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Approximate Solution of an Inverse Problem for a
Non-Stationary General Kinetic Equation
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Abstract: We investigate the solvability of an inverse problem for the non-stationary
general kinetic equation. We also obtained the approximate solution of this problem
by using symbolic computation. A comparison between the approximate solution
and the exact solution of the problem is presented.
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1 Introduction

The problem of determining coefficients, the right-hand side, initial conditions or
boundary conditions of a differential equation from some additional information
about a solution of the equation is called inverse problem, [Lavrent’ev (1967),
Tikhonov and Arsenin (1979), Anikonov (2001), Amirov (2001)]. Such problems
arise in many applications such as medical imaging, exploration geophysics and
non-destructive evaluation where measurements made in the exterior of a body are
used to deduce properties of the hidden interior [Ling and Atluri (2006), Huang
and Shih (2007), Ling and Takeuchi (2008), Beilina and Klibanov (2008)]. Kinetic
equations describe the continuity of motion of substance and are the basic equations
of mathematical physics and naturel science. They can be used for quantitative and
qualitative description of physical, chemical, biological, social and other processes.
In this study, we consider an inverse problem for a non-stationary general kinetic
equation. The physical interpretation of such problems consists in finding forces
of particle interaction, scattering indicatrices, radiation sources and other physical
parameters.

Let Ω be a domain in the Euclidean space R2n+1, (n≥ 1). For the variables
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(x,v, t) ∈ Ω, it is assumed that x ∈ D, v ∈ G, t ∈ (0,T ), where D and G are do-
mains in Rn with boundaries of class C3.

We deal with the following kinetic equation in Ω:

Lu≡ ∂u
∂ t

+
n

∑
i=1

(
vi

∂u
∂xi

+ fi
∂u
∂vi

)
+
∫

G
K
(
x,v,v′

)
u
(
x,v′, t

)
dv′ = ρ (x, t) , (1)

which typically models the density of particles u(x,v, t) in the space of positions x
and velocities v as a function of time t. In (1), ρ (x, t) is an unknown source func-
tion, K (x,v,v′) is called scattering kernel which indicates the amount of particles
scattering from a direction v into a direction v′ at position x, f = ( f1, ..., fn) is the
force acting on a particle.

Problem 1 Determine the functions u(x,v, t) and ρ (x, t) defined in Ω from equa-
tion (1), provided that K (x,v,v′) , f = ( f1, ..., fn) are given and the trace of u(x,v, t)
is known on the boundary.

In this paper the solvability of Problem 1 is investigated. For this aim, uniqueness,
existence and stability conditions for the solution of the problem are formulated.
Approximate solution of the problem is computed by using a symbolic computation
technique based on the Galerkin method.

Problem 1 is an overdetermined problem. In the theory of inverse problems, if the
number of free variables in the additional data exceeds the number of free variables
in the unknown coefficient or right hand side (ρ(x, t)) of the equation, then the
problem is called overdetermined. The initial data for these problems can not be
arbitrary; they should satisfy some "solvability conditions" which are difficult to es-
tablish [Amirov (1987), Amirov (2001)]. So one of our purposes is to demonstrate
how to investigate the solvability of an overdetermined problem.

2 Solvability of the Problem

On using some extension of the class of unknown functions ρ , overdetermined
problem in question replaced by a determined one. This is achieved by assuming
the unknown function ρ depends not only upon the space variable x and time vari-
ble t, but also upon the direction v in some special manner, i.e. consider ρ(x,v, t).
The dependence upon v of ρ is impossible to be arbitrary, for in the opposite case
the problem would be underdetermined and it is easy to construct the nonunique-
ness examples of a solution. Herein the special dependence of ρ(x,v, t) upon the
direction v means that ρ(x,v, t) satisfies a certain differential equation

(
L̂ρ = 0

)
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such that the new problem which we call Problem 2 with the function ρ(x,v, t) be-
comes a determined one and the sufficiently smooth functions ρ (x, t) satisfy this
equation.

Suppose that, such a differential equation for ρ(x,v, t) has been found and a priori
the exact data ue

0 of Problem 2 related to a function ρ (x, t) is known. Then, utilizing
ue

0, a solution ρ̃ to Problem 2 can be constructed. By uniqueness of the solution,
ρ̃ and ρ(x, t) coincide. At the same time, knowing the approximate data ua

0 with∥∥ue
0−ua

0

∥∥
H3(Γ1)

≤ ε , an approximate solution ρa(x,v, t) can be constructed such
that ‖ρ−ρa‖L2(Ω) ≤ εC. Recall that, if ρ depends only on x and t, and ua

0 does not
satisfy the "solvability conditions", the solution ρa depending only x and t does not
exist. In other words, a regularising procedure constructed for Problem 2.

Problem 2 Determine the functions u(x,v, t) and ρ (x,v, t) defined in Ω from equa-
tion (1), provided that the functions K (x,v,v′), f = ( f1, ..., fn) are given, the trace
of u(x,v, t) is known on the boundary, i.e.,

u|
∂Ω

= u0 (2)

and the function ρ (x,v, t) satisfies〈
ρ, L̂η

〉
= 0 (3)

for any η ∈C∞
0 (Ω). Here

L̂ =
n

∑
i=1

∂ 2

∂xi∂vi
.

The notations to be used in the sequel are introduced below:

The standart function space Cm (Ω) is the Banach space of functions that are m
times continuously differentiable in Ω; C∞ (Ω) is the set of functions that belong
to Cm (Ω) for all m ≥ 0; C∞

0 (Ω) is the set of finite functions in Ω that belong to
C∞ (Ω); L2 (Ω) is the space of measurable functions that are square integrable in

Ω, Hk (Ω) is the Sobolov space and
◦

Hk (Ω) is the closure of C∞
0 (Ω) with respect to

the norm of Hk (Ω) [Lions and Magenes (1972), Mikhailov (1978)].

We define C̃3
0 (Ω)=

{
ϕ : ϕ ∈C3 (Ω) , ϕ = 0 on ∂Ω

}
and select a subset {w1,w2, ...}

of C̃3
0 which is orthonormal and everywhere dense in L2 (Ω). Let Pn be the orthog-

onal projector of L2 (Ω) onto Mn, where Mn is the linear span of {w1,w2, ...}. By
Γ(A) the set of functions u is denoted with the following properties:

i. u ∈ Γ(A), Au ∈ L2 (Ω) in the generalized sense, where Au = L̂Lu;
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ii. There exists a sequence {uk} ⊂ C̃3
0 such that uk→ u in L2 (Ω) and

〈Auk,uk〉 → 〈Au,u〉 as k→ ∞.

The condition that Au ∈ L2 (Ω) in the generalized sense means that there exists a
function f ∈ L2 (Ω) such that 〈u,A∗ϕ〉 = −〈 f ,ϕ〉 and Au = f for all ϕ ∈C∞

0 (Ω),
where A∗ is the differential operator conjugate to A in the sense of Lagrange.

Theorem 1 Let f ∈C1 (Ω), K (x,v,v′) ∈C1
(
D×G×G

)
and assume that the fol-

lowing inequalities hold for all ξ ∈ Rn:

ξ ∈ Rn :
n

∑
i, j=1

∂ fi

∂x j
ξ

i
ξ

j ≥ α1 |ξ |2 ,

α1−
L0

2
> α2, L0 = l0C, l0 = max

1≤i≤n

max
x∈D

∫
G

∫
G

K2
vi
(x,v,v′)dvdv′

 , (4)

where α1, α2 are positive numbers. Then Problem 2 has at most one solution (u,ρ)
such that u ∈ Γ(A) and ρ ∈ L2 (Ω).

Proof. Let (u,ρ) be a solution to Problem 2 such that u = 0 on ∂Ω and
u ∈ Γ(A) . Equation (1) and condition (3) imply Au = 0. Since u ∈ Γ(A), there
exists a sequence {uk}⊂ C̃3

0 such that uk→ u in L2 (Ω) and 〈Auk,uk〉→ 0 as k→∞.
Observing that uk = 0 on ∂Ω, we get

−2〈Auk,uk〉= 2
n

∑
i=1

〈
∂

∂vi
(Luk) ,ukxi

〉
.

We have the following identity for the right-hand side of the last equality:

n

∑
i=1

2
∂uk

∂xi

∂

∂vi
(Luk) =

n

∑
i=1

(
∂uk

∂xi

)2

+
n

∑
i, j=1

∂ fi

∂x j

∂uk

∂vi

∂uk

∂v j

+
n

∑
i=1

∂

∂vi

[
∂uk

∂ t
∂uk

∂xi

]
+

n

∑
i=1

∂

∂ t

[
∂uk

∂vi

∂uk

∂xi

]
−

n

∑
i=1

∂

∂xi

[
∂uk

∂ t
∂uk

∂vi

]
+

n

∑
i, j=1

∂

∂v j

(
vi

∂uk

∂xi

∂uk

∂x j

)
+

n

∑
i, j=1

∂

∂xi

(
vi

∂uk

∂v j

∂uk

∂x j

)
−

n

∑
i, j=1

∂

∂x j

(
vi

∂uk

∂xi

∂uk

∂v j

)

+
n

∑
i=1

∂

∂vi

[
vi

(
∂uk

∂xi

)2
]

+
n

∑
i, j=1

∂

∂v j

(
fi

∂uk

∂vi

∂uk

∂x j

)
+

n

∑
i, j=1

∂

∂vi

(
fi

∂uk

∂v j

∂uk

∂x j

)
−

n

∑
i, j=1

∂

∂x j

(
fi

∂uk

∂vi

∂uk

∂v j

)
+
∫
G

Kvi(x,v,v
′)uk

(
x,v′, t

)
dv′

∂uk

∂xi
. (5)
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If the geometry of the domain Ω and the condition uk = 0 on ∂Ω are taken into
account, then from (5) we obtain

−〈Auk,uk〉= J (uk) , (6)

where

J (uk)≡

1
2

n

∑
i=1

∫
Ω

(∂uk

∂xi

)2

+
n

∑
j=1

∂ fi

∂x j

∂uk

∂vi

∂uk

∂v j
+
∫
G

Kvi(x,v,v
′)uk

(
x,v′, t

)
dv′

∂uk

∂xi

dΩ.

(7)

We can estimate the third term in (7) as follows:

2
n

∑
i=1

∫
Ω

∫
G

Kvi(x,v,v
′)uk

(
x,v′, t

)
dv′ukxi

dΩ

≥ −
n

∑
i=1

∫
Ω

(
∫
G

Kvi(x,v,v
′)uk

(
x,v′, t

)
dv′)2 +u2

kxi

dΩ

≥ −L0

∫
Ω

|5vuk|2 dΩ−
∫
Ω

|5xuk|2 dΩ, (8)

where l0 = max
1≤i≤n

{
max
x∈D

∫
G

∫
G

K2
vi
(x,v,v′)dvdv′

}
, L0 = l0C.

Since Ω is bounded and uk = 0 on ∂Ω, from the assumptions of the theorem and
(8) it follows that

J (uk) >
1
2

∫
Ω

|∇xuk|2 dΩ+α1

∫
Ω

|5vuk|2 dΩ− L0

2

∫
Ω

|5vuk|2 dΩ− 1
2

∫
Ω

|5xuk|2 dΩ

≥ c
∫
Ω

|uk|2 dΩ, c > 0,

where ∇xuk =
(

ukx1
, ...,ukxn

)
. Using definition of Γ(A) , we have c

∫
Ω

u2dΩ ≤ 0.

Then equation (1) implies ρ (x,v, t) = 0. Hence uniqueness of the solution of the
problem is proven.

If u0 ∈ C3 (∂Ω) and ∂D ∈ C3, ∂G ∈ C3 then Problem 2 can be reduced to the
following problem [Mikhailov (1978)].
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Problem 3 Determine the pair (u,ρ) from the equation

Lu = ρ (x,v, t)+F (9)

provided that F ∈ H2 (Ω), and the trace of the solution u on the boundary ∂Ω is
zero and ρ satisfies condition (3).

Theorem 2 Suppose that F ∈ H2 (Ω). Under the assumptions of Theorem 1, there
exists a solution (u,ρ) of Problem 3 such that u ∈ Γ(A)∩H1 (Ω), ρ ∈ L2 (Ω).

Proof. The proof can be established using a similar way to that of Theorem 2.2.2
in [Amirov (2001)].

3 Approximate Solution of the Problem

An approximate solution to Problem 3 which contains a non-stationary kinetic
equation with a scattering term can be computed from the following relation

uN =
N−1

∑
i1,...,in, j1,..., jn,k=0

αNi1,...,in , j1,..., jn ,k
wi1,...,in , j1,..., jn ,k η (x)µ (v)ζ (t) , (10)

where

wi1,...,in , j1,..., jn ,k =
{

xi1
1 ...xin

n v j1
1 ...v jn

n tk
}∞

i1,...,in , j1,..., jn ,k=0

and{
xi1

1 ...xin
n

}∞

i1,...,in=0
,
{

v j1
1 ...v jn

n

}∞

j1,..., jn=0
,
{

1, t, t2, ...
}

are the complete systems in L2 (D), L2 (G) and L2 (0,T ) respectively. In (10), the
functions η (x), µ (v), ζ (t) are selected such that they vanish on the boundary and
outside of the corresponding domain. Unknown coefficients

αNi1,...,in , j1,..., jn ,k
, i1, ..., in, j1, ..., jn,k = 0,1, ...,N−1

in expression (10), are obtained from the following system of linear algebraic equa-
tions:

N−1

∑
i1 ,...,in , j1 ,..., jn ,k=0

(
A
(

αNi1 ,...,in , j1 ,..., jn ,k wi1,...,in, j1,..., jn,k

)
ηµζ ,wi′1,...,i

′
n, j′1,..., j′n,k′

)
L2(Ω)

=
(
F ,w

i′1 ,...,i′n, j′1,..., j′n ,k′

)
L2(Ω)

, i′1, ..., i
′
n, j′1, ..., j′n,k

′ = 0,1, ...,N−1. (11)
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The computations were carried out using a computer program written in MAPLE on
a PC with Intel Core 2, 2.00 GHz processor and 1 Gb RAM. We have presented two
experiments below which show that obtained approximate solution is in reasonable
agreement with the exact solution. Also, as it can be seen from the figures, we
obtain more accurate results for the greater values of N.

Figure 1: The exact solution and approximate solution of the problem at N = 1: (a)
for u(x,v, t) (b) for ρ (x,v, t).

Figure 2: The exact solution and approximate solution of the problem at N = 4: (c)
for u(x,v, t) (d) for ρ (x,v, t).



262 Copyright © 2010 Tech Science Press CMES, vol.62, no.3, pp.255-264, 2010

Figure 3: Aproximate solution and exact solution of the problem for N = 1: (a) for
u(x,v, t) (b) for ρ (x,v, t).

Figure 4: Aproximate solution and exact solution of the problem for N = 4: (c) for
u(x,v, t) (d) for ρ (x,v, t).

Example 1 In the domain Ω = {(x,v, t)| x ∈ (1,2) , v ∈ (−1,1) , t ∈ (0,1)},
according to the given functions
F (x,v, t) =−(x−1)(x−2)(1− v2)x5ln(x)t +(x−1)(x−2)(1− v2)x5ln(x)(1− t)
+v((x−2)(1− v2)x5ln(x)(1− t)t +(x−1)(1− v2)x5ln(x)(1− t)t
+5(x−1)(x−2)(1− v2)x4ln(x)(1− t)t +(x−1)(x−2)(1− v2)x4(1− t)t)
−2x8(x−1)(x−2)vln(x)(1− t)t, f1 (x,v, t) = x3, K (x,v,v′) = x+ v,
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approximate solution of the problem at N = 1 is

U1 = (
4288
209

ln(2)− 46040419
23173920

)(1− x)(2− x)(1− v2)(1− t)t,

where the exact solution is

u(x,v, t) = (x−1)(x−2)(1− v2)x5ln(x)(1− t)t.

A comparison between the approximate solution (dotted, yellow graph) and the
exact solution (solid, blue graph) of the problem is presented for t = 0.1 in Figure
1 (a)-(b) and Figure 2 (c)-(d).

Example 2 In the domain Ω = {(x,v, t)| x ∈ (−1,1) , v ∈ (1,2) , t ∈ (0,1)},
according to the given functions
F (x,v, t) = −1

48 (xvt(72(−t + x2t + 1− tvx− vx− x2)− 48v3(1− t) + 96t(x + v))
+x2v3e−v(96 + 48v2− 144v)+ tv3x2e−v(−192 + 528v− 336v2)− 48x2v + 72x2v2

+96xt(−1 + x2 + t − x2t − v2) + 48v3xte−v(−v + vt − 5v2 + 5v2t + 2v3− 2v3t + 5
−5x2 + 5x2v− x2v2 + v3x− 5tvx + 5tv2x− 5t + 5x2t − 5x2tv + x2tv2 − tv3x))/v3,

f1 (x,v, t) = x−v and K (x,v,v′) =
1
6

x2v3 computed approximate solutions (U1,ρ1),

(U4,ρ4) at t = 0.2 and the exact solution of the problem are represented in Figure
3 (a)-(b) and Figure 4 (c)-(d) respectively, where the exact solution pair is

u = (1− x2)(1− v)(2− v)(
−1
2v2 + e−v)(t− t2),

ρ = −1/48(24v(2−3v− x2v2 + v2)+ v3xt(−144t +144+ xt + x3)
+48tv3e−v(4− v2 +7v2)+3552x2te−2v3(1− t− x2 + x2t)
+47x2tv3− x4t2v3 + tv4e−v(−528+240t +48tv−240tv)
+1304x2te−1v3(t + x2− x2t−1)+24tv(3v−2v2−4t +3tv)
+48e−vv3(−2+3v− v2))/v3.
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