s length are chosen to be 28, 30 and 32, respectively.
For each value of C1, a different configuration of particles has been considered.
The domain size and particle distribution for cases, C1 = 4, 6 and 8 are displayed
in Figs. 17-19, respectively. For demonstration, a magnified view of the particles
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arrangement in the proximity of the inhomogeneity and the crack for the case of
C1 = 4 is shown in Fig. 20. Note that according to what was said in section 3, the
inhomogeneity and surrounding medium have been discretized separately via two
distinct sets of particles. The continuity condition between these two phases has
been imposed using the augmented corrected collocation method.

The SIFs are computed by use of path-independent J-integral. Because of the asym-
metric nature of the problem, the crack is under mixed mode conditions, but consid-
ering the type of loading, the first mode is the dominant one. For µφ/µΩ = 0 and 23
(in the latter case νφ is taken to be equal to 0.3) , mode I SIFs, normalized according
to (71), have been calculated and compared with the analytical results of [Ojagh-
nezhad and Shodja (2009)] and [Erdogan, Gupta, and Ratwani (1974)] in Tab. 2
and Tab. 3, respectively. Generally, the numerical results are within a reasonable
range of the analytical results; the analytical results are not the exact solutions. It
is noteworthy to mention that, in the case for which the inhomogeneity is a hole
(µφ/µΩ = 0), the maximum values of SIFs which are displayed in Tab. 2 corre-
spond to C1 = 4 and decrease with increasing C1. Both KA and KB are greater than
1, which implies that the hole has anti-shielding effect. As the distance between
the crack and the hole becomes larger the value of SIFs approaches 1, that is the
value of the SIFs in the absence of the hole. In the case where the inhomogeneity
has a larger shear modulus (µφ/µΩ = 23), among the displayed data in Tab. 3,
the minimum values of SIFs, which are smaller than 1, correspond to C1 = 4 and
become larger as C1 becomes larger. This trend shows that the hard inhomogeneity
shields the crack when the crack is located near the inhomogeneity. When C1 = 8
the values of SIFs are both smaller than 1, but very close to 1, that is the effect of
the inhomogeneity becomes nearly negligible.

5 Conclusion

New capabilities have been incorporated into RKPM to numerically solve the elas-
tic equilibrium equations in two dimensions. By extending the corrected colloca-
tion method, a simple and efficient method has been proposed for numerical anal-
ysis of domains which consist of several phases with different material properties.
In this treatment, each phase is discretized by a separate set of particles and the cor-
responding shape functions for each phase are derived separately. Then, by using
the obtained shape functions the weak form of the governing BVP is discretized.
Finally, the continuity condition at the interface and the EBCs are imposed by aug-
mented corrected collocation method. Moreover, the area associated with each
particle for nodal quadrature has been numerically computed and imposed by an
efficient algorithm. The presented solution of the problem of interaction between
a crack and a circular inhomogeneity is an indicator of the high potential of the
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Figure 16: A horizontally oriented slit-like crack near a circular inhomogeneity
under uniform far-field tension

 
Figure 17: The domain size and particle distribution pertinent to crack-
inhomogenety interaction problem with C1 = 4
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Figure 18: The domain size and particle distribution pertinent to crack-
inhomogenety interaction problem with C1 = 6

 Figure 19: The domain size and particle distribution pertinent to crack-
inhomogenety interaction problem with C1 = 8
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 Figure 20: Particles configuration in the vicinity of the inhomogeneity and crack
tips in the case of C1 = 4

augmented corrected collocation method in solving complicated problems.
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