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Finite Element Nonlinear Analysis for Catenary Structure
Considering Elastic Deformation

B.W. Kim1, H.G. Sung1, S.Y. Hong1 and H.J. Jung2

Abstract: This paper numerically investigates the behavior of sag and tension of
inclined catenary structure considering elastic deformation. Equilibrium equation
for computing elastic catenary is formulated by employing finite element method
(FEM). Minimum potential energy principle and the Lagrange multiplier method
are used in the formulation to derive equilibrium equation with constraint condition
for catenary length. Since stiffness and loading forces of catenary are dependent
on its own geometry, the equilibrium equation is nonlinear. Using the iterative
scheme such as fixed point iteration or bisection, equilibrium position and tension
are found. Based on the formulation, a Fortran solver is developed in this study.
With the solver, numerical analyses for example catenary structures are carried
out. From the numerical examples, the sag and tension of catenary only which
ignores elastic deformation are compared with those of elastic catenary of which
elastic deformation is considered. By analyzing elastic catenary for various axial
stiffness conditions, the asymptotic behaviors of sag and tension are examined.
Inclined catenary structures with various slopes are also analyzed to study the effect
of catenary slope on sag and tension.

Keywords: Catenary, Elastic deformation, FEM, Length constraint, Sag, Ten-
sion, Catenary slope.

1 Introduction

Catenary structures are widely used for various engineering applications. Cable
of suspension bridge, bracing guy and mooring line for floating body are typical
examples of catenary. Analytical and numerical methods for analyzing catenary
were presented by many researchers. Huge theories for analytic approach were
established by Irvine [Irvine (1981)]. FEM for cable analysis was presented by
Bathe [Bathe (1996)]. Numerical schemes were developed for mooring analysis
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and they are applied in the field of ocean engineering [Hong and Hong (1997);
Garrett (2005)].

The equilibrium position of catenary is determined when the external forces and
tension are balanced. And, additional stretch is ignored if elongation due to tension
is small compared to total length of catenary. This is the case of pure catenary.
However, in a exact manner, catenary suffers elastic deformation due to tension
and the sag or tension of such elastic catenary will be quite different from those of
pure catenary if the material is flexible.

The purpose of this paper is to rigorously investigate the sag and tension of catenary
structure including the effect of elastic deformation due to tension and compare the
results with the case of pure catenary. Since the equilibrium position of catenary
is determined by tension and tension varies with geometry, position and tension
of catenary are interactive. The forces acting on catenary are also dependent on
geometry. Therefore, the behavior of catenary is geometrically nonlinear. Very
flexible beams or shells are also geometrically nonlinear structures. Okamoto and
Omura (2003) employed FEM to solve nonlinear beam problems and they showed
that the numerical results agree well with experiments. FEM was also successfully
applied to nonlinear plate and shell problems [Cui et al. (2008)].

In this study, FEM is employed to numerically analyze the behavior of elastic cate-
nary and a Fortran solver is developed based on FEM. In the FEM formulation, min-
imum potential energy principle is applied to derive nonlinear equilibrium equation.
Constraint equation describing catenary length with elastic stretch is added to po-
tential energy formulation with the use of Lagrange multiplier method. To get the
solution of nonlinear equilibrium equation, iterative techniques such as fixed point
iteration or bisection are used. By analyzing example catenary structures, the de-
veloped solver is verified and the variation of sag and tension of elastic catenary
is examined for various values of axial stiffness. Those results are also compared
with cases of catenary only. By summarizing the results, the asymptotic behavior
of sag and tension is observed. In addition to the elasticity, the effect of installation
slope is also investigated by analyzing elastic catenary with various slope angles.

2 Finite element formulation

Geometric configuration of elastic catenary with FEM model is shown in Fig. 1.
In the figure, circular points represent nodes and lines between nodes are two-node
elements. If total given length of unstretched catenary is st , unstretched length
of element s0 can be set as st = ∑s0 according to user-defined mesh system. If
given gravity force per unit length in unstretched element is w0, gravity force per
unit length in stretched element will be w = w0s0/s where s is stretched length of
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element. Then, total gravity force is W = ∑w0s0 = ∑ws.
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Figure 1: FEM model for elastic catenary
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Figure 2: Free body diagram of element

Fig. 2 shows conceptual sketch of free body condition of one element. In the figure,
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T is tension at x of local coordinate. The local coordinate is determined from the
reference line of user-defined starting mesh system. The reference line closer to
solution position will lead to less iteration in numerical computation. l is element
length in such reference line.~r is position vector by local directional displacements
ux, uy and uzat x. It will take the form

~r = (x+ux,uy,uz) (1)

Then, Jacobian J will be

J =
ds
dx

=
|d~r|
dx

=
√

(1+u′x)2 +u′2y +u′2z (2)

Nodal displacements and section forces in local coordinate can be arranged in vec-
tor form as

{ue}= [ux1 uy1 uz1 ux2 uy2 uz2]T (3)

{ fe}= [ fx1 fy1 fz1 fx2 fy2 fz2]T (4)

And, they can be transformed to global coordinates as Eqs. 5 and 6 using orthogo-
nal transformation matrix [T ] such that [T ]T [T ] = [I].

{ue}= [T ]{uge} (5)

{ fe}= [T ]{ fge} (6)

Since the direction of gravity force is −zg in global coordinate, work by gravity
force takes the following form

πw =−
∫

s
uzgwds =−

∫ l

0
uzgw

ds
dx

dx =−
∫ l

0
uzgJwdx (7)

where uzg is the zg directional displacement at x and it can be interpolated with
nodal displacements as

uzg =
(

1− x
l

)
uz1g +

x
l
uz2g (8)

By inserting it into Eq. 7, arranging it in vector form, integrating it and using
coordinate transform as Eq.5, the work will be

πw =−{uge}T{ fwe}=−{ue}T [T ]{ fwe} (9)
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where

{ fwe}=
Jwl
2

[001001]T (10)

Work by section forces is

πe = {ue}T{ fe} (11)

Constraint equation for length condition is∫
s
(ds−dx) = s− l (12)

Where s is element length in equilibrium position and it will be Eq. 13 if pure
catenary is considered.

s = s0 (13)

If the effect of elastic deformation as well as catenary behavior is considered, the
length will be

s = s0

(
1+

T
EA

)
(14)

where EA is axial stiffness. Energy equation for Eq. 12 can be formulated as Eq.15
using Lagrange multiplier λ .

πc =
∫ l

0
λ

(
ds−dx

dx
− s− l

l

)
dx

=
∫ l

0
λ

(
J−1− s− l

l

)
dx

=
∫ l

0
λ

(
J2−1
J +1

− s− l
l

)
dx

=
∫ l

0
λ

(
2u′x +u′2x +u′2y +u′2z

J +1
− s− l

l

)
dx

(15)

Interpolating ux, uy, uz with nodal displacements, arranging in matrix form and
integrating will lead to the following form

πc = λ ({ue}T{A}+{ue}T [C]{ue}− (s− l)) (16)
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where

{A}=
2

J +1
[−100100]T (17)

[C] =
1

(J +1)l



1 0 0 −1 0 0
1 0 0 −1 0

1 0 0 −1
1 0 0

S y m m 1 0
1

 (18)

By combining Eqs. 9, 11 and 16, total potential energy will be derived as

π =−πw−πe +πc

={ue}T [T ]{ fwe}−{ue}T{ fe}
+λ ({ue}T{A}+{ue}T [C]{ue}− (s− l))

(19)

Applying minimum potential energy principle that is δπ = 0, we get a set of La-
grange equations as

∂π

∂{ue}
= 0 (20)

∂π

∂λ
= 0 (21)

By inserting Eq. 19 into Eq. 20, we get

∂π

∂{ue}
= [T ]{ fwe}−{ fe}+λ ({A}+2[C]{ue})

= λ [C]{ue}+[T ]{ fwe}−{ fe}+λ ({A}+[C]{ue})
= [Ke]{ue}+[T ]{ fwe}−{ fe}+{B}λ
= 0

(22)

where

[Ke] = λ [C] (23)

{B}= {A}+[C]{ue} (24)
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Eqs. 19 and 21 lead to

∂π

∂λ
= {ue}T{A}+{ue}T [C]{ue}− (s− l)

= {B}T{ue}− (s− l)
= 0

(25)

Therefore, we get the following equilibrium equations of element in local coordi-
nate.

[Ke]{ue}+{B}λ =−[T ]{ fwe}+{ fe} (26)

{B}T{ue}= s− l (27)

By coordinate transform, we get equilibrium equations of element in global coor-
dinate as

[Kge]{uge}+{Bg}λ =−{ fwe}+{ fge} (28)

{Bg}T{uge}= s− l (29)

where

[Kge] = [T ]T [Ke][T ] (30)

{Bg}= [T ]T{B} (31)

{ fge}= [T ]T{ fe} (32)

Eqs. 28 and 29 can be rearranged in state space form as[
[Kge] {Bg}
{Bg}T 0

]{
{uge}

λ

}
=
{
−{ fwe}+{ fge}

s− l

}
(33)

Element-by-element combination will lead to the final equilibrium equation for
total system as

[K]{u}= { fn}+{ f} (34)

where

[K] = ∑
e

[
[Kge] {Bg}
{Bg}T 0

]
(35)
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{ fn}= ∑
e

{
−{ fwe}

s− l

}
(36)

{ f} is external forces vector acting at nodes. Eq. 35 is stiffness matrix which
symmetric and banded. Eq.36 is force vector due to gravity and constraint.

A Fortran program to solve catenary equation is developed in this study based on
the procedure as is described above. Since the stiffness matrix and force vector
are functions of Jacobian, Lagrange multiplier and displacements, the equilibrium
equation is geometrically nonlinear. Iterative scheme such as bisection or fixed
point iteration is used to find the nonlinear solution. Once the solution is found, the
section forces can be recovered by inserting the solutions into element equation as

{ fge}= [Kge]{uge}+{Bg}{λ}+{ fwe} (37)

Catenary tension is obtained by projecting the section forces to longitudinal line in
equilibrium position.

3 Numerical examples

Geometry and particulars of example catenary structure for numerical analysis are
summarized in Fig. 3 and Table 1. In the figure, f is the final sag in equilibrium
position. Total unstretched length of catenary is 1,026 m and unit gravity is 2,000
N/m resulting in total gravity of 2,052,000 N. Various values for EA are consid-
ered in numerical analysis to investigate the effect of elastic deformation and to
compare with pure catenary behavior. The effect of slope angles are also observed
by analyzing catenaries with θ of 0∼75 deg. In the present study, the following
non-dimensional parameters are defined and used for comparative study.

EAn =
EA
W

(38)

fn =
fmax

L
(39)

Tn =
Tmax

W
(40)

They are non-dimensional axial stiffness, sag, tension, respectively.

In order to validate the developed code, analytic and FEM solutions are compared.
In the case of pure catenary, analytic solutions for equilibrium position and tension
can be derived as [Arbabi (1991)].

z(x) =
H
w

cosh
{w

H
(xs− x)

}
− H

w
cosh

wxs

H
(41)
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Figure 3: Layout of example catenary structure

Table 1: Main particulars of example catenary structure

Distance between supports (L) 1,000 m
Total unstretched length (st) 1,026 m
Gravity per unit length (w0) 2,000 N/m
Total gravity (W) 2,052,000 N
Non-dimensional axial stiffness (EAn) 0.3∼3,000
Slope angle (θ ) 0, 15, 30, 45, 60, 75 deg
Boundary condition Top & bottom fixed

T (x) =
√

H2 +V (x)2 (42)

where H, V and xs are horizontal tension, vertical tension and minimum point
which are calculated by

H =
wxL

cosh−1
{

1− w2

2H2 (z2
L− s2

t )
} (43)

V (x) =−H sinh
{w

H
(xs− x)

}
(44)
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xs =
H
w

ln
w(zL− st)

H{exp(−wxL/H)−1
(45)

Fig. 4 compares analytic and FEM solutions for curve shape of example catenary
in equilibrium position. It is shown that two results agree nearly. Tension distribu-
tions of example structure are compared in Fig. 5. They have also good agreements.
Analytic horizontal tension, which is constant at any points, is 1,283,528 N. Hor-
izontal tension in FEM is 1,281,571 N. Error is about 0.15 % which shows good
accuracy of developed FEM code.
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Figure 4: Analytic and FEM results for
equilibrium position of example cate-
nary (θ=45 deg)
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Figure 5: Analytic and FEM results for
tension distribution of example catenary
(θ=45 deg)

Figs. 6∼17 show curve shape and tension distribution of example catenary struc-
tures. It is shown that the smaller axial stiffness, the larger vertical deflection.
When the axial stiffness is large, deflection is small. As stiffness increases, the
equilibrium position converges to pure catenary curve and the curve shapes are al-
most identical to those of pure catenary when the non-dimensional stiffness are
100, 300 and 1000. Tensions are generally small when the stiffness is small except
tensions near bottom supports of inclined catenaries. As stiffness increases, tension
distribution shape converges to that of pure catenary. And, the tension distribution
shapes are almost the same as those of pure catnenary when the non-dimensional
stiffness are 300 and 1000.

For more quantitative discussion, non-dimensional maximum sags and tensions at
top and bottom supports are investigated. Maximum sag versus axial stiffness is
plotted in Fig. 18. As stiffness decreases, sag increases because more flexible cate-
nary suffers more axial deformation. As stiffness increases, sag decreases and it
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 Figure 6: Equilibrium position of exam-
ple catenary (θ=0 deg)
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Figure 7: Tension distribution of exam-
ple catenary (θ=0 deg)

x (m)

z
(m
)

-250 0 250 500 750 10001250
-750

-500

-250

0

250

500

750
Elastic catenary
Catenary only

EAn=1

EAn=0.3

EAn=3
EAn=10

EAn=30
EAn=100
EAn=300, 1000, 3000

 Figure 8: Equilibrium position of exam-
ple catenary (θ=15 deg)
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Figure 9: Tension distribution of exam-
ple catenary (θ=15 deg)

converges asymptotically to that of pure catenary. Figs. 19∼24 show the top and
bottom tensions versus axial stiffness. When the catenary is flexible, vertical deflec-
tion is large. In that case, tangential angle gets larger at top supports. However, the
change of vertical reaction force is relatively small. This induces reduction of hor-
izontal tension resulting in top tension decrease. Therefore, top tension decreases
as stiffness decreases. As stiffness increases, top tension increases and it converges
asymptotically to that of pure catenary. Bottom tension also decreases as stiffness
decrease and vice versa when the catenary is sufficiently stiff. And, it also shows
asymptotic behavior. However, when the catenary is flexible, bottom tensions of
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 Figure 10: Equilibrium position of ex-
ample catenary (θ=30 deg)
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Figure 11: Tension distribution of ex-
ample catenary (θ=30 deg)
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 Figure 12: Equilibrium position of ex-
ample catenary (θ=45 deg)
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Figure 13: Tension distribution of ex-
ample catenary (θ=45 deg)

inclined catenary do not show such monotonous increase or decrease. When the
catenary gets flexible, gravity center moves left and vertical reaction rapidly be-
comes large at bottom support. Therefore, bottom tension increases with stiffness
decrease in case of inclined flexible catenary. Such tendency is clearer for larger
slope angles. If catenary is extremely flexible, tangential lines at top and bottom
supports will be almost vertical and tensions will be half of total gravity at both
supports. Therefore, normalized tensions at top and bottom supports converge to
0.5 as stiffness decreases.

Results are discussed in point of slope angles of catenary. Fig. 25 shows variation
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 Figure 14: Equilibrium position of ex-
ample catenary (θ=60 deg)
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Figure 15: Tension distribution of ex-
ample catenary (θ=60 deg)
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 Figure 16: Equilibrium position of ex-
ample catenary (θ=75 deg)
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Figure 17: Tension distribution of ex-
ample catenary (θ=75 deg)

of maximum sag versus slope angle. As slope angle increases, maximum sag in-
creases quadratically. Fig. 26 shows top tension versus slope angles. When the
stiffness is large, top tension shows parabolic distribution about slope angles hav-
ing maximum at 30 or 45 deg. When the stiffness is small, top tension increases
slowly with the increase of slope angle. Bottom tension variation versus slope an-
gle is plotted in Fig. 27. It is shown that bottom tension decreases almost linearly
as slope angle increases.
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Figure 18: Maximum sag versus axial
stiffness
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Figure 19: Top and bottom tensions ver-
sus axial stiffness (θ=0 deg)
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Figure 20: Top and bottom tensions ver-
sus axial stiffness (θ=15 deg)
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Figure 21: Top and bottom tensions ver-
sus axial stiffness (θ=30 deg)

4 Conclusions

In this paper, sag and tension of inclined elastic catenary structure which includes
axial deformation as well as pure catenary behavior are investigated with vary-
ing axial stiffness and slope angles of catenary. The catenary are analyzed using
nonlinear FEM analysis of which numerical code is developed based on minimum
potential energy principle and length constraint and verified by comparing with an-
alytic solutions. Some conclusions from parametric analyses are summarized as
follows.When the axial stiffness of catenary is smaller, its sag increases because
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Figure 22: Top and bottom tensions ver-
sus axial stiffness (θ=45 deg)

EAn

T n

10-1 100 101 102 103 104
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Tension of zero stiffness

Bottom tension of
elastic catenary

Bottom tension of catenary only

Top tension of
elastic catenary

Top tension of catenary only

 

Figure 23: Top and bottom tensions ver-
sus axial stiffness (θ=60 deg)
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Figure 24: Top and bottom tensions ver-
sus axial stiffness (θ=75 deg)
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Figure 25: Maximum sag versus slope
angle

axial deformation becomes larger. In that case, tangential line is steeper at top
support while the variation of vertical components of tension is relatively small.
Therefore, horizontal component decreases and total tension also decreases. On
the other hand, tension at bottom support becomes larger when the catenary is rel-
atively flexible. This is due to the rapid increase of vertical component of bottom
tension by the shift of total gravity center to the left.

When the catenary is very flexible, the magnitudes of both top and bottom tensions
converge to half of total gravity because the tangential lines are nearly vertical
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Figure 26: Top tension versus slope an-
gle
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Figure 27: Bottom tension versus slope
angle

at both supports. When the catenary is stiffer, the sag decreases and the tension
generally increases. And, they asymptotically converge to those of pure catenary.

As slope angle of inclined catenary increases, sag increases quadratically and bot-
tom tension decreases almost linearly. When the catenary is stiff, top tensions are
largest at 30 or 45 degree of slope angle. Top tension generally increases for larger
slope angle when the catenary is flexible.
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