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Abstract: We develop an unsplit convolutional perfectly matched layer (CPML)
technique to absorb efficiently compressible viscous flows and their related super-
sonic or subsonic regimes at the outer boundary of a distorted computational do-
main. More particularly subsonic outgoing flows or subsonic wall-boundary layers
close to the PML are well absorbed, which is difficult to obtain without creating nu-
merical instabilities over long time periods. This new PML (CPML) introduces the
calculation of auxiliary memory variables at each time step and allows an unsplit
formulation of the PML. Damping functions involving a high shift in the frequency
domain allow a much better absorption of the flow than for cases with no shift or
low frequency shifts. The CPML has demonstrated its convenience because the
time evolution of damping mechanisms do not need to be split and only the space
derivatives of fluxes and primitive variables (velocities and temperature) need to be
stored at each time step, reducing by this mean the number of computational arrays
used in the numerical code. The results obtained show that CPML can absorb ef-
ficiently the out-going subsonic and supersonic fluxes at the outlet condition with
very few reflections propagating back into the main domain.
The Navier-Stokes equations are applied in an extremely wide variety of indus-
trial processes and geophysical flow simulations. As an example of interest for the
industry, CPML is applied to the particular case of a critical air ejector-diffuser
simulation in which the flow propagates along a converging-diverging tube, one
main goal being for instance to obtain an efficient tool to model numerically dif-
ferent diffuser designs. In this context we investigate the impact of the PML on an
unsteady flow submitted to supersonic expansion at the end of the ejector-diffuser
while it remains subsonic in the wall-boundary layer. The numerical integration
of the whole system of equations introduces a two-step predictor-corrector time-
stepping scheme and a finite difference spatial discretization using a curvilinear
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coordinates transformation that is adapted to the ejector geometry. In this distorted
mesh, the spatial finite difference scheme involves a backward-forward discretiza-
tion and the CPML is able to deal with the distorted mesh in the direction parallel
to the base of the PML layer.

Keywords: Convolutional Perfectly Matched Layers, Navier-Stokes, compress-
ible viscous flows, absorbing boundary conditions, supersonic flow, subsonic fow,
gas ejector, curvilinear coordinates.

1 Introduction

The development of efficient non-reflecting boundary conditions is a critical prob-
lem in all computational fluid codes (CFD) in which subsonic and critical super-
sonic outlets are involved. These conditions can be introduced for instance in shal-
low water equations, pollutants transport, geophysical or industrial flows. Many
efforts have been devoted to truncate efficiently an infinite medium with absorb-
ing boundary conditions using non-reflecting boundaries based on the method of
characteristics (Thompson, 1987, 1990) or NSCBC (Navier-Stokes characteristic
boundary conditions) techniques (Poinsot and Lele, 1992) applied to the Navier-
Stokes equations. But some discrepancies are coming back from the boundaries
into the computational domain due to the non-optimal absorption of flows imping-
ing the out-going boundaries at all angles and not only at angles orthogonal to
the boundary. Then other damping conditions like the Perfectly Matched Layer
techniques that have been firstly developped for linear equations like Maxwell’s
equations (Bérenger, 1994; Chew and Weedon, 1994) or elastodynamic equations
(Chew and Liu, 1996; Collino and Tsogka, 2001; Bécache, Fauqueux, and Joly,
2003) have been extended to linearized or non-linear formulations of fluid dynam-
ics equations like the shallow water, the Euler or the Navier-Stokes equations (Hes-
thaven, 1998; Hu, 2001; Hagstrom, 2003; Hu, 2005; Hu, Li, and Lin, 2008). The
importance of the PML technique lies in the fact that the absorbing zone is theo-
retically reflectionless for multi-dimensional linear waves at any angle of incidence
and any frequency. The Perfectly Matched Layer (PML) technique consists in con-
structing absorbing conditions that can absorb efficiently the out-going flux for
open boundary conditions and are perfectly matched at the base of the PML with
zero reflection coefficient before discretization and very small reflection coefficient
after discretization.

In the last decade, substantial progress has been made in the development of the
PML technique for the linearized or nonlinear shallow water, Euler or Navier-
Stokes equations, starting with the studies for cases with constant mean flows, fol-
lowed by extensions to cases with non-uniform mean flows. Indeed, in the case
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of the linearized shallow-water equations (Navon, Neta, and Hussaini, 2004) have
developed a split PML formulation which introduces an explicit finite-difference
discretization scheme and a 9-point Laplacian filter to stabilize possible split PML
unstable solutions. Furthermore, in the context of computational fluid dynamics,
the stabilization of the PML conditions was formerly studied for the linearized Eu-
ler equations in (Hu, 2001, 2005) and in (Hagstrom, 2003; Hu, Li, and Lin, 2008)
for more general flows described by compressible Navier-Stokes equations. In (Hu,
2001, 2005; Hagstrom, 2003), a change of coordinate in the complex spatial domain
is applied in the direction normal to the boundary to avoid unstable solutions. The
normal-derivatives in the Euler system are then replaced by an operator which is
still differential in the normal direction but pseudo-differential in the other vari-
ables. Nataf has developped another stable PML formulation (Nataf, 2006) for the
Euler equation. In this new strategy a Smith factorization is applied to the Euler
equations in order to separate the propagative and the transport parts of the solu-
tion. In this formulation the modes that could produce reflections are damped and
consequently the vorticity modes, which satisfy transparent conditions (Lie, 2001)
on the outer absorbing boundaries, are not damped, providing a stable scheme for
the PML by this mean.

More recently, applications of PML to linearized Navier-Stokes equations and non-
linear Navier-Stokes equations have been discussed (Hu, Li, and Lin, 2008). Al-
though the PML technique itself is relatively simple when it is viewed as a com-
plex change of variables in the frequency domain, it is important to note that, for
the PML technique to yield stable absorbing boundary conditions, the phase and
group velocities of the physical waves supported by the governing equations must
be consistent and in the same direction. Furthermore split PML formulations are
essentially introduced in these applications and special treatment needs to be per-
formed to improve absorption of the waves or the different flows that impinge the
base of the PML at grazing incidence and travel inside the PML over long time
periods.

In order to improve the PML we use a Convolutional formulation of the Perfectly
Matched Layer called CPML that has proven to be efficient in elastic wave propa-
gation to absorb surface waves as well as body waves impinging and/or travelling
along the PML at non grazing incidence (Komatitsch and Martin, 2007). A shift in
the frequency is introduced in the stretching function defining the CPML and acts as
a second order Butterworth-like filter. It allows to mimick a non-linear stretching of
the mesh in the PML region and to damp non linearly the waves composing the flow
when it enters inside the PML at angles different from zero (i.e. non orthogonally
to the base of the PML). This CPML technique has proven to be effective in time-
evolution equations due to the damping mechanisms that do not need to be split.
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Only the space derivatives of primitive variables and fluxes (velocities and stresses)
need to be stored at each time step. CPML has also proven to be efficient for more
complex rheologies like poroelastic (Martin, Komatitsch, and Ezziani, 2008) or vis-
coelastic media (Martin and Komatitsch, 2009) using fourth-order finite-difference
spatial discretization, or in distorted heterogeneous anisotropic thin slices in pres-
ence of a topography using high order finite-element (spectral element) methods
(Martin, Komatitsch, and Gedney, 2008). Hence, it is possible to use an unsplit
convolutional PML (CPML) for finite-difference or finite-element discretization to
improve the computational efficiency of the PML and to reduce this way the num-
ber of computational arrays involved in the calculations and therefore the memory
storage of all the variables involved in the PML regions. This is another reason
to retain these advantages of the CPML and to extend them to the compressible
viscous Navier-Stokes equations.

Here the main goal is to show that the CPML conditions can be applied to differ-
ent regimes of a compressible flow dynamics in which both subsonic to supersonic
flows propagate in a distorted mesh ended by optimized and stable PML (see Fig-
ures 2 and 3). In a first approach the flow is considered as a subsonic-supersonic
slightly diverging directed flow, configuration which allows us to validate our PMLs
in a distorted mesh configuration. For instance a converging-diverging nozzle flow
is studied here and the particular industrial configuration of a steam ejector is cho-
sen. Figure (1) shows the ejector parts commonly used in the petroleum industry.
Indeed, steam jet ejectors offer a simple, reliable, low-cost way to produce vacuum.
They are particularly more effective in the chemical industry where an on-site sup-
ply of the high-pressure motive gas is available. The ejector operation consists
of a high-pressure motive gas that enters the steam chest at low velocity and ex-
pands through the converging-diverging nozzle. These results show a decrease in
pressure and an increase in velocity, which allows the fluid to enter in the suction
inlet at high velocity. The motive fluid, which is now at high velocity, enters and
combines with the suction fluid.

Ejector operations are classified as critical or noncritical flow mode. In the critical
mode the incoming flow is supersonic, which is the case here in this study. Of
course this is not restricted to this application and can be applied to many other
applications in which distorted meshes are present. Ejectors classified as critical
mean that the fluid velocity in the diffuser throat is always supersonic except in
the wall-boundary layers where flows evolve from supersonic to subsonic regime
close to the walls due to the non-slip (zero velocity) condition imposed at these
walls. As an example we investigate the behavior of a supersonic air flow injected
with a Mach number value of 2.0 at the inlet of the diffuser and more particularly
its behavior close to the outlet of the ejector where CPML is implemented (see
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Figure 1: Different parts of the ejector device. We are interested in simulating the
diffuser, its nozzle inlet and discharge outlet.

Figure 2).

2 The Governing Equations

We consider the two-dimensional compressible nonlinear Navier-Stokes equation
written in the conservation form as:
∂U
∂ t

+
∂F
∂x

+
∂G
∂y

= 0. (1)

The vector U represents the density, the x and y-momenta and the specific internal
energy density, and the fluxes F and G are column vectors. U , F and G are defined
as:

U =


ρ

ρu
ρv
ρe

(2)

F =


ρu
ρuv+ p− τxx

ρuv− τxy

ρu
(

e+ u2+v2

2

)
+ pu−uτxx− vτxy +qx

(3)

G =


ρv
ρuv− τxy

ρv2 + p− τyy

ρv
(

e+ u2+v2

2

)
+ pv−uτxy− vτyy +qy.

(4)
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The variable ρ represents the density, u and v the horizontal and vertical compo-
nents of the velocity, p the thermodynamic pressure, e the specific internal energy,
τi, j (with i and j representing x or y) the components of the newtonian viscous
stress tensor, and qi (with subscript i being equal to x or y) the components of the
diffusive heat flux.

For a perfect gas, it is possible to replace e by its expression u2+v2

2 + p
(γ−1)ρ where

γ is the isentropic exponent. For more clarity in the calculations, each element of
the vector U can be denoted by

U1 = ρ,
U2 = ρu,
U3 = ρv,
U4 = γ

γ−1 p+ u2+v2

2 ρ

(5)

and the elements of the column vector F by:

F1 = ρu,
F2 = ρu2 + p− τxx,
F3 = ρuv− τxy,

F4 = γ

γ−1 pu+ρu u2+v2

2 −uτxx− vτxy +qx.

(6)

Also, the elements of the column vector G are denoted by:

G1 = ρv,
G2 = ρuv− τxy,
G3 = ρv2 + p− τyy,

G4 = γ

γ−1 pv+ρv u2+v2

2 −uτxy− vτyy +qy.

(7)

The viscous stress terms are written in terms of velocity derivatives as:

τxy = µ

(
∂u
∂y + ∂v

∂x

)
,

τxx = λ

(
∂u
∂x + ∂v

∂y

)
+2µ

(
∂u
∂x

)
,

τyy = λ

(
∂u
∂x + ∂v

∂y

)
+2µ

(
∂v
∂y

)
.

(8)

where µ is the dynamic viscosity and λ = 2/3µ the second viscosity. Likewise,
the components of the heat flux vector (from Fourier’s heat law) are defined as:

qx =−k ∂T
∂x ,

qy =−k ∂T
∂y .

(9)
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The variations of the dynamic viscosity and the thermal conductivity are considered
temperature-dependent and they are computed by the following Sutherland’s laws
as:

µ (T ) = µ0

(
T
T0

) 3
2 T0 +S

T +S
(10)

and

k(T ) =
µ(T )γR
(γ−1)Pr

. (11)

where µ is the viscosity, S the Sutherland temperature and Pr the Prandtl number. In
this application the typical values of T0 = 273K, S = 110.5K, µ0 = 1.68×10−5 Pa.s,
γ = 1.4 and Pr = 0.71 are used.

3 The Curvilinear Transformation : example of the ejector diffuser

In the context of directed flows evolving in distorted computational domains we
take here the ejector diffuser as an example of application of our PML conditions
to the system of equations (1) through equations (2) to (11). To generate the mesh
of the ejector diffuser shown in Figure (2), we use a topologically cartesian map
from the boundary-fitted coordinate system (ξ ,η) ∈ [0,L]× [0,1] depicted in the
Figure (3) towards the ejector geometry. The lines of constant ξ and η form a rect-
angular grid in the computational plane (Figure (3)). The following and appropriate
curvilinear transformation is then defined as follows

ξ = x, (12)

η =
y− ys(x)

yz(x)− ys(x)
(13)

where ys(x) and yz(x) are the functions describing respectively the lower and upper
walls of the diffuser and are defined in meters as

ys(x) =


0.0 for x≤ 0.1

8
167.875(x−0.1) for 0.1 < x≤ 1.77875
0.08 for 1.77875 < x≤ 2.99125
− 8

89(x−2.99125)+0.08 for x > 2.99125

(14)

yz(x) =


0.42 for x≤ 0.1
− 8

167.875(x−0.1)+0.42 for 0.1 < x≤ 1.77875
0.34 for 1.77875 < x≤ 2.99125
8
89(x−2.99125)+0.34 for x > 2.99125

(15)
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T=287 K

3

=1.23 k/m
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no slipping conditions at the walls (u = v = 0.0) u=0.0 m/s

v=0.0 m/sgrad P·n=0
grad T·n=0

P = P∞
T = T∞

outflow

Figure 2: The physical ejector configuration is depicted. The initial conditions are
given as well as the kind of inflow, outflow and wall conditions. On the left constant
inlet conditions are set for velocity components, temperature and pressure all over
the time of simulation. At the upper and lower walls, non-slip velocity conditions
are set (u = v = 0 m/s) and null pressure and temperature gradients (∇P ·n = 0, and
∇T ·n = 0) are imposed any time. At the right end of the 10 to 20 points PML layer,
Dirichlet conditions are imposed, that is to say u = u∞ = 0 m/s, v = v∞ = 0 m/s,
P = P∞ = 0.1 MPa and T = T∞ = 286 K. These values correspond to initial values
inside the diffuser at ambiant atmosphere conditions.

With this transformation, ξ varies from 0 to L (the horizontal length of the diffuser)
and η varies from 0.0 (lower wall) to 1.0 (upper wall) in the computational plane.
Furthermore, η = 0.0 corresponds to the lower wall surface in the physical plane
and η = 1.0 corresponds to the upper boundary. The inflow boundary occurs at
ξ = 0, and the physical outflow boundary is at ξ = L. With this transformation, we
can adequately handle the compression or expansion waves that are produced in a
supersonic flow and fan out from the corners of the breaks-in-slope of the walls, as
well as the modelling of the subsonic boundary layers in the vicinity of the lower
and upper walls (Couder-Castañeda, 2009). By simplicity we denote the different
metrics of the transformation as follows :

∂ξ

∂x = ξx
∂ξ

∂y = ξy
∂η

∂x = ηx
∂η

∂y = ηy.

(16)

These metrics are defined by the derivatives of the equations (12) and (13) as fol-

lows: ξx = 1, ξy = 0, ηx = 1
yz(x)−ys(x)

, ηy =
η[y′s(x)−y′z(x)]−y′s(x)

yz(x)−ys(x)
. The global system of
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Figure 3: We show the reference computational frame (top) and its (ξ ,η) system of
coordinates that are mapped to the distorted mesh (bottom) of the ejector-diffuser
configuration depicted in Figure (2).
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equations (1) is then reformulated as:

Continuity : ∂U1
∂ t =−

[
∂F1
∂ξ

ξx + ∂F1
∂η

ηx

]
−
[

∂G1
∂η

ηy

]
Momentum x : ∂U2

∂ t =−
[

∂F2
∂ξ

ξx + ∂F2
∂η

ηx

]
−
[

∂G2
∂η

ηy

]
Momentum y : ∂U3

∂ t =−
[

∂F3
∂ξ

ξx + ∂F3
∂η

ηx

]
−
[

∂G3
∂η

ηy

]
Energy : ∂U4

∂ t =−
[

∂F4
∂ξ

ξx + ∂F4
∂η

ηx

]
−
[

∂G4
∂η

ηy

]
(17)

4 The CPML formulation

In our previous articles on the unsplit perfectly matched layer formulation for the
first-order system of elastic wave equations we performed a convolution integration
(Komatitsch and Martin, 2007; Martin, Komatitsch, and Ezziani, 2008; Martin, Ko-
matitsch, and Gedney, 2008; Martin and Komatitsch, 2009) of the memory variable
equations (CPML formulation) following the recursive convolution procedure of
Luebbers and Hunsberger (1992). Now we summarize briefly the extension of this
technique to the Navier-Stokes equation. As in the construction of a classical PML
or a Convolution PML, the spatial derivatives along the axis perpendicular to the
PML layer, say x, are rewritten in a stretched coordinate x̃, based on (see e.g. Ko-
matitsch and Martin (2007)):

∂x̃ =
1
sx

∂x (18)

where

sx = κx +
dx

αx + iω
. (19)

ω means the angular frequency equal to π f , f being the frequency and αx is a shift
in the frequency domain. Then, following Komatitsch and Martin (2007), we can
express:

1
sx

=
1
κx
− dx

κ2
x

1
(dx/κx +αx)+ iω

(20)

where

dx = d0

( x
L′

)N

κx = 1+(κmax−1)
( x

L′

)m

αx = αmax[1− (x/L′)p]. (21)
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dx is the damping function profile, κx is the stretching function always greater than
1 and αx is the shift in the frequency domain. L′ = L∆x is the thickness of the PML
layer, L the number of points inside the PML in the x direction, N = 2 and d0 =
− (N+1)Vmax log(Rc)

2L′ . Vmax is taken equal to the maximum eigenvalue of the convection
part i.e. Vmax = max(|U · ñ| , |U · ñ− c| , |U |) where ñ is the normal evaluated on
each cell edge and ∆h is the minimal distance between all nodes of each spatial
cell. U is the velocity vector and c is the sound speed. Rc is the target theoretical
reflection coefficient, chosen here as 0.1% (see e.g. Collino and Tsogka (2001)) and
c is the sound speed. Without lack of generallity we can chose Vmax as co(1+Mo)
where co is the maximum sound speed and Mo is the maximum Mach number that
is equal to |uo|

co
, uo being the maximum velocity.

In the function αx ≥ 0 we also take p = 1 and αmax = π fc which is a cut-off fre-
quency of the chosen numerical scheme for the grid spatial step ∆x. While in
Komatitsch and Martin (2007) fc represents the dominant frequency of the seismic
source that injects energy in the elastic media, here fc represents a frequency related
to the mesh resolution used in the numerical integration of the Navier-Stokes equa-
tions. fc is chosen such that it verifies the inequality nPW ≤Min

(
|U ·ñ+c|

π∆h , |U ·ñ+c|
π∆h , |U ·ñ|

π∆h

)
where nPW is the number of points per minimal wavelength for the considered spa-
tial numerical scheme. κmax usually lies between 1 and 20 (Martin and Komatitsch,
2009) and we usually take m = 2. At the right end of the PML layer a Dirichlet
condition is imposed for velocity components, temperature and pressure : dur-
ing all the simulation velocity components are set to zero there and pressure and
temperature are set there to constant values equal to the initial ambiant air values
(u = u∞ = 0 m/s, v = v∞ = 0 m/s, P = P∞ = 0.1 MPa and T = T∞ = 286 K respec-
tively).

By sake of simplicity we will study the term 1
sx

∂xFi in detail, keeping in mind that
similar formulations are derived for the x and y derivatives of u, v and Gi in 2D when
PML layers are present along both axes of the grid. The term ∂xFi is transformed
into

1
sx

∂xFi =
1
κx

∂xFi−
dx

κ2
x

1
(dx/κx +αx)+ iω

∂xFi (22)

and let us denote Ψx(Fi) the auxiliary memory variable associated with ∂xFi, i.e.:

Ψx(Fi) = − dx
κ2

x

1
(dx/κx+αx)+iω ∂xFi . (23)

In order to reformulate the above equation in the time domain we retain here the
idea of the convolutional PML (CPML) technique developed in the elastodynamic
case by Komatitsch and Martin (2007). By sake of simplicity we state that ∂x̃ is the
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inverse Fourier transform of equation (18) from the frequency domain to the time

domain. Denoting by s̄x(t) the inverse Fourier transform of
1
sx

, ∂x is then replaced

by:

∂x̃ = s̄x(t)∗∂x (24)

After calculating the expression of s̄x(t) and after some algebraic operations (see
equations (17) and (18) in Komatitsch and Martin (2007)), we obtain

∂x̃ =
1
κx

∂x +ζx(t)∗∂x. (25)

with

ζx(t) =− dx

κ2
x

H(t)e−(dx/κx+αx)t , (26)

where H is the Heaviside distribution. As we have null initial conditions, the convo-
lution term at time step n can be approximated following the recursive convolution
method of Luebbers and Hunsberger (1992):

Ψ
n
x = (ζx ∗∂x)

n '
N−1

∑
m=0

Zx(m)(∂x)
n−(m+1/2) (27)

with:

Zx(m) =− dx

κ2
x

∫ (m+1)∆t

m∆t
e−(dx/κx+αx)τ dτ = axe−(dx/κx+αx)m∆t . (28)

Setting

bx = e−(dx/κx+αx)∆t and ax =
dx

κx(dx +κxαx)
(bx−1) (29)

and developing Zx(m) in equation (27), the convolution term can be viewed as a
recursive sum. Therefore, we can update the memory variable Ψx of the derivative
of variable f (velocity components u and v, temperature and fluxes Fi and Gi) along
direction x at each time step based on

Ψ
n+1
x ( f ) = bxΨ

n
x( f )+ax (∂x f )n+1/2 . (30)

If we use a second-order two-steps (called also predictor-corrector) time scheme
discretization of equation (30) in the time domain, ΨFi

x satisfies

Ψ
Fi
x ((n+νi)∆t) = bx,iΨ

Fi
x (n∆t)+ax,i∂xFi((n+νi)∆t) (31)
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with

bx,i = e−(dx/κx+αx)νi∆t and ax,i =
dx

κx(dx +κxαx)
(bx,i−1) (32)

where subscript i corresponds to the ith iteration of a given predictor-corrector time-
stepping scheme. Here i takes values 1 or 2 because we are at the second order in
time and νi is a fraction of the time step that takes values ν1 = 0.5 and ν2 = 1. This
can be reformulated at higher orders in time following Martin, Komatitsch, Gedney,
and Bruthiaux (2010). In the next section this time discretization is described for
the whole set of equations and not only for the time evolution equations of the
memory variables.

5 Application of CPML to the Navier-Stokes equation

The CPML formulation described in the previous section can be easily imple-
mented in an existing finite-difference code without PML by simply replacing the
spatial derivatives ∂x with 1

κx
∂x +Ψx and advancing Ψx in time using the same time

evolution scheme as for the other variables. If we apply this reformulation of the
space derivatives to the whole set of equations and if we perform a curvilinear trans-
formation of the computational domain, the derivatives 1

κx
∂xFi +Ψx along the x axis

are computed according to the chain rule as 1
κx

(
∂ξ Fiξx +Ψ

Fi
ξ

ξx +∂ηFiηx +Ψ
Fi
η ηx

)
.

So with this idea we can replace the governing equations (17) as follows:

Continuity :
∂U1

∂ t
=−

[(
1
kx

∂F1

∂ξ
+Ψ

F1
ξ

)
(ξx)+

(
1
kx

∂F1

∂η
+Ψ

F1
η

)
(ηx)

]
−
[(

1
ky

∂G1

∂η
+Ψ

G1
η

)
(ηy)

]
Momentum x :

∂U2

∂ t
=−

[(
1
kx

∂F2

∂ξ
+Ψ

F2
ξ

)
(ξx)+

(
1
kx

∂F2

∂η
+Ψ

F2
η

)
(ηx)

]
−
[(

1
ky

∂G2

∂η
+Ψ

G2
η

)
(ηy)

]
Momentum y :

∂U3

∂ t
=−

[(
1
kx

∂F3

∂ξ
+Ψ

F3
ξ

)
(ξx)+

(
1
kx

∂F3

∂η
+Ψ

F3
η

)
(ηx)

]
−
[(

1
ky

∂G3

∂η
+Ψ

G3
η

)
(ηy)

]
Energy :

∂U4

∂ t
=−

[(
1
kx

∂F4

∂ξ
+Ψ

F4
ξ

)
(ξx)+

(
1
kx

∂F4

∂η
+Ψ

F4
η

)
(ηx)

]
−
[(

1
ky

∂G4

∂η
+Ψ

G4
η

)
(ηy)

]
. (33)
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For the discretization of the viscous stress terms it is also necessary to apply the
metrics of the transformation defined by expressions (12), (13) and (16). These
viscous stress terms are then expanded as follows:

τxy = µ
∂u
∂η

ηy +
µ

κx

(
∂v
∂ξ

+
∂v
∂η

ηx

)
+ µΨ

(
∂v
∂x

)
τxx =

λ +2µ

κx

(
∂u
∂ξ

+
∂u
∂η

ηx

)
+λ

∂v
∂η

ηy +(λ +2µ)Ψ
(

∂u
∂x

)
τxx =

λ

κx

(
∂u
∂ξ

+
∂u
∂η

ηx

)
+(λ +2µ)

∂v
∂η

ηy +λΨ

(
∂u
∂x

)
.

(34)

For the heat flux vector the transformation is

qx =− k
κx

(
∂T
∂ξ

+
∂T
∂η

∂η

∂x

)
− kΨ(

∂T
∂x

)

qy =−k
(

∂T
∂η

ηy

)
.

(35)

According to the previous section (i.e., equation (30)), we can implement the CPML
by updating the array variable Ψ for each flux F i and Gi and each primitive variable
u, v or T along the respective direction ξ or η at each time step. In the ξ direction
Ψx is obtained as follows:

Ψ
n+1
x ( f ) = bxΨ

n
x( f )+ax(∂x f )n+1/2 (36)

where variable f can be F i, Gi, u, v or T and where bx = e−(dx/kx+αx)∆t and ax =
dx

kx(dx+kxαx)
(bx−1). In the system of equations (33) we can regroup the memory

terms as:

Ψ
F i

x = Ψ
F i

ξ ξx +Ψ
F i

η ηx

Ψ
Gi

y = Ψ
Gi

ξ ξy +Ψ
Gi

η ηy (37)

and we apply (36) which leads to

Ψ
n+1
x (F i) = bxΨ

n
x(F

i)+ax(
∂F i

∂ξ
ξx +

∂F i

∂η
ηx)n+1/2 (38)

and Ψ
Gi

y = 0 so Ψy = 0 because there are no PML layers at the lower and upper
walls (ay = by = 0).
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Furthermore each flux F i contains viscous stresses and heat diffusion fluxes which
involve derivatives of primitive variables u, v and T . The memory variables associ-
ated to these viscous stresses and heat fluxes are calculated as follows:

Ψ
n+1
x (

∂u
∂x

) = bxΨ
n
x(

∂u
∂x

)+ax(
∂u
∂x

)n+1/2

Ψ
n+1
x (

∂v
∂x

) = bxΨ
n
x(

∂v
∂x

)+ax(
∂v
∂x

)n+1/2

Ψ
n+1
x (

∂T
∂x

) = bxΨ
n
x(

∂T
∂x

)+ax(
∂T
∂x

)n+1/2

(39)

All these equations must now be solved using a predictor-corrector time-stepping,
which is detailed in the following section.

6 The Numerical Scheme

As we can observe in the time evolution equations of memory variables Ψ and the
whole set of equations (33), variables Ψ are evaluated at time tn+1 while spatial
derivatives of F i and Gi, conservative (U) or primitive (u, v, p and T ) variables are
evaluated at tn+1/2. A second-order predictor-corrector time-stepping scheme is
then introduced to deal with these updates of the different variables involved. This
time-stepping applied to whole system of equations (33) is formulated as follows:

Predictor:

Ψ
n+1/2
x [Fn,Sx(Un)] =

bxΨ
n−1/2
x [Fn,Sx(Un)]+ax

[
1

∆ξ

(
Fn

i+1, j−Fn
i, j
)

ξx(i, j)+Sx
i, j(U

n
i, j)
]

U∗i, j = Un
i, j−

1
κx(i, j)

∆t
∆ξ

(
Fn

i+1, j−Fn
i, j
)

ξx(i, j)

− 1
κx(i, j)

∆t
∆η

(
Fn

i, j+1−Fn
i, j
)

ηx(i, j)− ∆t
∆η

(
Gn

i, j+1−Gn
i, j
)

ηy(i, j)

− ∆t
κx(i, j)

Sx
i, j(U

n
i, j)−∆tSy

i, j(U
n
i, j)−∆tΨn+1/2

x [Fn,Sx(Un)]. (40)

The artificial viscosities Sx and Sy are introduced to avoid possible oscillations near
strong gradients and are given by

Sx
i, j(U

n
i, j) =

Cx
∣∣∣pn

i+1, j−2pn
i, j + pn

i−1, j

∣∣∣
pn

i+1, j +2pn
i, j + pn

i−1, j

(
Un

i+1, j−2Un
i, j +Un

i−1, j
)

(41)
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and

Sy
i, j(U

n
i, j) =

Cy
∣∣∣pn

i, j+1−2pn
i, j + pn

i, j−1

∣∣∣
pn

i, j+1 +2pn
i, j + pn

i, j−1

(
Un

i, j+1−2Un
i, j +Un

i, j−1
)

(42)

where the Cx and Cy are two parameters which have typical values ranging from

0.01 to 0.3. They typically scale as Max
[
(|U |+ c)∆t

√
1

(∆x)2 + 1
(∆y)2

]
which is of

the order of the CFL stability number value. For this application we let Cx = Cy =
0.1.

Corrector:

Ψ
∗n+3/2
x [F∗,Sx(U∗)] =

bxΨ
∗n+1/2
x [F∗,Sx(U∗)]+ax

[
1

∆ξ

(
F∗i+1, j−F∗i, j

)
ξx(i, j)+Sx

i, j(U
∗
i, j)
]

Un+1
i, j =

1
2
[Un

i, j +U∗i, j−
1

κx(i, j)
∆t
∆ξ

(F∗i+1, j−F∗i, j)ξx(i, j)

− 1
κx(i, j)

∆t
∆η

(F∗i+1, j−F∗i, j)ηx(i, j)− ∆t
∆y

(G∗i, j+1−G∗i, j)ηy(i, j)

− ∆t
κx(i, j)

Sx
i, j(U

∗
i, j)−∆tΨ∗n+3/2

x [F∗,Sx(U∗)]−∆tSy
i, j(U

∗
i, j)]. (43)

By combining the predictor and the corrector systems of equations given above,
we retrieve a second order discretization of the equations similar to the discretized
equations of the elastodynamics and similar discretized memory variable equations
as in equations (36) and (39). Indeed, after developping the corrector scheme, we
can rewrite the discretized predictor-corrector system of equations as:

Ψ
n+1
x [F,Sx]n+1/2 =

bxΨ
n−1
x [F,Sx]n+1/2 +ax

[
1

∆ξ

(
Fn+1/2

i+1, j −Fn+1/2
i, j

)
ξx(i, j)+Sx

i, j(U
n+1/2
i, j )

]

Un+1
i, j = Un

i, j−
1

κx(i, j)
∆t
∆ξ

(Fi+1, j−Fi, j)
n+1/2

ξx(i, j)

− 1
κx(i, j)

∆t
∆η

(
Fn

i, j+1−Fi, j
)n+1/2

ηx(i, j)− ∆t
∆y

(Gi, j+1−Gi, j)
n+1/2

ηy(i, j)

− ∆t
κx(i, j)

Sx
i, j(Ui, j)n+1/2−∆tSy

i, j(Ui, j)n+1/2−∆tΨn+1
x [F,Sx]n+1/2 (44)
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where

Fn+1/2 =
1
2
(Fn +F∗)

Gn+1/2 =
1
2
(Gn +G∗)

Sxn+1/2 =
1
2
(Sxn +Sx∗)

Syn+1/2 =
1
2
(Syn +Sy∗)

Ψ
n+1
x =

1
2
(Ψn+1/2

x +Ψ
∗n+3/2
x ). (45)

For the discretization of the viscous stress or thermal diffusive terms we need a
weighted derivative of the velocity components u and v or the temperature T in the
ξ and η directions. By sake of clarity and to avoid extensive discretized formula-
tions of the derivatives of velocity components and temperature that are involved
in stress components and thermal fluxes, we denote by φ a variable that can take
values of u, v and T . The discretized derivatives of φ along ξ and η are written as:

∂φ

∂ξ

∣∣∣∣
i, j

=
φi+1, j +

(
α2

ξ
−1
)

φi, j−α2
ξ
φi−1, j

αξ

(
αξ +1

)
∆ξi

(46)

∂φ

∂η

∣∣∣∣
i, j

=
φi, j+1 +

(
α2

η −1
)

φi, j−α2
ξ
φi, j−1

αη (αη +1)∆η j
(47)

where αξ =
∆ξi+1

∆ξi
and αη =

∆η j+1

∆η j
. Therefore, we can spatially discretize the

viscous stresses and the diffusive heat fluxes given by equations (8) and (9) using
these weighted derivatives and replacing φ by the velocity components u and v or
the temperature T in the decomposed formulations of the fluxes (34) and (35).

Finally, the time step verifies a CFL (Courant-Frederichs-Lewy) stability condition
as follows:

Maxi=(1,Nx), j=(1,Ny)

[
∆t(

∣∣ui, j
∣∣

∆xi, j
+

∣∣vi, j
∣∣

∆yi, j
+ai, j

√
1

∆x2
i, j

+
1

∆y2
i, j

)

]
≤C, (48)

where C = 0.5 is a CFL number chosen numerically and ai, j =
√

γ · pi, j

ρi, j
is the

sound speed in the fluid.
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Figure 4: The PML region and the receivers located at five different positions in
the ejector-diffuser device are depicted. In this study the PML thickness L′ is taken
equal to 10∆x = 0.1 m (as in the picture) or 20∆x = 0.2 m for L = 10 or 20 points
respectively.

7 The Numerical Test

The mesh is generated using the CFL stability criterion (48), the grid size is 1101
× 41 and two different thicknesses L of the PML with values of 10 or 20 points
(L′ = L∆x = 10∆x or 20∆x) are tested in the ξ direction depending on the simu-
lation under study. In what follows, we define a "receiver" as a virtual point that
is located somewhere in the computational domain and that stores the evolution of
a variable (velocity component, density, pressure, temperature, or other physical
variables) during the expected time period of simulation. In Figure (4) the whole
domain is depicted with three receivers V1 (x = 3.75, y = 0.21), V2 (x = 3.75,
y = 0.04) and V3 (x = 3.75, y = 0.38) located close to the right PML, 20 points
from the PML (V2 and V3 are located respectively at 3 and 2 points from the
lower and upper walls) and with two receivers V4 (x = 2.046, y = 0.21) and V5
(x = 0.7275, y = 0.21) located on the symmetry axis of the nozzle. The solutions
stored at these receivers at each time step are compared to a reference solution com-
puted in a larger computational domain ended by a PML. The flow is initialized in
the nozzle at ambiant air conditions with a pressure, a density and a temperature
respectively equal to 105 Pa, 1.23 Kg/m3 and 286 K everywhere inside the com-
putational domain as well as at the inflow and outflow boundaries and the velocity
field is initialized to uo = vo = 0.0 m/s inside the nozzle. At the upstream boundary,
velocities are initialized to uo = 678 m/s and vo = 0.0 m/s at a vent of 0.18 m. Sim-
ulations are performed over 5 s, i.e. 5×106 time steps with a time step ∆t of 10−6 s
that verifies criterion (48). The flux reaches a steady state after approximately 4 s
of real simulation. Different simulations have been performed here with different
values of the frequency shift fc that we vary from 40 to 100 Hz, and a typical value
of κmax equal to 10. The PML thickness is defined with 10 or 20 points and simu-
lations are performed with different values of the reflection coefficient Rc equal to
10−3, 10−4 or 10−5. In Figures (5) and (6), snapshots of the Mach number and the
density are shown at different times from 0.2 s to 5 s. In this particular case we take
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fc = 100 Hz and Rc = 10−5 and L = 20. We can observe how expected patterns and
physical features like compression cells or expansion flows develop respectively at
the inner core and at the diverging outlet of the nozzle. The expected diverging
and expanded flow structure at the right end of the nozzle is well preserved during
all the simulation with no spurious waves or fluxes returning back from the right
PML. In this part of the device the density decreases as it should be and the Mach
number increases to values around 2.2 with the generation of an expansion fan at
the outlet without significant distortions of its structure that could be due to parasit
fluxes coming from the PML. In the meantime, the Mach number decreases in the
subsonic boundary layer close to the walls without instabilities that could possibly
be generated by the presence of the PML. In the case of PML solutions computed
with fc = 100 Hz and Rc = 10−5 no significant spurious flows are propagating back
into the main domain as can be shown in Figure (7) in which velocity solutions with

simple and standard Newmann outlet conditions (
∂U
∂ξ

∣∣∣∣
outlet

= 0) are compared to

solutions with PML conditions at different times. While the velocities are signif-
icantly reflected at the outer Newmann boundary, the velocities are not submitted
to significant reflections in the case of PML solutions, even near the upper and
lower walls in the subsonic boundary layer which is generally difficult to stabilize.
When a simple Newmann boundary condition is imposed significant spurious flows
are returning back into the computational domain from the outer boundary, which
introduces strong oscillations in the solution. Furthermore, these effects are com-
monly produced when the flux is critical. On the contrary, we can see that we do
not have spurious returning flows when PML conditions are used. More precisely,
in Figures (7)-(a,c,e) we can see a small shock between the main flow and the non-
physical returning flow in the right zoomed region close to the outer boundary in
the case of Newmann condition while this situation is not produced in the CPML
case (Figures (7)-(b,d,f)). Furthermore, in Figure (8) we also observe in the zoomed
region that density contours are efficiently absorbed with few reflections at differ-
ent times of simulation as well as the flow velocities when CPML is used. In order
to analyze the sensitivity of the solutions to different parameters involved in the
damping functions, we performed different simulations with varying parameters
like the frequency shift fc, the PML thickness L and the reflection coefficient Rc. In
Figures (9), (10) and (11) we show the evolution of the density and the horizontal
velocity over 5 million time steps (5 s) at the four receivers V1, V3, V4 and V5 (V2
and V3 have a symmetric behavior and then we do not show here the solution at
receiver V2 by sake of clarity) for the different values of fc, Rc and L. The biggest
errors are obtained using fc = 40, L = 10, Rc = 10−3, particularly for receivers V1,
V2 and V3. In all curves it is shown that if fc is increased up to 100 Hz, L from 10
to 20 and Rc decreased from 10−3 to 10−5 the relative error between the reference



66 Copyright © 2010 Tech Science Press CMES, vol.63, no.1, pp.47-77, 2010

solution and the CPML solution is reduced and lies under a maximum threshold
of around 1%. This is well summarized in Tables (1) and (2) in which velocity
and density errors are provided for different values of fc, L and Rc. Finally and
as expected, solutions at receivers V4 and V5 which are far from or not close to
the outlet solutions are almost perfect with relative errors around 0.6% lower than
errors (around 0.9%) evaluated at receivers V1, V2 and V3. In order to study the
stability of the solution over long time periods we calculated the energy of the sys-
tem 1

2(u2 +v2)+(γ−1) p
ρ

over 5 million time steps. In Figure (12), the variation of
the energy of the system is shown on a semi-logarithmic scale. The energy decays
very fast in the first 2 s and reaches an almost constant value as expected, which
indicates that no spurious energy is injected back into the computational domain.
This is another way to show the efficiency and stability of the CPML absorbing
technique at long time periods and that this shifted unsplit CPML is a good candi-
date for fluid dynamics applications and particularly for directed flows evolving in
moderately diverging geometries.

Conclusions

We introduced an unsplit convolution PML (CPML) boundary condition for the
Navier-Stokes equation in the conservation form. By increasing the frequency shift
fc to values as high as 100 Hz, the PML thickness from 10 to 20 points and by
decreasing the reflection coefficient Rc from 10−3 to 10−5, the CPML becomes
very efficient with no significant spurious flows propagating back into the main
domain. Relative errors of the variables as different as velocities and densities
reach values lower than 1 %. Furthermore, in the better case, solutions located in
the corners close to the PML (receivers V2 and V3) or in a direction of the outflow
orthogonal to the PML (receiver V1) can reach errors lying between 0.5 % and
0.9 %. These errors are reached for fc =100 Hz and L=20, with errors around
0.5 % for Rc=10−5. Generally the parameters fc and L are more sensitive than Rc.
CPML avoids oscillations in the results and ensures stability of the whole system
over long time periods of 5 million time steps. CPML is then a good candidate
to build efficient absorbing boundary conditions for non linear systems like the
Navier-Stokes equations. This is another argument in favor of CPML comparing
to other classical or optimized PMLs. Finally this unsplit formulation allows a
reduction of the number of arrays involved in the computations when it is compared
to optimized or classical split PML techniques.

Acknowledgement: The authors thank Julien Diaz for fruitful discussions on
the formulation of PML for fluid dynamics.
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Figure 5: Snapshots of the Mach number in the ejector diffuser are reproduced
at time 0.2 s, 0.9 s, 1.65 s and 5 s. The countour levels with their respective
numerical labels show that compression cells are generated preferentially along the
symmetry axis and that the expansion patterns at the right end are well reproduced
with almost no spurious reflections coming back from the base of the PML and
retropropagating into the main domain. From the base (at around x = 300 cm)
to the end of the diverging part of the device the flow expands with an expected
increase of the Mach number up to values around 2.2. As the no-slip conditions are
imposed at the walls, a viscous boundary layer develops near the walls in which
the flow is subsonic. At around 5 s, the flow dynamics reach an almost steady state
regime after 5 million time steps. The subsonic transition layer close to the walls
is not significantly perturbed even in the diverging part of the ejector and close to
the PML, which is difficult to obtain. Indeed, instabilities can be generated in the
subsonic layer if non improved PML are used, which is not the case here. This
provides us very encouraging results and shows that our PML is a good candidate
for directed flows in industrial applications.



68 Copyright © 2010 Tech Science Press CMES, vol.63, no.1, pp.47-77, 2010

0 1 0 0 2 0 0 3 0 0 4 0 0
0

2 5

5 0

0 1 0 0 2 0 0 3 0 0 4 0 0
0

2 5

5 0

0 1 0 0 2 0 0 3 0 0 4 0 0
0

2 5

5 0

0 1 0 0 2 0 0 3 0 0 4 0 0
0

2 5

5 0

( )a

( )b

( )c

( )d

Figure 6: Snapshots of the density in the ejector diffuser are reproduced at time
0.2 s, 0.9 s, 1.65 s and 5 s. As in Figure (5), the countour levels with their respective
numerical labels show that compression cells are generated preferentially along the
symmetry axis and that the expansion patterns at the right end are well reproduced
with almost no spurious reflections coming back from the base of the PML. From
the base (at around x = 300 cm) to the end of the diverging part of the device the
flow expands with a regular decrease of the density as expected. At around 5 s, the
flow dynamics reach an almost steady state regime after 5 million time steps. The
subsonic transition layer close the walls is not significantly perturbed even in the
diverging part of ejector and close to the PML, which is difficult to obtain.
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Figure 7: The velocity field is shown here at different times in a zoomed region
corresponding to the right diverging part of the ejector (coordinates expressed in
centimeters). It is superimposed to the Mach number. In the left column (Figures
(a), (c) and (e)) we use standard Neumann conditions at the right oulet and we can
see a strong interaction between the main flux and the spurious flux coming back
from the right edge. In the right column (Figures (b), (d) and ( f )) a PML is present
at the right end of the ejector. In this case the spurious returning flux is avoided and
the PML is really efficient.
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Figure 8: We show here, in the same zoomed section of the ejector (coordinates
expressed in centimeters) as in Figure (7), how density is efficiently absorbed in
the PML region at different times.
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Figure 9: Horizontal velocity (left) and density (right) registered at receiver V1
over a long time period of 5 s and for different values of the frequency shift fc, the
PML thickness L and the reflection coefficient Rc. Newmann solutions (N) are also
plotted as well as the difference between the reference solution and the PML (or
Newmann) solutions. In all the simulations the Newmann solutions are really bad
as expected. (Left) In (a) we can observe that for fc = 40 Hz and L = 10 points
there are some discrepancies between PML and reference solutions. In (b) PML
solutions are significantly improved by increasing fc to 50 Hz and L to 20 points.
The influence of different values of Rc is not really significant. In (c) PML solutions
with fc = 100 Hz and L = 20 points are even better independently of the values of
Rc. PML and reference solutions are almost superimposed. It seems that values
of Rc between 10−3 and 10−4 are sufficient. (Right) Density solutions are subject
to similar accuracy behavior as for the PML velocity solutions. The increase of fc

and L have more influence than Rc coefficient. A Rc value of 10−3 seems to be also
sufficient for this simulation while a cut-off frequency shift fc around 100 Hz and
a thickness of 20 points improve the solutions by a more efficient damping of the
flow in the PML.
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( )a
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( )f
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Figure 10: Same as in Figure (9) but for the receiver V2 located at the upper corner
of the right edge and close to the PML. For this particular receiver a good accuracy
of the solution is much more difficult to reach than in the case of receiver V1 be-
cause the flow is subsonic or close to subsonic at this receiver and does not impinge
the PML at normal incidence but with a non zero angle. It is very interesting to no-
tice, in particular in figures (c) and ( f ), the good fit between PML and reference
solutions for fc = 100 Hz and L = 20 points with almost no differences while for
lower values of fc equal to 50 Hz there are still visible discrepancies. A value of Rc

equal to 10−5 has more significant influence in the accuracy of the solutions than
a value of 10−3, a value of 10−5 being nearly optimal. This is confirmed in the ta-
bles containing the relative errors in velocity and density evaluated at the different
receivers.
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Figure 11: Evolution in time of the horizontal velocity and the density at receivers
V4 (bottom) and V5 (top). Plot (a) shows the evolution of the horizontal component
u of the velocity at receiver V5 for fc = 100 Hz, L = 20 points and two different
values of Rc (10−3 and 10−5). Plot (b) shows the horizontal component u of the
velocity at receiver V4 for the same parameters. Plots (c) and (d) show the evolution
of the density at receivers V5 and V4 respectively. Both velocities and densities are
very close to the reference solution with really few differences even in the density,
which is more difficult to reach (see density registration in Figure (9)) . The Rc

coefficient has no significant influence on the solution (a value of 10−3 is sufficient).
The reason is that receivers V4 and V5 are located on the symmetry axis normal to
the PML and far from the PML. The solution is excellent inside the computational
domain with no contamination coming from the PML.
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Figure 12: Evolution of the total energy in the system over long time periods. In
this figure the total energy decreases very fast at around t = 0.75 s until it reaches
a value of around 2.8×109 J after 5×106 time steps. Total energy decay evolves
towards an almost constant energy at a long time period. This behavior of the
energy shows the stability of our PMLs for long time periods of simulation and
also the efficiency of the PMLs since no significant production of spurious energy
coming back into the domain from the PML boundaries is visible.
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