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Slow Motion of a General Axisymmetric Slip Particle
Along Its Axis of Revolution and Normal to One or Two

Plane Walls
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Abstract: A theoretical study of the Stokes flow caused by a rigid particle of rev-
olution translating axisymmetrically perpendicular to two parallel plane walls at an
arbitrary position between them in a viscous fluid, which may slip at the particle
surface, is presented. A method of distribution of a set of spherical singularities
along the axis of revolution within a prolate particle or on the fundamental plane
within an oblate particle is used to find the general solution of the fluid velocity
field that satisfies the boundary conditions at the plane walls and at infinity. The
slip condition on the particle surface is then satisfied by applying a boundary collo-
cation technique to this general solution to determine the unknown constants. The
drag force acting on the particle by the fluid is calculated with good convergence
behavior for various cases. For the motion of a slip sphere perpendicular to two
plane walls, our drag results agree very well with the numerical solutions previ-
ously obtained. For the translation of a no-slip prolate or oblate spheroid along its
axis of revolution normal to a single plane wall, the agreement between our results
and the available solutions in the literature is also excellent. It is found that for
a spheroid with specified aspect ratio and particle-to-wall spacings, its boundary-
corrected drag force in general decreases with an increase in its slip coefficient. For
given wall-to-wall spacings, the hydrodynamic drag force is minimal when the par-
ticle is situated midway between the two plane walls and increases monotonically
when it approaches either of the walls. For fixed separation and slip parameters, the
normalized drag force increases with a decrease in its axial-to-radial aspect ratio,
and the boundary effect on the motion of an oblate spheroid can be very significant.
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Boundary collocation technique

1 Introduction

The movement of small particles in a viscous fluid at low Reynolds numbers is of
much fundamental and practical interest in the fields of chemical, biomedical, and
environmental engineering and colloidal science. The majority of these moving
phenomena is fundamental in nature, but permits one to develop rational under-
standing of many practical systems and industrial processes such as sedimentation,
coagulation, meteorology, motion of cells in blood vessels, and rheology of sus-
pensions. The theoretical treatment of this subject grew out of the classic work of
Stokes (1851) for a translating, no-slip, rigid sphere in an incompressible, Newto-
nian fluid. Oberbeck (1876) extended this result to the translation of an ellipsoid.
More recently, the creeping flow caused by the motion of a particle of more general
shape has been treated in the literature by the symbolic operator method [Brenner
(1966)], boundary collocation method [O’Brien (1968); Gluckman, Pfeffer, and
Weinbaum (1971)], singularity method [Chwang and Wu (1975)], and boundary
integral/element method [Hsu and Ganatos (1989); Staben, Zinchenko, and Davis
(2003); Sellier (2008)].

In the general formulation of the Stokes problem, it is usually assumed that no slip-
page arises at the solid-fluid interfaces. Actually, this is an idealization of the trans-
port processes involved. The phenomena that the adjacent fluid can slip frictionally
over a solid surface, occurring for cases such as the rarefied gas flow surrounding an
aerosol particle [Ying and Peters (1991); Hutchins, Harper, and Felder (1995)], the
aqueous liquid flow near a hydrophobic surface [Tretheway and Meinhart (2002);
Willmott (2008)], the micropolar fluid flow past a rigid particle [Sherif, Faltas, and
Saad (2008)], and the Newtonian fluid flow over the surface of a porous medium
[Saffman (1971); Nir (1976)] or a small particle of molecular size [Hu and Zwanzig
(1974)], have been confirmed, both experimentally and theoretically. Presumably,
any such slipping would be proportional to the local tangential stress of the fluid
next to the solid surface [Happel and Brenner (1983)], known as the Navier slip
[see Eq. (3a)], at least as long as the velocity gradient is small. The constant of
proportionality, β−1, is called the slip coefficient of the solid surface.

The classic formula for the drag force exerted by the ambient fluid of viscosity η

on a translating rigid sphere of radius b with a slip-flow boundary condition at its
surface, first derived by Basset (1961), is

F =−6πηbU
βb+2η

βb+3η
, (1)

where U is the translational velocity of the particle. The quantity η/β is a length,
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which can be pictured by noting that the fluid motion is the same as if the solid
surface was displaced inward by a distance η/β with the velocity gradient extend-
ing uniformly right up to no-slip velocity at the surface. In the limiting case of
η/βb = 0, there is no slip at the particle surface and Eq. (1) degenerates to the
well-known Stokes law. When η/βb→ ∞, there is a perfect slip at the particle
surface and the particle acts like a spherical gas bubble (with negligible viscosity).

The problem of slow motion of nonspherical particles with frictionally slip sur-
faces is a matter of great analytical difficulty and was usually estimated by an ad-
justed sphere approximation [Dahneke (1973)]. On the other hand, the axisymmet-
ric creeping flow of a viscous incompressible fluid past a spheroid which deforms
slightly in shape from a sphere with the slip boundary condition was investigated
by several researchers [Palaniappan (1994); Ramkissoon (1997)], and an explicit
expression for the hydrodynamic drag force experienced by it was given to the first
order in the small parameter characterizing the deformation. Recently, the motion
of a slightly deformed slip sphere in an arbitrary direction was also analyzed to the
second order of the small deformation parameter [Chang and Keh (2009)].

Knowing that a simple separation-of-variable solution for the problem of the slow
motion of a spheroid with a frictional-slip surface in a viscous fluid is not feasible
in prolate and oblate spheroidal coordinates [Leong (1984); Williams (1986)], Keh
and Huang (2004) investigated the creeping flow caused by a general axisymmetric
particle with a slip surface translating along its axis of revolution numerically by
using a method of internal singularity distributions incorporated with a boundary
collocation technique. In fact, a semi-separable general solution in the form of an
infinite series expansion for the axisymmetric creeping flow in spheroidal coordi-
nates was used by Deo and Datta (2002) to examine the slip flow of a viscous fluid
axisymmetrically past a prolate spheroid and to derive the hydrodynamic drag force
exerted on the spheroid in an approximate but explicit form. Recently, we studied
the axisymmetric translation of a prolate or oblate slip spheroid and obtained the
drag force both analytically by employing the same semi-separable solution and
numerically by using the boundary collocation method (Keh and Chang, 2008).

In practical applications of colloidal transport, particles are not isolated and will
move in the presence of neighboring boundaries. Therefore, the boundary effects
on creeping motion of rigid particles experiencing slip are of great importance and
have been studied in the past for several cases of a confined sphere [Chen and Keh
(2003); Chang and Keh (2006); Keh and Chang (2007)]. Recently, the transverse
motion of a slip circular cylinder near a plane wall parallel to its axis has also
been investigated semianalytically [Keh and Wang (2008)]. In this article we use a
method of distributed internal singularities incorporated with the boundary colloca-
tion technique [Wan and Keh (2010)] to analyze the creeping motion a slip particle
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of revolution translating axisymmetrically perpendicular to two plane walls at an
arbitrary position between them; the particle can be either prolate or oblate. With
this approach the drag force exerted on a spheroid by the ambient fluid as functions
of the slip coefficient, the separation distances from the walls, the relative position
between the walls, and the aspect ratio of the spheroid is numerically calculated.
For the special cases of a slip sphere and a no-slip spheroid, our drag results show
excellent agreement with those available in the literature.

2 Mathematical description of the general problem

In this section, we consider the quasisteady creeping motion caused by a general
axisymmetric particle translating with a constant velocity Uez in an incompress-
ible, Newtonian fluid along its axis of revolution and perpendicular to two infinite
parallel plane walls whose distances from the center of the particle are c and d,
respectively (d ≥ c is set without loss in generality), as shown in Fig. 1. Here
(ρ,φ ,z) and (r,θ ,φ) denote the circular cylindrical and spherical coordinate sys-
tems, respectively, with their origin lying at the center of the particle, and ez is the
unit vector in the positive z direction. The fluid may slip frictionally at the surface
of the particle and is at rest at infinity. The Reynolds number is assumed to be
sufficiently small so that the inertial terms in the fluid momentum equation can be
neglected, in comparison with the viscous terms.

The fluid flow is governed by the Stokes equations,

η∇
2v−∇p = 0, (2a)

∇ ·v = 0, (2b)

where v is the velocity field for the fluid flow and p is the dynamic pressure distri-
bution. Because the relative tangential velocity of the fluid at the particle surface is
proportional to the local tangential stress and the fluid is no-slip on the plane walls
and motionless far away from the particle, the boundary conditions are

v = Uez +
1
β

(I−nn)n : τττ on Sp, (3a)

v = 0 at z =−c,d, (3b)

v→ 0 as ρ → ∞ and − c≤ z≤ d. (3c)

Here, τττ = η [∇v+(∇v)T ] is the viscous stress tensor for the fluid which is symmet-
ric, n is the unit normal vector on the particle surface Sp pointing into the fluid, I is
the unit dyadic, and 1/β is the constant frictional-slip coefficient about the surface
of the particle.
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Figure 1: Geometrical sketch for the translation of an axially symmetric particle
along its axis of revolution perpendicular to two plane walls.

In order to solve Eqs. (2) and (3), a set of spherical singularities satisfying the
boundary conditions in Eqs. (3b) and (3c) will be chosen and distributed along the
axis of revolution within a prolate particle or on the fundamental plane within an
oblate particle [Keh and Tseng (1994)]. The flow field surrounding the particle is
approximated by the superposition of the set of the spherical singularities and the
boundary condition (3a) on the particle surface can be satisfied by making use of
the multipole collocation method. For the special case of a spherical particle, only
a single singularity which is placed at the particle center is needed.

The velocity components in circular cylindrical coordinates for the axially sym-
metric fluid motion caused by a spherical singularity at the point ρ = 0 and z = h
satisfying the Stokes equations and boundary conditions in Eqs. (3b) and (3c) are
[Ganatos, Weinbaum, and Pfeffer (1980); Chang and Keh (2006)]

vρ =
∞

∑
n=2

[BnA1n(ρ,z,h)+DnA2n(ρ,z,h)], (4a)

vz =
∞

∑
n=2

[BnC1n(ρ,z,h)+DnC2n(ρ,z,h)], (4b)
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and vφ = 0. Here, Ain and Cin with i = 1 and 2 are functions defined by Eqs. (A1)
and (A2) in Appendix A, and Bn and Dn are unknown constants.

In cylindrical coordinates, the boundary condition (3a) on the particle surface can
be expressed as

vρ = 1
β
[(1−n2

ρ)nρτρρ −nρn2
z τzz +(1−2n2

ρ)nzτρz]
vz = U + 1

β
[(1−n2

z )nzτzz−nzn2
ρτρρ +(1−2n2

z )nρτρz]

}
on Sp (5)

where nρ and nz are the local ρ and z components of the unit normal vector n.
From Eq. (4) the components of the viscous stress tensor in Eq. (5) caused by the
singularity are obtained as

τρρ = η

∞

∑
n=2

[Bnα1n(ρ,z,h)+Dnα2n(ρ,z,h)], (6a)

τzz = η

∞

∑
n=2

[Bnβ1n(ρ,z,h)+Dnβ2n(ρ,z,h)], (6b)

τρz = η

∞

∑
n=2

[Bnγ1n(ρ,z,h)+Dnγ2n(ρ,z,h)], (6c)

where αin, βin, and γin with i = 1 and 2 are functions defined by Eqs. (A3)-(A5).

Eqs. (4) and (6) for the fluid velocity and stress fields caused by a spherical sin-
gularity and boundary condition (5) on the particle surface will be utilized in the
following sections to solve for the fluid velocity induced by the translation of an
axially symmetric particle along its axis of revolution normal to two plane walls.

3 Solution for the motion of a spherical particle normal to two plane walls

A spherical singularity described in the previous section is used in this section to
obtain the solution for the motion of a slip spherical particle of radius b perpendic-
ular to two plane walls. The flow field generated by the translation of the sphere
can be represented by a singularity placed at its center which is the origin of the
coordinate frame. Thus, the velocity and stress components for the fluid motion
caused by the sphere are given by Eqs. (4) and (6) with h = 0. To determine the
unknown constants Bn and Dn, one can apply the boundary condition (5) at the
particle surface to these velocity and stress components to yield

∞

∑
n=2

[BnA∗1n(ρ,z,0)+DnA∗2n(ρ,z,0)] = 0
∞

∑
n=2

[BnC∗1n(ρ,z,0)+DnC∗2n(ρ,z,0)] = U

 at r = b, (7)
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where

A∗in(ρ,z,h) = Ain(ρ,z,h)− η

β
[(1−n2

ρ)nραin(ρ,z,h)−nρn2
z βin(ρ,z,h)

+(1−2n2
ρ)nzγin(ρ,z,h)], (8a)

C∗in(ρ,z,h) = Cin(ρ,z,h)− η

β
[(1−n2

z )nzβin(ρ,z,h)−nzn2
ραin(ρ,z,h)

+(1−2n2
z )nργin(ρ,z,h)], (8b)

and i = 1 or 2.

The drag force F = Fez exerted by the fluid on the spherical particle can be deter-
mined from [Ganatos, Weinbaum, and Pfeffer (1980)]

F = 4πηD2. (9)

That is, only the lowest-order coefficient D2 of the spherical singularity contributes
to the hydrodynamic drag on the particle.

To satisfy Eq. (7) exactly along the entire half-circular generating arc of the par-
ticle in a meridian plane (from θ = 0 to θ = π) would require the solution of the
entire infinite array of unknown constants Bn and Dn. However, the multipole col-
location method [Ganatos, Weinbaum, and Pfeffer (1980); Keh and Tseng (1994)]
enforces the boundary condition at a finite number of discrete points on the gen-
erating arc of the sphere and truncates the infinite series in Eqs. (4), (6), and (7)
into finite ones. If the spherical boundary is approximated by satisfying the con-
dition of Eq. (7) at N discrete points on its generating arc, then the infinite series
are truncated after N terms, resulting in a system of 2N simultaneous linear al-
gebraic equations in the truncated form of Eq. (7). This matrix equation can be
solved by any matrix-reduction technique to yield the 2N unknown constants Bn

and Dn required in the truncated form of Eq. (4) for the fluid velocity field. The
hydrodynamic drag force acting on the particle can be obtained from Eq. (9) once
these coefficients are solved for a sufficiently large value of N. The accuracy of
the boundary-collocation/truncation technique can be improved to any degree by
taking a sufficiently large value of N. In principle, the truncation error vanishes as
N→ ∞.

When selecting the points along the half-circular generating arc of the sphere where
the boundary condition (7) is exactly satisfied, the first point that should be chosen
is θ = π/2, since this point defines the projected area of the particle normal to
the direction of motion. In addition, the points θ = 0 and θ = π , which control
the gaps between the particle and the plane walls, are also important. However,
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an examination of the system of linear algebraic Eq. (7) shows that the coefficient
matrix becomes singular if these points are used. To overcome the difficulty of
singularity and to preserve the geometric symmetry of the particle surface about the
equatorial plane θ = π/2, points at θ = α , π/2−α , π/2+α , and π−α are taken to
be four basic collocation points. Additional points along the boundary are selected
as mirror-image pairs about the plane θ = π/2 to divide the θ coordinate into
equal parts. The range of optimum values of α has been found to be quite broad,
and here we use 0.01◦, with which the numerical results of the hydrodynamic drag
force exerted on the particle can converge to at least five significant figures. In
principle, as long as the number of the collocation points is sufficiently large and
the distribution of the collocation points is adequate, the solution of the drag force
will converge and the shape of the particle can be well approximated.

A number of numerical solutions of the dimensionless drag force −F/6πηbU for
the motion of a sphere normal to two plane walls are presented in Table 1 for various
values of the parameters b/c, c/(c+d), and η/βb using the boundary collocation
technique [where c/(c + d) = 0 represents the case of a single plane wall]. All of
the results were obtained by increasing the number of collocation points N until the
convergence of at least five significant digits is achieved. To achieve this conver-
gence, the larger value of N is required as the particle is situated closer to the plane
walls. The numerical solutions for −F/6πηbU obtained previously [Chang and
Keh (2006)] are also listed (in parentheses) in Table 1 for comparison. It can be
seen that the present results from the collocation method agree excellently with the
previous results for the desired accuracy and the rate of convergence is quite rapid.

4 Axisymmetric motion of a prolate particle normal to two plane walls

In this section, we consider the translational motion of a general prolate axisym-
metric particle along its axis of revolution perpendicular to two plane walls. A
segment between points A(ρ = 0,z =−c1) and B(ρ = 0,z = c2) is taken along the
axis of revolution within the particle on which a set of spherical singularities are
distributed (c1 and c2 are positive constants). If the nose and tail of the particle
are round, then their centers of curvature can be chosen as A and B. The general
solution of the fluid velocity can be constructed by the superposition of the spheri-
cal singularities distributed on the segment AB, and Eq. (4) is used to result in the
integral form[

vρ

vz

]
=

∞

∑
n=2

∫ c2

−c1

{Bn(t)
[

A1n(ρ,z, t)
C1n(ρ,z, t)

]
+Dn(t)

[
A2n(ρ,z, t)
C2n(ρ,z, t)

]
}dt. (10)

The corresponding integral expressions for the components of the viscous stress
tensor can be obtained accordingly using Eq. (6). Equation (10) provides an exact
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solution to Eq. (2) that satisfies Eqs. (3b) and (3c), and the unknown density distri-
bution functions for the singularities, Bn(t) and Dn(t), must be determined from the
remaining boundary condition (5) using the multipole collocation technique. From
Eqs. (9) and (10), the drag force acting on the prolate particle by the fluid can be
expressed as

F = 4πη

∫ c2

−c1

D2(t)dt. (11)

In order to use the multipole collocation technique to satisfy the boundary condition
at the particle surface, the integration encountered in Eqs. (10) and (11) must be
treated numerically. Here, we use the M-point Gauss-Legendre quadrature formula
[Hornbeck (1975)]∫ c2

−c1

f (q)dq =
1
2
(c1 + c2)

M

∑
m=1

wm f (qm), (12)

where f (q) is any function of q, qm are the quadrature zeros, and wm are the corre-
sponding quadrature weights.

Applying Eq. (12) to Eq. (10) and truncating the infinite series after N terms, we
obtain[

vρ

vz

]
=

N+1

∑
n=2

M

∑
m=1
{Bnm

[
A1n(ρ,z,qm)
C1n(ρ,z,qm)

]
+Dnm

[
A2n(ρ,z,qm)
C2n(ρ,z,qm)

]
}, (13)

where Bnm and Dnm are the unknown density constants. Accordingly, the corre-
sponding stress components are expressed using Eq. (6) asτρρ

τzz

τρz

= η

N+1

∑
n=2

M

∑
m=1
{Bnm

α1n(ρ,z,qm)
β1n(ρ,z,qm)
γ1n(ρ,z,qm)

+Dnm

α2n(ρ,z,qm)
β2n(ρ,z,qm)
γ2n(ρ,z,qm)

}. (14)

Application of the boundary condition (5) to Eqs. (13) and (14) yields

N+1

∑
n=2

M

∑
m=1
{Bnm

[
A∗1n(ρ,z,qm)
C∗1n(ρ,z,qm)

]
+Dnm

[
A∗2n(ρ,z,qm)
C∗2n(ρ,z,qm)

]
}=

[
0
U

]
on Sp, (15)

where the functions A∗in and C∗in with i = 1 and 2 are given by Eq. (8). The multi-
pole collocation method allows the boundary of the particle to be approximated by
satisfying Eq. (15) at MN discrete values of z or θ (with a constant φ ) on its surface
and results in a set of 2MN simultaneous linear algebraic equations, which can be
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Table 1: The dimensionless drag force experienced by a spherical particle normal to
a single plane wall [c/(c+d) = 0] and to two parallel plane walls [c/(c+d) = 1/4
and 1/2]

c
c+d

η

βb
−F/6πηbU
N b/c = 0.1 N b/c = 0.5 N b/c = 0.9 N b/c = 0.99

0 0 6 1.12619 10 2.12554 28 10.44054 102 100.8942
10 1.12619 14 2.12554 32 10.44054 106 100.8942

(1.12619) (2.12554) (10.44054) (100.8942)

0 1 4 0.81902 8 1.28939 22 4.05024 94 27.78722
8 0.81902 12 1.28939 26 4.05024 98 27.78722

(0.81902) (1.28939) (4.05024) (27.78722)

0 ∞ 4 0.72073 10 1.08255 28 3.42001 94 26.38005
8 0.72073 14 1.08255 32 3.42001 98 26.38005

(0.72073) (1.08255) (3.42001) (26.38003)

1/4 0 4 1.12812 8 2.15071 28 10.54051 98 101.0228
8 1.12812 12 2.15071 32 10.54051 102 101.0228

(1.12811) (2.15071) (10.54051) (101.0227)

1/4 1 4 0.82004 8 1.29996 26 4.08700 98 27.83362
8 0.82004 12 1.29996 30 4.08700 102 27.83362

(0.82004) (1.29997) (4.08700) (27.83362)

1/4 ∞ 4 0.72152 8 1.09012 24 3.44539 94 26.41202
8 0.72152 12 1.09012 28 3.44539 98 26.41202

(0.72151) (1.09012) (3.44539) (26.41199)

1/2 0 4 1.16873 10 2.78920 30 19.00391 104 199.8130
8 1.16873 14 2.78920 34 19.00391 106 199.8130

(1.16873) (2.78920) (19.00351) (199.8128)

1/2 1 4 0.84144 10 1.56927 26 6.83825 96 54.24891
8 0.84144 14 1.56927 30 6.83825 100 54.24891

(0.84144) (1.56927) (6.83825) (54.24892)

1/2 ∞ 4 0.73809 8 1.29258 28 5.75970 98 51.62672
8 0.73809 12 1.29258 32 5.75970 102 51.62672

(0.73809) (1.29258) (5.75970) (51.62687)
*The numerical results in parentheses are obtained from Keh and Chang (2006)
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Table 2: The dimensionless drag force experienced by a prolate spheroid translating
along its axis of revolution normal to a single plane wall for various values of a/b,
a/c, and η/βb

a/b η

βb M
−F/6πηbU
N a/c = 0.1 N a/c = 0.5 N a/c = 0.9 N a/c = 0.99

1.1 0 4 2 1.13853 2 2.03710 12 8.81357 64 77.7746
3 1.13852 3 2.03720 13 8.81358 65 77.7755
4 1.13852 4 2.03720 14 8.81358 66 77.7755

1.1 1 4 2 0.81463 2 1.22706 9 3.48254 66 21.6553
3 0.81463 3 1.22709 10 3.48252 67 21.6554
4 0.81463 4 1.22709 11 3.48252 68 21.6554

1.1 ∞ 4 2 0.70063 3 1.00459 9 2.87280 68 20.3831
3 0.70064 4 1.00464 10 2.87279 69 20.3830
4 0.70064 5 1.00464 11 2.87279 70 20.3830

2 0 16 2 1.29139 2 1.83348 2 4.17750 16 17.8005
3 1.29139 3 1.83348 3 4.17750 17 17.8006
4 1.29139 4 1.83348 4 4.17750 18 17.8006

2 1 16 2 0.85317 2 1.07064 2 1.82714 17 5.49361
3 0.85317 3 1.07064 3 1.82714 18 5.49363
4 0.85317 4 1.07064 4 1.82714 19 5.49363

2 ∞ 16 2 0.58199 2 0.68459 2 1.16887 15 4.55074
3 0.58199 3 0.68459 3 1.16887 16 4.55073
4 0.58199 4 0.68459 4 1.16887 17 4.55073

5 0 20 2 1.85956 2 2.25254 2 3.23465 3 5.17486
3 1.85956 3 2.25254 3 3.23465 4 5.17500
4 1.85956 4 2.25254 4 3.23465 5 5.17500

5 1 20 2 1.20696 2 1.36204 2 1.67144 2 2.16078
3 1.20699 3 1.36208 3 1.67152 3 2.16079
4 1.20699 4 1.36208 4 1.67152 4 2.16079

5 ∞ 20 2 0.40639 2 0.42446 2 0.49084 2 0.83239
3 0.40640 3 0.42447 3 0.49090 3 0.83241
4 0.40640 4 0.42447 4 0.49090 4 0.83241
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solved numerically to yield the 2MN density constants Bnm and Dnm required in Eq.
(13) for the fluid velocity field. Once these constants are determined, the drag force
exerted by the fluid on the particle can be obtained from Eq. (11), with the result

F = 4πη

M

∑
m=1

D2m. (16)

5 Solution for the axisymmetric motion of a prolate spheroid normal to two
plane walls

The method presented in the previous section is used in this section to obtain the
solution for the translation of a slip prolate spheroid along its axis of revolution
perpendicular to one or two plane walls, as illustrated in Fig. 1. The surface of a
spheroid and the local components of its unit normal vector n in cylindrical coor-
dinates are represented by

z(ρ) =±a[1− (
ρ

b
)2]1/2 (17)

and

nρ =
(a/b)2ρ√

(a/b)4ρ2 + z2
, nz =

z√
(a/b)4ρ2 + z2

, (18)

where 0≤ ρ ≤ b. Depending on the aspect ratio of the spheroid, its shape can range
widely from a needle (with a/b→ ∞), to a sphere (with a/b = 1), and to a circular
disk (with a/b→ 0). For the case of a prolate spheroid, a and b are the major and
minor semi-axes, respectively (1 < a/b < ∞).

In Section 3, the boundary collocation solutions for the translation of a spherical
particle with a slip surface perpendicular to one or two plane walls were presented.
We now use the same collocation scheme incorporated with the method of distribu-
tion of spherical singularities to obtain the corresponding solution for the axisym-
metric motion of a slip prolate spheroid. In Tables 2, the numerical results of the
nondimensional hydrodynamic drag force−F/6πηbU for the translational motion
of a prolate spheroid along its axis of revolution perpendicular to a single plane wall
[with c/(c+d) = 0] are presented for various values of the aspect ratio a/b, spacing
parameter a/c, and slip parameter η/βb. The values of −F/6πηbU are computed
for different values of N and M in Eqs. (13)-(16) (which shows convergence tests).
To achieve good convergence behavior for the calculation of F , the larger value
of N is required when the particle is located closer to the plane wall, whereas the
larger value of M is needed when the aspect ratio of the spheroid becomes larger.
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In general, the convergence behavior of this method is quite good, except for the
extreme case that the particle is very close to the boundary (a/c > 0.99). For the
special case of a no-slip spheroid (with η/βb = 0), our results agree very well with
the previous numerical solutions obtained by Hsu and Ganatos (1989) and Keh and
Tseng (1994).

Table 3: The dimensionless drag force experienced by a prolate spheroid situated
midway between two parallel plane walls [c/(c + d) = 1/2] undergoing axisym-
metric translation normal to the walls for various values of a/b, a/c, and η/βb

a/b η

βb M
−F/6πηbU
N a/c = 0.1 N a/c = 0.5 N a/c = 0.9 N a/c = 0.99

1.1 0 4 2 1.17803 2 2.61926 11 15.7824 59 153.64
3 1.17802 3 2.61928 12 15.7828 60 153.61
4 1.17802 4 2.61928 13 15.7828 61 153.61

1.1 1 4 2 0.83478 2 1.46665 11 5.75038 67 42.041
3 0.83478 3 1.46666 12 5.75037 68 42.040
4 0.83478 4 1.46666 13 5.75037 69 42.040

1.1 ∞ 4 2 0.71554 2 1.17686 10 4.73385 66 39.7098
3 0.71555 3 1.17689 11 4.73386 67 39.7089
4 0.71555 4 1.17689 12 4.73386 68 39.7089

2 0 10 2 1.31922 2 2.13920 2 6.54384 18 33.7256
3 1.31922 3 2.13920 3 6.54401 19 33.7258
4 1.31922 4 2.13920 4 6.54401 20 33.7258

2 1 10 2 0.86527 2 1.18167 2 2.56228 19 9.8641
3 0.86527 3 1.18167 3 2.56232 20 9.8642
4 0.86527 4 1.18167 4 2.56232 21 9.8642

2 ∞ 16 2 0.58762 2 0.73592 2 1.63657 15 8.38350
3 0.58762 3 0.73593 3 1.63661 16 8.38359
4 0.58762 4 0.73593 4 1.63661 17 8.38359

5 0 20 2 1.88255 2 2.44590 2 4.17651 3 8.00550
3 1.88250 3 2.44581 3 4.17633 4 8.00575
4 1.88250 4 2.44581 4 4.17633 5 8.00575

5 1 20 3 1.21663 3 1.43266 4 1.95279 3 2.90944
4 1.21662 4 1.43265 5 1.95280 4 2.90947
5 1.21662 5 1.43265 6 1.95280 5 2.90947

5 ∞ 20 3 0.40752 3 0.43271 3 0.55322 3 1.23327
4 0.40749 4 0.43269 4 0.55318 4 1.23330
5 0.40749 5 0.43269 5 0.55318 5 1.23330
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Table 4: The dimensionless drag force experienced by an oblate spheroid translat-
ing along its axis of revolution normal to a single plane wall for various values of
a/b, a/c, and η/βb

a/b η

βb M
−F/6πηbU
N a/c = 0.1 N a/c = 0.5 N a/c = 0.9 N a/c = 0.99

0.8 0 4 5 1.11717 5 2.55131 7 16.2982 64 188.40
6 1.10941 6 2.42886 8 16.2983 65 188.43
7 1.10941 7 2.42886 9 16.2983 66 188.43

0.8 1 4 5 0.83983 5 1.48707 8 6.03731 68 50.83
6 0.83933 6 1.49614 9 6.03732 69 50.80
7 0.83933 7 1.49614 10 6.03732 70 50.80

0.8 ∞ 4 5 0.77065 5 1.21710 4 5.31456 65 48.924
6 0.77032 6 1.31601 5 5.31440 66 48.922
7 0.77032 7 1.31601 6 5.31440 67 48.922

0.5 0 10 4 1.31121 4 3.85184 5 49.7826 30 734.12
5 1.13142 5 3.85167 6 49.7747 31 734.13
6 1.13142 6 3.85167 7 49.7747 32 734.13

0.5 1 10 5 0.92768 5 2.39123 5 16.6165 36 191.841
6 0.92767 6 2.39125 6 16.6168 37 191.839
7 0.92767 7 2.39125 7 16.6168 38 191.839

0.5 ∞ 10 5 0.89872 5 2.22083 5 15.3669 27 187.825
6 0.89509 6 2.22108 6 15.3676 28 187.828
7 0.89509 7 2.22108 7 15.3676 29 187.828

0.2 0 30 5 1.51767 5 20.2430 5 634.589 5 11164.0
6 1.52201 6 20.2484 6 634.439 6 11143.8
7 1.52201 7 20.2484 7 634.439 7 11143.8

0.2 1 30 5 1.38205 5 10.5579 5 180.305 5 2830.08
6 1.38201 6 10.5609 6 180.338 6 2830.32
7 1.38201 7 10.5609 7 180.338 7 2830.32

0.2 ∞ 30 5 1.37101 7 10.0428 5 173.948 5 2809.22
6 1.37103 8 10.0429 6 173.913 6 2807.15
7 1.37103 9 10.0429 7 173.913 7 2807.15

Some collocation solutions for the dimensionless drag force −F/6πηbU are pre-
sented in Table 3 for the translation of a prolate spheroid along its axis of revolution
perpendicular to two equally distant plane walls [with c/(c+d) = 1/2] for various
values of a/b, a/c, and η/βb. Analogous to Table 2 for the situation of the cor-
responding motion of a spheroid normal to a single plane wall, Table 3 indicates
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that the boundary-corrected hydrodynamic drag force (or viscous retardation) on
the spheroid increases monotonically with an increase in a/c for fixed values of
a/b and η/βb and with a decrease in η/βb for given values of a/b and a/c. This
outcome is also true for a general case with any given value of c/(c+d) other than
0 and 1/2, whose results are not presented here but can also be obtained accurately.

Table 5: The dimensionless drag force experienced by an oblate spheroid situated
midway between two parallel plane walls [c/(c + d) = 1/2] undergoing axisym-
metric translation normal to the walls for various values of a/b, a/c, and η/βb

a/b η

βb M
−F/6πηbU
N a/c = 0.1 N a/c = 0.5 N a/c = 0.9 N a/c = 0.99

0.8 0 6 2 1.16102 2 3.35932 4 30.6078 68 374.98
3 1.16102 3 3.35932 5 30.6079 69 374.76
4 1.16102 4 3.35932 6 30.6079 70 374.76

0.8 1 6 2 0.86877 2 1.91081 3 10.6635 65 100.0
3 0.86877 3 1.91082 4 10.6636 66 100.1
4 0.86877 4 1.91082 5 10.6636 67 100.1

0.8 ∞ 6 2 0.79512 2 1.65240 3 9.35769 66 96.45
3 0.79512 3 1.65241 4 9.35770 67 96.49
4 0.79512 4 1.65241 5 9.35770 68 96.49

0.5 0 10 2 1.21662 2 6.02240 2 97.1386 17 1471.3
3 1.21662 3 6.02247 3 97.1321 18 1465.6
4 1.21662 4 6.02247 4 97.1321 19 1465.6

0.5 1 10 2 0.98478 2 3.44374 3 31.2923 30 381.57
3 0.98478 3 3.44374 4 31.2924 31 381.58
4 0.98478 4 3.44374 5 31.2924 32 381.58

0.5 ∞ 10 2 0.94820 2 3.15632 3 28.8703 35 373.635
3 0.94821 3 3.15658 4 28.8705 36 373.636
4 0.94821 4 3.15658 5 28.8705 37 373.636

0.2 0 30 3 1.74625 4 37.9093 4 1333.24 4 22263.9
4 1.85259 5 37.9087 5 1264.42 5 22282.7
5 1.85259 6 37.9087 6 1264.42 6 22282.7

0.2 1 30 4 1.65597 4 18.8196 4 356.277 5 5655.88
5 1.65598 5 18.8198 5 356.486 6 5655.89
6 1.65598 6 18.8198 6 356.486 7 5655.89

0.2 ∞ 30 4 1.64040 4 17.7996 4 345.743 4 5607.62
5 1.64041 5 17.8000 5 343.649 5 5609.55
6 1.64041 6 17.8000 6 343.649 6 5609.55
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Figure 2: Plots of the normalized drag force F/F0 for the translation of a pro-
late spheroid with a/b = 2 along its axis of revolution perpendicular to a single
plane wall [c/(c + d)→ 0, dashed curves] and to two equally distant plane walls
[c/(c+d) = 1/2, solid curves] versus the separation parameter a/c for various slip
parameter η/βb.

The hydrodynamic drag force F exerted on a prolate spheroid with aspect ratio
a/b = 2 translating along its axis of revolution perpendicular to a single plane wall
[with c/(c+d) = 0] and to two equally distant plane walls [with c/(c+d) = 1/2]
normalized by the corresponding drag force F0 acting on the prolate spheroid when
the walls are not present (as a/c→ ∞) as functions of the spacing parameter a/c
for various values of η/βb is plotted in Fig. 2. For a spheroid with given values of
a/b (cases other than a/b = 2 are not displayed here for conciseness) and η/βb,
the value of F/F0 increases monotonically with an increase in the ratio a/c from
F/F0 = 1 at a/c = 0 to F/F0 → ∞ as a/c→ 1. In general, the normalized wall-
corrected drag force on the spheroid decreases with an increase in η/βb, keeping
a/b and a/c unchanged. It can be seen that the drag force on the spheroid can be
large when a/c is close to unity and η/βb is small.

Figures 3a and 3b show the collocation results for the normalized hydrodynamic
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Figure 3: Plots of the normalized drag force F/F0 for the translation of a pro-
late spheroid with a/b = 2 along its axis of revolution perpendicular to two plane
walls versus the ratio c/(c+d) with a/c and 2a/(c+d) as parameters: (a) no-slip
spheroid (η/βb = 0); (b) perfect-slip spheroid (η/βb→ ∞).

drag force F/F0 exerted on a prolate spheroid (a/b = 2) with no-slip condition
(η/βb = 0) and perfect-slip condition (η/βb→ ∞), respectively, on its surface
translating perpendicular to two plane walls at various positions between them.
The dashed curves (with a/c =constant) illustrate the effect of the position of the
second wall (at z = d, where d ≥ c) on the drag force for various values of the
relative sphere-to-wall spacing c/a. Evidently, the approach of a second wall will
enhance the hydrodynamic drag experienced by the spheroid in the vicinity of the
first wall. In general, for an arbitrary combination of parameters a/c and η/βb,
the assumption that the results for two walls can be obtained by simple addition of
the single-wall effects overestimates the correction to the hydrodynamic drag on a
spheroid. The solid curves [with 2a/(c + d) =constant] indicate the variation of
the drag as a function of the particle position at various values of the relative wall-
to-wall spacing (c + d)/2a. At a constant value of 2a/(c + d), analogous to the
corresponding case of a spherical particle [Chang and Keh (2006)], the no-slip or
perfect-slip spheroid (or a spheroid with a finite value of η/βb, whose result is not
exhibited here) experiences a minimum drag when it is located midway between
the two plane walls (with d = c), and the drag force increases monotonically as the
particle approaches either of the walls.

The normalized drag force F/F0 for the translation of a prolate spheroid situated
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Figure 4: Plots of the normalized drag force F/F0 for the translation of a prolate
spheroid situated midway between two parallel plane walls (d = c) perpendicular
to the walls versus the inverse aspect ratio (a/b)−1 for different values of the sepa-
ration parameter a/c. The solid and dashed curves represent the cases with no slip
(η/βb = 0) and perfect slip (η/βb→ ∞), respectively.

midway between two parallel plane walls [with c/(c + d) = 1/2] perpendicular
to the walls as a function of its aspect ratio a/b for various values of the spacing
parameter a/c is plotted in Fig. 4. The solid and dashed curves represent the cases
of translation of a no-slip spheroid (with η/βb = 0) and of a perfect-slip spheroid
(with η/βb→ ∞), respectively. It can be seen that, due to the decrease of the
effective particle-boundary interaction area that offers hydrodynamic resistance to
the motion of the spheroid, F/F0 decreases monotonically with an increase in a/b
for given values of a/c and η/βb. For fixed values of a/b and a/c, as expected,
a no-slip spheroid experiences more hydrodynamic drag than a slip spheroid does.
Again, F/F0 is a monotonically increasing function of a/c for specified values of
a/b and η/βb.
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6 Axisymmetric motion of an oblate particle normal to two plane walls

The translational motion of a slip axisymmetric prolate particle along its axis of
revolution perpendicular to two infinite plane walls was considered in Section 4 and
a set of spherical singularities must be distributed on a segment along the axis of
revolution within the particle. In this section we consider the corresponding motion
of a slip oblate particle and the spherical singularities should be distributed on the
fundamental plane inside the particle. Since the oblate particle and the fluid motion
are axisymmetric, the fundamental plane should be a circular disk Sd normal to the
z-axis and with its center coinciding with the center of the particle (at the origin of
the coordinate frame).

Let Q be an arbitrary point on Sd which is expressed with the cylindrical coordinates
ρ = ρ̂ , φ = φ̂ , and z = 0. Then the velocity disturbance at another point P(ρ = ρ ,
φ = 0, z = z) generated by the spherical singularity at Q can be obtained using Eq.
(4),

v̂ρ =
ρ− ρ̂ cos φ̂

ρ∗

∞

∑
n=2

[BnA1n(ρ∗,z,0)+DnA2n(ρ∗,z,0)], (19a)

v̂φ =
ρ̂ sin φ̂

ρ∗

∞

∑
n=2

[BnA1n(ρ∗,z,0)+DnA2n(ρ∗,z,0)], (19b)

v̂z =
∞

∑
n=2

[BnC1n(ρ∗,z,0)+DnC2n(ρ∗,z,0)], (19c)

where ρ∗ is the distance from point Q to the projection of point P on the plane
z = 0,

ρ
∗ = (ρ2 + ρ̂

2−2ρρ̂ cos φ̂)1/2. (20)

The total disturbance of the flow field produced by the oblate particle can be ap-
proximated by the superposition of the individual disturbances in Eq. (19) induced
by the whole set of singularities on the fundamental disk Sd . Thus, at an arbitrary
location in the fluid, we have the velocity components in integral form as

vρ =
∞

∑
n=2

∫ 2π

0

∫ R

0

ρ− ρ̂ cos φ̂

ρ∗
[Bn(ρ̂)A1n(ρ∗,z,0)+Dn(ρ̂)A2n(ρ∗,z,0)]ρ̂ dρ̂ dφ̂ ,

(21a)

vz =
∞

∑
n=2

∫ 2π

0

∫ R

0
[Bn(ρ̂)C1n(ρ∗,z,0)+Dn(ρ̂)C2n(ρ∗,z,0)]ρ̂ dρ̂ dφ̂ , (21b)
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where vφ = 0 and the unknown density distribution coefficients Bn and Dn are taken
to be functions of ρ̂ only due to the axial symmetry of the fluid motion, and R is
the radius of the disk Sd . Eq. (21) provides an exact solution for Eq. (2) that
satisfies Eqs. (3b) and (3c), and the unknown density distribution functions Bn(ρ̂)
and Dn(ρ̂) must be determined from the remaining boundary condition (3a) or (5)
using the multipole collocation method. In Eq. (5), the stress components can be
calculated from Eq. (21) and expressed as

τρρ = η

∞

∑
n=2

∫ 2π

0

∫ R

0
{2ρ̂2 sin2

φ̂

(ρ∗)3 [Bn(ρ̂)A1n(ρ∗,z,0)+Dn(ρ̂)A2n(ρ∗,z,0)]

+(
ρ− ρ̂ cos φ̂

ρ∗
)2[Bn(ρ̂)α1n(ρ∗,z,0)+Dn(ρ̂)α2n(ρ∗,z,0)]}ρ̂ dρ̂ dφ̂ , (22a)

τzz = η

∞

∑
n=2

∫ 2π

0

∫ R

0
[Bn(ρ̂)β1n(ρ∗,z,0)+Dn(ρ̂)β2n(ρ∗,z,0)]ρ̂ dρ̂ dφ̂ , (22b)

τρz = η

∞

∑
n=2

∫ 2π

0

∫ R

0

ρ− ρ̂ cos φ̂

ρ∗
[Bn(ρ̂)γ1n(ρ∗,z,0)+Dn(ρ̂)γ2n(ρ∗,z,0)]ρ̂ dρ̂ dφ̂ .

(22c)

From Eqs. (9) and (21), the drag force exerted by the fluid on the oblate particle is
obtained by

F = 8π
2
η

∫ R

0
D2(ρ̂)ρ̂dρ̂. (23)

Similar to the case of the motion of a prolate particle examined in Section 4, the
integrations in Eqs. (21) and (22) with respect to ρ̂ can be approximated by the M-
point Gauss-Legendre quadrature formula, as shown in Eq. (12), and each infinite
series is truncated after N terms. Therefore, Eqs. (21) and (22) become[

vρ

vz

]
=

N+1

∑
n=2

M

∑
m=1
{Bnm

[
A1nm(ρ,z,0)
C1nm(ρ,z,0)

]
+Dnm

[
A2nm(ρ,z,0)
C2nm(ρ,z,0)

]
}, (24a)

τρρ

τzz

τρz

= η

N+1

∑
n=2

M

∑
m=1
{Bnm

α1nm(ρ,z,0)
β1nm(ρ,z,0)
γ1nm(ρ,z,0)

+Dnm

α2nm(ρ,z,0)
β2nm(ρ,z,0)
γ2nm(ρ,z,0)

}, (24b)

where the functions Ainm, Cinm, αinm, βinm, and γinm with i = 1 and 2 are defined by
Eqs. (A18) and (A19), and Bnm and Dnm are the unknown density constants.
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Application of the boundary condition (5) to Eqs. (24) and (25) yields

N+1

∑
n=2

M

∑
m=1
{Bnm

[
A∗1nm(ρ,z,0)
C∗1nm(ρ,z,0)

]
+Dnm

[
A∗2nm(ρ,z,0)
C∗2nm(ρ,z,0)

]
}=

[
0
U

]
on Sp, (25)

where A∗inm and C∗inm with i = 1 and 2 are given by Eq. (8) with the subscript n
of its functions being replaced by nm. Thus, the collocation technique described
in Section 4 can be used to satisfy the boundary condition (26) and to determine
the 2MN density constants Bnm and Dnm required for the fluid velocity field. Once
these constants are determined, the drag force acting on the particle by the fluid can
be obtained from Eq. (23), with the result

F = 8π
2
η

M

∑
m=1

D2m. (26)

7 Solution for the axisymmetric motion of an oblate spheroid normal to two
plane walls

The numerical solutions of the hydrodynamic drag force experienced by a prolate
spheroid translating along its axis of revolution perpendicular to one or two plane
walls were presented in Section 5. In this section the similar singularity method
and collocation technique described in the previous section will be used to solve
the corresponding motion of an oblate spheroid. The surface of the oblate spheroid
and the local components of its unit normal vector n can still be represented by
Eqs. (17) and (18), but now with 0 < a/b < 1. The numerical results of the nondi-
mensional hydrodynamic drag force −F/6πηbU for the translation of an oblate
spheroid along its axis of revolution perpendicular to a single plane wall [with
c/(c + d) = 0] and to two equally distant plane walls [with c/(c + d) = 1/2] are
presented in Tables 4 and 5, respectively, for various values of the aspect ratio a/b,
spacing parameter a/c, and slip parameter η/βb. The values of −F/6πηbU are
computed for different values of N and M in Eqs. (24)-(27) (which shows conver-
gence tests). To achieve good convergence behavior for the calculation of F , the
larger value of N is in general required when the particle is located closer to the
plane wall, whereas the larger value of M is needed when the axial-to-radial aspect
ratio a/b of the oblate spheroid becomes smaller. For the special case of a no-slip
spheroid (with η/βb = 0) translating along its axis of revolution normal to a single
plane wall, the agreement between our results and the previous numerical solu-
tions obtained by Hsu and Ganatos (1989) and Keh and Tseng (1994) is excellent.
Analogous to Tables 2 and 3 for the corresponding motion of a prolate spheroid per-
pendicular to two plane walls, Tables 4 and 5 indicate that −F/6πηbU increases
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monotonically with an increase in a/c for specific values of a/b, c/(c + d), and
η/βb and with a decrease in η/βb for constant values of a/b, c/(c+d), and a/c.

The hydrodynamic drag force F experienced by an oblate spheroid with aspect ratio
a/b = 1/2 translating along its axis of revolution perpendicular to a single plane
wall and to two equally distant plane walls normalized by the corresponding drag
force F0 acting on an unbounded oblate spheroid (with a/c→ ∞) as functions of
a/c for various values of η/βb is plotted in Fig. 5. Analogous to the case of a
prolate spheroid discussed in Section 5, for an oblate spheroid with given aspect
ratio (cases other than a/b = 1/2 are not illustrated here for conciseness), the value
of F/F0 increases monotonically with an increase in a/c and in general decreases
with an increase in η/βb, keeping the other parameters unchanged. It can be seen
that the drag force exerted on the oblate spheroid can be very large when a/c is
close to unity, especially as the value of η/βb is small. Again, F/F0 = 1 as a/c = 0
and F/F0→ ∞ as a/c→ 1.

The collocation results for the normalized hydrodynamic drag force F/F0 acting on
an oblate spheroid (a/b = 1/2) with no-slip condition (η/βb = 0) and perfect-slip
condition (η/βb→ ∞) on its surface moving perpendicular to two plane walls at
various positions between them are plotted in Fig. 6. Again, at a constant value
of 2a/(c + d), the no-slip or perfect-slip particle (or a particle with a finite value
of η/βb, whose results are not displayed here) experiences a minimum drag when
it is located midway between the two plane walls (with d = c), and the drag force
increases monotonically as the particle approaches either of the walls.

In Fig. 7, the normalized drag force F/F0 for the axisymmetric translation of an
oblate spheroid situated midway between two parallel plane walls (with d = c) as
a function of the aspect ratio a/b for different values of the spacing parameter a/c
is plotted. The solid and dashed curves denote the cases of translation of a no-slip
spheroid (with η/βb = 0) and of a perfect-slip spheroid (with η/βb→∞), respec-
tively. Similarly to the boundary effects on the motion of a prolate spheroid, F/F0
for a confined oblate spheroid increases monotonically as the ratio a/b decreases
or a/c increases, keeping other factors fixed. Again, a no-slip spheroid experiences
more hydrodynamic drag than a slip spheroid does for specified values of a/b and
a/c.

8 Concluding remarks

In this article, the creeping motion caused by the translation of a general axisym-
metric particle with a slip surface in a viscous fluid along its axis of revolution per-
pendicular to one or two plane walls has been examined by the use of the method
of internal singularity distributions combined with the boundary collocation tech-
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Figure 5: Plots of the normalized drag force F/F0 for the translation of an oblate
spheroid with a/b = 1/2 along its axis of revolution perpendicular to a single
plane wall [c/(c + d)→ 0, dashed curves] and to two equally distant plane walls
[c/(c+d) = 1/2, solid curves] versus the separation parameter a/c for various slip
parameter η/βb.

nique. For the case of the axisymmetric motion of a prolate particle, a truncated set
of spherical singularities is distributed along the axis within the particle, whereas
for the case of an oblate particle, the spherical singularities are placed on the fun-
damental disk of the particle. The numerical results for the drag force acting on
the particle by the fluid indicate that the solution procedure converges rapidly and
accurate solutions can be obtained for various cases of the particle shape, slippage,
and separation from the walls. Although the numerical solutions were presented in
the previous sections only for the translation of a sphere, a prolate spheroid, and
an oblate spheroid, the combined analytical and numerical method utilized in this
work can easily provide the hydrodynamic calculations for the motion of an axially
symmetric particle of other shapes, such as a prolate or oblate Cassini oval [Keh
and Tseng (1994)].

In Tables 1-5 and Figs. 2-7, we presented only the results for the resistance prob-
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Fig. 6b.  
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Figure 6: Plots of the normalized drag force F/F0 for the translation of an oblate
spheroid with a/b = 1/2 along its axis of revolution perpendicular to two plane
walls versus the ratio c/(c+d) with a/c and 2a/(c+d) as parameters: (a) no-slip
spheroid (η/βb = 0); (b) perfect-slip spheroid (η/βb→ ∞).

lems, defined as those in which the drag force F exerted by the surrounding fluid
on the translating particle is to be determined for a specified particle velocity U . In
a mobility problem, on the other hand, the external force F imposed on the particle
is specified and the particle velocity U is to be determined. It is worth to note that
our results can also be used for those physical problems in which the applied force
on the particle is the prescribed quantity and the particle must move accordingly.

Acknowledgement: Part of this research was supported by the National Science
Council of the Republic of China.

Appendix A: Definitions of functions in Sections 2 and 6

For conciseness the definitions of some functions in Sections 2 and 6 are listed in
this appendix. The functions appearing in Eqs. (4) and (6) in Section 2 are defined
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Figure 7: Plots of the normalized drag force F/F0 for the translation of an oblate
spheroid situated midway between two parallel plane walls (d = c) perpendicular to
the walls versus the aspect ratio a/b for different values of the separation parameter
a/c. The solid and dashed curves represent the cases with no slip (η/βb = 0) and
perfect slip (η/βb→ ∞), respectively.

as

Ain(ρ,z,h) =

−
∞∫

0

Ein(ω,z,h)J1(ωρ)dω−ρ
−1r−n+2i−2

h [(n+1)G−1/2
n+1 (ξ )−2(i−1)ξ G−1/2

n (ξ )],

(A1)

Cin(ρ,z,h) =−
∞∫

0

Fin(ω,z,h)J0(ωρ)dω− r−n+2i−3
h [Pn(ξ )+2(i−1)G−1/2

n (ξ )];

(A2)
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αin(ρ,z,h) =−
∞∫

0

Ein(ω,z,h)[J0(ωρ)− J2(ωρ)]ωdω

−2ρ
−2r−n+2i−4

h {(n+1)[(−n+2i−2)ρ2− r2
h]G
−1/2
n+1 (ξ )+(n+1)ρ2

ξ Pn(ξ )

+2(i−1)[r2
h +(n−2i+3)ρ2]ξ G−1/2

n (ξ )−2(i−1)ρ2
ξ

2Pn−1(ξ )}, (A3)

βin(ρ,z,h) =−2
∞∫

0

Hin(ω,z,h)J0(ωρ)dω−2r−n+2i−4
h {(−2n+2i−3)ξ Pn(ξ )

+nPn−1(ξ )+2(i−1)[(−n+2i−3)ξ G−1/2
n (ξ )− (1−ξ

2)Pn−1(ξ )]}, (A4)

γin(ρ,z,h) =−
∞∫

0

[Tin(ω,z,h)−Fin(ω,z,h)ω]J1(ωρ)dω

−ρ
−1r−n+2i−5

h {(n+1)(−n+2i−2)r2
hξ G−1/2

n+1 (ξ )+ [2(−n+ i−2)ρ2 +nz2
h]Pn(ξ )

−nr2
hξ Pn−1(ξ )+2(i−1)[{(−n+2i−3)(ρ2−z2

h)−r2
h}G

−1/2
n (ξ )+2ρ

2
ξ Pn−1(ξ )]},

(A5)

where i equals 1 or 2,
Ein(ω,z,h)
Fin(ω,z,h)
Tin(ω,z,h)
Hin(ω,z,h)

= ω{


G′′+(σ ,η)
−G′−(σ ,η)
G∗∗+ (σ ,η)
−G∗−(σ ,η)

B′in(ω,−c−h)+


−G′′+(η ,σ)
G′−(η ,σ)
−G∗∗+ (η ,σ)
G∗−(η ,σ)

B′in(ω,d−h)

+


−G′+(σ ,η)
G′′−(σ ,η)
−G∗+(σ ,η)
G∗∗− (σ ,η)

B′′in(ω,−c−h)+


G′+(η ,σ)
−G′′−(η ,σ)
G∗+(η ,σ)
−G∗∗− (η ,σ)

B′′in(ω,d−h)}; (A6)

B′1n(ω,z) =− 1
n !

(
ω |z|

z
)n−1e−ω|z|, (A7)

B′′1n(ω,z) =−ωn−1

n !
(
|z|
z

)ne−ω|z|, (A8)

B′2n(ω,z) =− 1
n !

(
ω |z|

z
)n−3[(2n−3)ω |z|−n(n−2)]e−ω|z|, (A9)

B′′2n(ω,z) =−ωn−3

n !
(
|z|
z

)n[(2n−3)ω |z|− (n−1)(n−3)]e−ω|z|; (A10)



Slow Motion of a General Axisymmetric Slip Particle 251

G′±(µ,v) = τ
∗
µv(µ

′± τ
′v′), (A11)

G′′±(µ,v) = τ
∗[v(cosh µ− τ

′v′)±µ(µ
′− τ

′ coshv)], (A12)

G∗±(µ,v) = τ
∗
ω[sinh µ + vcosh µ± τ

′(sinhv+ µ coshv)], (A13)

G∗∗± (µ,v) = τ
∗
ω{cosh µ + vsinh µ− τ

′ coshv± [cosh µ− τ
′(coshv+ µ sinhv)]};

(A14)

µ
′ =

sinh µ

µ
, v′ =

sinhv
v

, τ
′ =

sinhτ

τ
, τ
∗ =

τ

sinh2
τ− τ2

, (A15)

σ = ω(z+ c), η = ω(z−d), τ = ω(c+d), (A16)

rh = (ρ2 + z2
h)

1/2, zh = z−h, ξ = zh/rh, (A17)

Jn is the Bessel function of the first kind of order n, G−1/2
n is the Gegenbauer poly-

nomial of the first kind of order n and degree –1/2, and Pn is the Legendre polyno-
mial of order n.

The following are the definitions of some functions used in Eqs. (24) and (25) in
Section 6:[

Ainm(ρ,z,h)
Cinm(ρ,z,h)

]
=
∫ 2π

0

[
ρ−qm cos φ̂

ρ∗m
Ain(ρ∗m,z,h)

Cin(ρ∗m,z,h)

]
dφ̂ , (A18)

αinm(ρ,z,h)
βinm(ρ,z,h)
γinm(ρ,z,h)

=
∫ 2π

0


2q2

m sin2
φ̂

(ρ∗m)3 Ain(ρ∗m,z,h)+(ρ−qm cos φ̂

ρ∗m
)2αin(ρ∗m,z,h)

βin(ρ∗m,z,h)
ρ−qm cos φ̂

ρ∗m
γin(ρ∗m,z,h)

dφ̂ ,

(A19)

where ρ∗m = (ρ2 +q2
m−2qmρ cos φ̂)1/2, and qm are the quadrature zeros referred to

Eq. (12). The integrations in Eqs. (A18) and (A19) can be performed numerically
after the substitution of Eqs. (A1)-(A5).
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