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An Analysis of the Transient Heat Conduction for Plates
with the Functionally Graded Material Using the Hybrid

Numerical Method

J.H. Tian1,2, X. Han2, S.Y. Long2, G.Y. Sun2, Y. Cao1 and G.Q. Xie3

Abstract: A transient heat conduction analysis of the functionally graded ma-
terial (FGM) plates has been investigated based on the hybrid numerical method
(HNM). HNM combines the layer element method with the method of Fourier
transforms and proves to be efficient and reliable. The FGM plates are infinite large
and the material properties vary continuously through thickness. The transient heat
source acted on the FGM plates. The temperature distribution of the FGM plates is
obtained in different time and different position. Some useful results for transient
heat conduction are shown in figures. Applications of HNM to transient heat con-
duction are firstly presented a new way for studying the transient heat conduction
problems.

Keywords: Functionally graded material; transient heat conduction; hybrid nu-
merical method

1 Introduction

Functionally graded material (FGM) has been developed as a new material that
is adaptable for a super-high-temperature environment. Temperature change often
represents a significant factor, and often induces the failure of FGM. So investigat-
ing the heat problems of the FGM plates is very necessary.

Researchers have presented many methods to investigate heat problems of FGM.
Ootao and Tanigawa (2002) were concerned with the theoretical treatment of tran-
sient thermal stress problem involving an angle-ply laminated cylindrical panel
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consisting of an oblique pile of layers having orthotropic material properties due to
nonuniform heat supply in the circumferential direction. Savoia and Reddy (1995)
presented results of the stress analysis of multilayered plates subject to thermal
and mechanical loads in the context of the three-dimensional quassi-static theory
of thermoelasticity. Cheng and Batra (2000), Reddy and Cheng (2001) used the
asymptotic expansion method to study the three-dimensional thermoelastic defor-
mations of functionally graded elliptic and rectangular plates, respectively. Vel
and Batra (2002,2003) presented exact three-dimensional solutions for the steady-
state and quasi-static transient thermoelastic response of functionally graded thick
plates with an arbitrary variation of material properties in the thickness direction.
Qian et al. (2004), Qian and Batra (2004) obtained results for the steady-state
and transient thermoelastic response of functionally graded plates using the mesh-
less local Petrov–Galerkin method that agrees with the exact solution of Vel and
Batra (2002,2003). Sladek et al. (2008a, 2008b) applied a meshless local Petrov-
Galerkin (MLPG) method into solving problems of Reissner-Mindlin shells under
thermal loading and also proposed a meshless method based on the local Petrov-
Galerkin approach to obtain the solution of steady-state and transient heat con-
duction problems in a continuously nonhomogeneous anisotropic medium. Chein-
Shan Liu (2008) treated inverse thermal stress problems using the Lie-group shoot-
ing method through an internal temperature measurement. Lutz and Zimmerman
presented the exact solutions for one-dimensional thermal stresses of functionally
graded cylinder (1996) and sphere (1999) whose elastic moduli and thermal expan-
sion coefficients vary linearly along radius.

Recently, Liu (2002) proposed an efficient and reliable method called HNM. This
method combined efficiency of the finite element method and accuracy of the an-
alytical method. It had been applied to solve displacement response problems and
proved to be validity. Tian et al.(2009) expanded HNM to investigate the heat
conduction problem of FGM plates and obtained useful results. In this paper, the
analysis of the transient heat conduction for plates with the functionally graded
material is presented using HNM.

2 Heat conduction formulation based on HNM

Consider a plate with the functionally graded material that has nonhomogeneous
thermal and mechanical properties along the thickness direction as shown in Fig.1.
Its thickness is represented by H. Here, assume that the plate is initially at zero
temperature and is suddenly heated from the middle line y axis of the upper surface
by the surrounding medium with relative heat transfer coefficient α , and assume
that the heat source is throughout the y-direction. Then this problem is reduced
a two-dimensional heat conduction problem in x− z plane. The temperature of
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the surrounding medium is denoted by a function Tf and assume its lower surface
(z = 0) is held zero temperature.
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Figure 1: Analysis model and coordinate system

2.1 HNM for heat conduction problem

The thermal conductivity of the plate is assumed to take the following continuous
form

λ (z) = λl +
λu−λl

H
z 0≤ z≤ H (1)

Where λu and λl are the thermal conductivity of upper and lower surfaces, respec-
tively.

Specific heat c and density ρ are also assumed to be the continuous linear form just
like the thermal conductivity. The heat conduction equation involving an internal
heat source is taken as
∂

∂x
[λ (z)

∂T
∂x

]+
∂

∂ z
[λ (z)

∂T
∂ z

]+qv = cρ
∂T
∂ t

(2)

The temperature field within a layer element is approximated as

T = N(z)ΦΦΦ(x, t) (3)

where N(z) is a shape function matrix, and here the quadratic shape function is
used as

N(z) = [(1−3z̄+2z̄2)4(z̄− z̄2)(2z̄2− z̄)] (4)
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in which z̄ = z/h, h is thickness of a layer element. In Eq. (3), ΦΦΦ is a matrix
consisting of nodal line temperatures, which are a function of the coordinate x and
time t, and is denoted as

ΦΦΦ =


Φl
Φm

Φu

 (5)

where the subscript l,m,u denotes lower, middle, upper nodal lines of an element.

The initial condition and thermal boundary conditions are expressed as follows

T |t=0 = 0 (6)

z = H; −λ (z)
∂T
∂ z

∣∣∣∣
Γ

= α(Tf −T )
∣∣
Γ

(7)

where Γ denotes the boundary of the plate.

Using the weighted residual method for Eq. (2) and Eq. (7), there have∫ h

0
NT
[

cρ
∂T
∂ t
− [

∂

∂x
(λ (z)

∂T
∂x

)+
∂

∂ z
(λ (z)

∂T
∂ z

)]−qv

]
dz+ λ (z)

∂T
∂ z

∣∣∣∣
Γ

+ α(T −Tf )
∣∣
Γ

= 0
(8)

Performing lengthy and simple operations, we obtain

CΦ̇ΦΦ+KDΦΦΦ = Q (9)

Where

C =
∫ h

0
NT cρNdz (10)

KD =−
∫ h

0
NT

λ (z)Ndz · ∂ 2

∂x2 +(λ (z)
∂N
∂ z

∣∣∣∣
Γ

+ αN|
Γ
−
∫ h

0
NT

λ (z)
∂ 2N
∂ z2 dz) (11)

Q =
∫ h

0
NT qvdz+ αTf

∣∣
Γ

(12)

Substituting Eq. (4) into Eq. (10) and integrating alongz, we obtain

C =
cρh
30

 4 2 −1
2 16 2
−1 2 4

 (13)



An Analysis of the Transient Heat Conduction 105

Performing simple operation to Eq. (11), KD can be written as

KD =−A1 ·
∂ 2

∂x2 +A0 (14)

where

A1 =
hλ (z)

30

 4 2 −1
2 16 2
−1 2 4

 (15)

A0 =
λ (z)
3h

 7 −8 1
−8 16 −8
1 −8 7

+α

1 0 0
0 0 0
0 0 −1

 (16)

After lengthy and tedious operations to Eq. (12), we have

Q =
qvh
6

1
4
1

+ αTf
∣∣
Γ

(17)

Assembling all elements, Eq. (9) becomes as

CsΦ̇ΦΦs +KDsΦΦΦs = Qs (18)

where

KDs =−A1s ·
∂ 2

∂x2 +A0s (19)

where the subscript D denotes the matrix Ks is a differential operator matrix. Ma-
trices Cs,Ais(i = 1,2),Qs are obtained by assembling C,Ai(i = 1,2),Q for all the
elements. Because the quadratic shape function is used, and there are three nodal
lines in each element, the dimension of Cs,Ais(i = 1,2) matrices are M×M(M =
2N +1), the dimension of Qs matrices is M×1(M = 2N +1), where Nis the num-
ber of the layer element.

2.2 Fourier Transform

The Fourier transform of domain x to domain ζx can be defined as follows

Φ̃ΦΦs(ζx, t) =
∫

∞

−∞

ΦΦΦs(x, t)eiζxxdx (20)
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The application of the Fourier transform to Eq. (16) leads to a set of system equa-
tions as follows

Cs
˙̃

ΦΦΦs +KsΦ̃ΦΦs = Q̃s (21)

where ˙̃
ΦΦΦs,Φ̃ΦΦs and Q̃s are the Fourier transform of Φ̇ΦΦs,ΦΦΦs and Qs,respectively. Ma-

trix Ks is given by

Ks = ζ
2
x A1s +A0s (22)

Which is a constant matrix for given ζx.

2.3 Temperature in ζx Domain

Assume the corresponding homogeneous solution of Eq. (21) as

Φ̃ΦΦs = ψψψe−ωt (23)

Instituting Eq. (23) into Eq. (21), obtain

[Ks−ωCs]ψψψ = 0 (24)

Its eigenvalue equation is obtained as

|Ks−ωCs|= 0 (25)

From Eq.(25) and (24), eigenvalues ωm(m = 1,2, . . . ,M) and corresponding eigen-
vectors ψψψR

m can be obtained.

Transformed Φ̃ΦΦs and Q̃s of Eq. (21) can be expressed as series of eigenvectors

Φ̃ΦΦs =
M

∑
m=1

amψψψ
R
m (26)

Q̃s =
M

∑
m=1

bmCsψψψ
R
m (27)

where am,bm are functions of time.

Substitution of Eqs. (26) and (27) into (19) leads to the following equation

ȧm +ωmam = bm (28)

In which bm can be rewrite by Eq. (27) as follows

bm =
ψψψL

mQ̃s

ψψψL
mCsψψψ

R
m

(29)
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Where superscripts L and R represent left eigenvector and right eigenvector, respec-
tively.

For a given Q̃s, bm can be obtained.

From the initial condition (6), we have

am|τ=0 = 0 (30)

Solving Eq. (28) for am, we obtain

am = e−ωmt(
∫

ψψψL
mQ̃s

ψψψL
mCsψψψ

R
m

eωmtdt +O) (31)

When the internal heat source is not considered, Qs can be rewritten as

Qs = αTf
∣∣
Γ

(32)

Here assume that Qs has the following form

Qs =

{
αT0 f sin(ω f t)

∣∣
Γs t ≤ t ′

0 t > t ′
(33)

T0 f is a constant media temperature, t1 is the control period for supplying heat.

Applying the Fourier transform to Eq. (33), we have

Q̃s =

{
αT̃0 f sin(ω f t)

∣∣
Γs t ≤ t ′

0 t > t ′
(34)

Instituting Eq. (34) into Eq. (31), am becomes as

am = e−ωmt(
∫

ψψψL
m αT̃0 f sin(ω f t)

∣∣
Γs

Cc
eωmtdt +O) (35)

In which

Cc = ψψψ
L
mCsψψψ

R
m (36)

Instituting Eq. (30) into Eq. (35), then into Eq. (26), the temperature matrix in the
Fourier transform domain is given as

Φ̃ΦΦs =


M
∑

m=1

ψψψL
m αT̃0 f |

Γs
ψψψR

m

(ω2
f +ω2

m)Cc
(ωm sin(ω f t)−ω f cos(ω f t)+ω f e−ωmt) t ≤ t ′

M
∑

m=1
e−ωmt · ψψψL

m αT̃0 f |
Γs

ψR
m·{[ωm sin(ω f t1)−ω f cos(ω f t1)]eωmt1+2ω f }

(ω2
f +ω2

m)Cc
t > t ′

(37)
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2.4 Temperature in Space-Time Domain

Performing the inverse Fourier transform of Eq.(37), the temperature in the space-
time domain can be expressed as

ΦΦΦs(x, t) =
1

2π

∫
∞

−∞

Φ̃ΦΦs(ζx, t)e−iζxxdζx (38)

The integration in Eq. (38) can be carried out using fast Fourier transform (FFT)
techniques.

3 Results and Discussions

In computation, time interval is taken as 1 second and control period t ′ is 0.5 sec-
ond. The time domain is divided into 200 steps. The wave number domain is taken
as from 0 to 64π and is divided into 750 steps. Space domain is taken as from 0 to
10 and is divided into 1000 steps. Ceramic ZrO2 and metal Ti - 6Al - 4V are taken
in investigation. The material properties of ZrO2 and Ti - 6Al - 4V are shown in ta-
ble 1. Upper and lower surface consist of ZrO2 and Ti - 6Al - 4V, respectively. The
properties of the middle materials vary continuously along its thickness direction.

Table 1: Material properties of ZrO2 and Ti - 6Al - 4V

Material Thermal conductivity Specific heat Density
λ (W ·m−1 ·K−1) J ·kg−1 ·K−1 ρ(kg ·m−3)

ZrO2 2.09 456.7 5331
Ti - 6Al - 4V 7.50 537.0 4420

In computation, the following dimensionless parameters are introduced

T̄ = T/T0, t̄ = t/t0, x̄ = x/H,

λ̄ = λ/λ0, c̄ = c/c0, ρ̄ = ρ/ρ0, ᾱ = α/α0 (39)

The temperature distribution of FGM plate subjected to the transient surrounding
heat of Eq. (33) is computed using HNM at different time step. Dividing FGM
plate into different elements such as 20,40,80,100, the temperature distribution of
the upper surface for FGM plate at 80 step, that is 0.4 second, corresponding having
heat supply, are shown in Fig.2. From Fig.2, it can be seen, while 20 elements and
40 elements are divided, the temperature distributions are obvious difference; while
40 elements and 80 elements are divided, the results are very approaching; while
80 elements and 100 elements are divided, the results are almost coincidence. This
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shows the presented method is convergent. The better results can be obtained while
the element is smaller enough. For saving computation time and ensuring the result
precision, the 40 elements are used in the following computation.

The temperature distributions at three positions are shown from Fig. 3 to Fig. 5.
The three positions are upper surface, middle surface and lower surface, respec-
tively. Three observation times are considered, t1 time, t2 time and t3 time.t1 =
0.4s, t2 = 0.51s, t3 = 0.52s. The heat supply time is t ′ = 0.5s, t1 time corresponds
to the state of heat supply, t2 time and t3 time correspond to the state of without
heat supply. From Fig.3, it can be seen that the wave character of the temperature
distribution appeared on the upper surface of FGM plate while far from heat source
at t1 time. The reason is the heat source supplying to the plate with sine form. The
decrease character also appeared while far from heat source. In a word, at t1 time
the regular of the temperature distribution of the upper surface for FGM plate is
that the temperature distribution appeared wave decrease character while far from
heat source with sine heat supply. At t2 time and t3 time, the decrease character
of temperature distribution existed, yet the wave character vanished. The reason
is this time corresponding to the state of without heat supply. Free heat conduc-
tion proceeded at that time. So the temperature on the upper plate appeared the
smooth decrease character while without heat supply. We can also know that the
temperature on the upper surface anywhere at t2 time is higher than at t3 time. The
temperature decreased without heat supply and it will decrease to zero by a long
time as if it returned initial time state. We can also find the highest temperature is
not at heat source position. It appeared wave crest position near heat source firstly
because of the sine heat supply.

Observing the temperature distribution for middle surface and lower surface of the
FGM plate such as Fig.4 and Fig.5, the same regular can be obtained, that is wave
decrease character for having heat supply and smooth decrease character for with-
out heat supply. Comparing Fig.3, Fig.4 and Fig5, we can found that the only
different is the temperature value. The thicker plate, the lower temperature, the
highest temperature is 0.24 on upper surface while only 0.0009 on the lower sur-
face at t1 time for the state of having heat source.

Temperature distribution of time histories of FGM plate on the different observation
surface subjected to transient heat supply is shown from Fig. 6 to Fig. 8. Three
observation positions are chosen for studying. They are point x1, point x2 and point
x3, respectively. Here, x1 = 0.1, x2 = 0.5, x3 = 1. While supplying transient heat
source, the temperature distribution regular of the three observation position is that
the temperature of point x1 is higher than point x2, the temperature of point x2 is
higher than point x3. This shows the nearer heat source, the higher temperature,
vice versa. It agrees with the actual results. Observing the temperature of the
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Figure 2: Temperature distribution of the upper surface for FGM plate divided
different element
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Figure 3: Temperature distribution of the upper surface of FGM plate in different
times subjected to sine transient heat supply
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Figure 4: Temperature distribution of the middle surface of FGM plate in different
times subjected to sine transient heat supply
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Figure 5: Temperature distribution of the lower surface of FGM plate in different
times subjected to sine transient heat supply
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Figure 6: Temperature distribution of time histories of the different observation
position in the upper surface of FGM plate subjected to sine transient heat supply

 
Figure 7: Temperature distribution of time histories of the different observation
position in the middle surface of FGM plate subjected to sine transient heat supply
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Figure 8: Temperature distribution of time histories of the different observation
position in the lower surface of FGM plate subjected to sine transient heat supply

upper surface at point x1, we can found that the temperature distribution of the
plate is sine form at from 0s to 0.5s for having heat supply, then having inflection
temperature and appearing sudden decline after 0.5s for without heat supply. The
temperature decreased to zero in a short time 0.15s just as returning to initial time
state. It shows that the transient free heat conduction proceeded while without heat
source. The phenomena of point x2 and x3 is just as point x1. The phenomena of
else surface is just as upper surface. It also shows that the transient heat conduction
time is from 0.5s to 0.58s whether observation position is far or near from the
heat source. The variation trend of temperature distribution is almost same on the
different observation surface. The only difference is the temperature value.

4 Conclusions

In the present article, the transient heat conduction of FGM plate has been inves-
tigated using the HNM. The temperature distribution of the FGM plate along the
thickness direction and length direction are shown. This study applies HNM into
transient heat conduction and obtained useful result. The application domain of
HNM is extends to transient heat domain and presents a new way to investigate the
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transient heat problem.
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