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Numerical Simulation of Fluid Induced Vibration of
Graphenes at Micron Scales

Y. Inoue1, R. Kobayashi1, S. Ogata1 and T. Gotoh1

Abstract: Vibration of a single graphene and a pair of graphenes at micro me-
ter scale induced by air flow is numerically simulated and examined by using a
hybrid computational method starting from a microscopic level of description for
the graphene. In order to bridge a huge gap in spatial and time scales in their mo-
tions, the carbon atoms of the graphene are represented by a small number of coarse
grained particles, the fluid motion is described by the lattice Boltzmann equation
and the momentum exchange at the boundary is treated by the time averaged im-
mersed boundary method. It is found that a single graphene with attack angle 60◦

and 90◦ to the flow direction begins to bend downstream with oscillation after re-
lease and tends to attain an equilibrium form, but the oscillation amplitudes for
30◦ increases in time. Also found is that when the separation distance of a pair
of graphenes increases, the oscillation amplitudes become larger and chaotic and
they collide each other, and the vorticity fields also tend to develop complex pat-
tern. Strain distribution inside the graphene is also computed. Possibility to use
the present system as a flow sensor and further development of the hybrid compu-
tational method are discussed.

Keywords: Microfluidics, coarse graining particle, lattice Boltzmann method,
graphene, vibration, multi-scale multi-physics

1 Introduction

Microfluidics has been one of the most actively studied fields and attracting much
attention. With progress in experimental technique and instruments the character-
istic length and time scales of fluid devices such as flow pump, flow meter, mixer
and so on are reaching micro meter or even nano meter scale, and developments of
more efficient and smaller fluid devices are indispensable for the next generation
MEMS and NEMS (Micro (or Nano)-Electro Mechanical System) [Kaabi, Kaabi,
Sakly, and AbdelMalek (2007); Benvenuto, Guarnieri, Lorenzelli, Collini, Decarli,
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Adami, Potrich, Canteri, and Pederzolli (2008); Zhang, Ruan, Wang, Zhou, Wang,
and Liu (2010)]. In the study of fluid devices at very small scales, the surface phe-
nomena such as contact angle, slip velocity, surface roughness, chemical reaction,
thermal noise, and the molecular structure of solid and fluid are important factors in
designing and fabricating those devices, and understanding of interaction between
fluid and solid at the interface between two phases by taking into account of these
factors is highly demanding.

In this paper we focus on the mechanical aspects of the fluid-solid interaction at
micro or submicron scales. For this purpose, however, it is not trivial whether the
conventional continuum approaches using macroscopic parameters such as elastic
constant and heat conductivity are sufficient to accurately describe the behavior
of solid and the interaction between the two phases at mesoscale (micron to sub-
micron scale) [Yan, He, Zhang, and Wang (2007)]. For example, graphene is a
mono layer of carbon atoms of the hexagonal crystal structure and has been attract-
ing great interest due to its unique characteristics such as large electron transfer,
spin transfer, mechanical stability and strength, suggesting a wide range of appli-
cations as electronic devices [Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos,
Grigorieva, and Firsov (2004)]. Because of its crystalline structure, anisotropy in
various material characteristics might be expected. Also the graphene is so easily
bent that it would be used to make a nano scale flow sensor or driver by further
advancing the fabrication techniques [Kondo, Sato, and Awano (2008)], but neither
precise response to the external forces nor the elastic constants at the mesoscale are
well known [Yan, He, Zhang, and Wang (2007)]. This motivates us to numerically
simulate the interaction between the flow field and graphenes from the microscopic
level, which is a multi-scale multi-physics problem because there exists a huge gap
in their characteristic spatial and time scales.

We have developed a hybrid computational method to bridge over this huge gap
in scales of motion [Inoue, Tanaka, Kobayashi, Ogata, and Gotoh (2008); Ogata,
R. Kobayashi, and Gotoh (2009)] in which the interaction between fluid and hy-
pothetical elastic rods composed of argon atoms in two dimensions is numerically
simulated. Degrees of freedom of a large number of argon atoms are reduced to
those of a small number of coarse grained particles (CGPs) by taking the thermal
average of the Hamiltonian of the argon atoms under a constraint to a subset of the
argon atoms (reduction in spatial scale), and the fluid motion is expressed in terms
of the lattice Boltzmann equation (LBE). Momentum exchange at the interface is
accomplished by coarse graining the immersed boundary method (IBM) in time
domain (reduction in time scale). The hybrid method has successfully been applied
to the problems of the interaction between the rods and fluid in two dimensions
and shown that a collective motion of an array of the elastic rods excited by the
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Rayleigh wave can generate a systematic flow in the opposite direction to that of
the Rayleigh wave propagation, suggesting a flow driver [Benvenuto, Guarnieri,
Lorenzelli, Collini, Decarli, Adami, Potrich, Canteri, and Pederzolli (2008)].

The aim of the present study is to further develop the above hybrid computational
method for the problem of interaction between the graphenes and air flow in three
dimensions. We analyze the motion of a single graphene and a pair of graphenes
which are attached on the flat plate and set in a steady air flow. We examine how the
graphene responds to the flow, and analyze the flow field and the strain distribution
inside the graphene. The paper is organized as follows. In Section 2, the hybrid
computational method by using CGP, LBE, and IBM is explained, and Section 3
describes the numerical conditions and the simulation results. In Section 4, we
summarize the results and discuss the various aspects of the present method for the
future development.

2 Hybrid computational method

2.1 Coarse grained particle method

Although the theory for the present hybrid computational method has been de-
scribed in [Inoue, Tanaka, Kobayashi, Ogata, and Gotoh (2008)], we explain it
with emphasis on the matching conditions of the spatial and time scales of mo-
tions because the present paper studies the case with more reality (graphene in the
air flow in three dimensions) than before and because we believe that the idea and
description of the method have been refined and become more precise.

The graphene is a single layer of carbon atoms connected by sp2-bond and the char-
acteristic length of a unit cell is of the order of 10−10 [m] and characteristic time of
atomic vibration is 10−14 [s] [Novoselov, Geim, Morozov, Jiang, Zhang, Dubonos,
Grigorieva, and Firsov (2004)]. On the other hand, the fluid motion is a collective
motion of a large number of fluid molecules at submicron or larger scales. In order
to numerically simulate the coupling of the fluid and the very small graphene from
the microscopic view point, it is indispensable to reduce the degrees of freedom of
atoms consisting the crystalline system. For this purpose we use the coarse grained
particle (CGP) method which has been invented by Rudd and Broughton [Rudd and
Broughton (1998, 2005)] and developed also by Ogata and his group [Kobayashi,
Nakamura, and Ogata (2008a,b); Ogata, R. Kobayashi, and Gotoh (2009)]. Here
we briefly describe the method, and its details and numerical performance can be
seen in Refs. [Kobayashi, Nakamura, and Ogata (2008a); Ogata, R. Kobayashi, and
Gotoh (2009)].

In the CGP method for the solid material with crystalline structure, the Hamiltonian
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of the carbon atoms under the phonon approximation is assumed to be given by

H =
N

∑
α

ppp2
α

2mα

+
N

∑
α,β

1
2

uuuαDDDαβ uuuβ , (1)

where mα , uuuα , and pppα are the mass, the displacement vector, and the momentum
of atom α , respectively, and DDDαβ is the dynamical matrix between atoms α and β .
In order to reduce the degrees of freedom of N carbon atoms, the Hamiltonian H of
the carbon atoms is statistically projected onto Hamiltonian HCG of a small number
(NCG� N) of CGPs by taking the thermal average
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where δ (x) is Dirac’s delta function, Z the partition function, kB the Boltzmann
constant, T the absolute temperature. The function φi,α is a weight function which
relates UUU i to uuuα and corresponds to the inverse of the shape function used in the
finite element method, and NC(< N) is the number of the carbon atoms inside a
spatial domain whose linear dimension is a few times larger than that of the mean
separation distance of CGPs. Since the Hamiltonian H is a quadratic in uuu and ppp,
HCG can be computed analytically as

HCG = Hint +
1
2

NCG

∑
i, j

(
PPPiMMM−1

i j PPP j +UUU iKKKi jUUU j

)
, (4)

Hint ≡ 3(N−NCG)kBT, (5)

where PPPi = ∑ j MMMi jU̇UU j, KKKi j = [(φDDD−1
φ t)−1]i j is the stiffness matrix for the CGP

system, and MMMi j = [(φmmm−1φ t)−1]i j is the mass matrix and mmm = mαδαβ . The dis-
placements and momenta of CGPs are linearly related to those of the carbon atoms,
but this relation is statistical so that it allows for a set of carbon atoms to explore
widely the configuration sample space of the carbon atoms in proportion to the
probability at the thermal equilibrium. The renormalized matrices MMM and KKK are
nonlocal in i and j, and do not depend on the temperature because of the phonon
approximation.

In the CGP method it is necessary to compute DDD−1, and a straightforward applica-
tion of the CGP method to a system of a large number of atoms at once requires
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(a) (b) (c)

Figure 1: Generation of CGPs by the RCGP method from the carbon atoms of
the graphene. (a) To choose a primitive cell (surrounded by red rectangular) from
the carbon atoms in the honeycomb structure and to make a unit cell (surrounded
by blue dashed rectangular) which contains 8 carbon atoms. (b) To expand the
unit cell 10 times in both directions to yield a super cell (surrounded by orange
rectangular) which contains 800 carbon atoms. The carbon atoms in the super cell
are statistically projected onto 5×5 CGPs (particles in orange) which are set evenly.
These are CGPs at the first stage. (c) To generate the second stage CGPs, a set of
25 CGPs at the first stage is expanded once in both directions so that 100(= 4×25)
CGPs are generated and these are again statistically projected onto 5× 5 CGPs
which are the second stage CGPs. The process continues until the system size
reaches the required length [Kobayashi, Nakamura, and Ogata (2008a)].

a large computational work and memories. In order to avoid these difficulties we
apply the CGP method to a system with a relatively small number of atoms and
expand the resulting system periodically in space, and recursively apply the CGP
method to thus generated system until the system size becomes a desired scale. This
method is similar to the renormalization group and called Recursive CGP method
(RCGP method ) [Kobayashi, Nakamura, and Ogata (2008a); Ogata, R. Kobayashi,
and Gotoh (2009)].

The lattice system of CGPs can be chosen independent of that of the original atoms,
an advantage that a relatively simple lattice structure can be used in the computa-
tion. Procedure of the RCGP method for the graphene proceeds as follows. Con-
sider a primitive cell of carbon atoms within a red rectangular in Fig. 1(a) in which
the relevant total number of atoms is counted as four. Then this primitive cell is
expanded in the lateral direction once, so that the resulting cell (blue rectangular) is
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a unit cell whose aspect ratio is 2 :
√

3 and contains 8 carbon atoms. The choice of
the unit cell is not unique, and our criterion to choose this unit cell is to construct a
rectangular as close to square as possible with a smaller number of carbon atoms.
Now the unit cell is expanded 10 times in both lateral and vertical directions to yield
a super cell (see Fig. 1(b)). The total number of carbon atoms included in this cell
is 8×10×10 = 800 and its domain size is 20

√
3dC×30dC, where dC is the mean

lattice distance of the carbons. These atoms are statistically projected onto 5× 5
CGPs which are assumed to be put evenly in each direction within the domain un-
der the periodic condition. These are the first stage CGPs. To generate the second
stage CGPs, a set of 25 CGPs at the first stage is expanded once in both directions
so that 100(= 4×25) CGPs are generated and these are again statistically projected
onto 5×5 CGPs which are the second stage CGPs. By repeating the above RCGP
process we can construct a CGP system whose spatial size is at the desired length.
The CGP lattice at latter stage remains rectangular with the aspect ratio 2 :

√
3 by

the construction.

The coarse graining in space must be accompanied by the coarse graining in time.
Let λ > 1 be a scale ratio of the coarse grained size in the RCGP process such that
RRR( j+1) = λRRR( j) where RRR( j)

αβ
is the mean distance vector between CGPs α and β at j-

th stage. A measure of the coarse graining in space is given by the ratio Λ = ∆xCG
/

∆xMD, where ∆xCG and ∆xMD are the grid distances of CGPs at the final stage of
the recursive coarse graining process and of the original atoms, respectively. Then
the number of steps Nr necessary for the recursive process to attain Λ is determined
by Nr = lnΛ/ lnλ . The elastic moduli at j-th stage of the RCGP method is given
by

CCC( j) =− 1
Vp

∑
α,β

RRR( j)
αβ

KKK( j)
αβ

RRR( j)
αβ

, (6)

where Vp is the specific volume [Ashcroft and Mermin (1976)]. Since the mag-
nitude of the elastic moduli should be unchanged under the coarse graining, i.e.,
CCC( j+1) = CCC( j), we have KKK( j+1)

∝ λ d−2K( j), where d is the space dimension. The
mass matrix scales as MMM( j+1) = λ dMMM( j), then the characteristic time of the CGP
scales as T ( j+1) ∝ (||MMM( j+1)||/||KKK( j+1)||)1/2 ∝ λT ( j), which means ∆ tCG ∝ λ Nr ∆ tMD =
Λ∆ tMD for the time increment in the computation, independent of the space dimen-
sion as far as the anharmonic effects are negligible.

Characteristics of the CGP method are

1. The CGP method introduces the weight function for the atoms, with which
the positions of the atoms are thermally averaged following the statistical
mechanics. Therefore the CGP method is relatively insensitive to the con-
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Figure 2: Fluid lattice and discrete velocities in D3Q19 model

figuration of the CGP’s as compared to, e.g., the quasi-continuum method
[Miller and Tadmor (2002)].

2. Degree of the coarse graining Λ can be tuned at any order. When Λ is unity,
the CGP reduces to the original atom, thus the CGP method is transparent
and suitable to develop a hybrid approach bridging over the different scales
of motion.

3. Recursive use of the CGP method (RCGP method) makes it possible to con-
nect the dynamics of atoms to that of the fluid motion with reasonable com-
putational cost.

4. The RCGP has a freedom to choose a simpler grid system than that of the
original system, which also reduces the computational work.

2.2 Lattice Boltzmann Method

Motion of the air is assumed to be described by the lattice Boltzmann equation.
The lattice Boltzmann method (LBM) has recently been developed and found to
be very effective for computation of various complex fluid motions. Advantage of
LBM over the conventional fluid mechanics based on the Navier Stokes equation
is that (1) the computational algorithm is so simple that actual implementation is
easy, (2) all of the operations are local in physical space so that parallelization of
computation is very efficient [Chen and Doolen (1998); Succi (2001); Sukop and
Thorne Jr. (2006)].



144 Copyright © 2010 Tech Science Press CMES, vol.63, no.2, pp.137-161, 2010

In LBM, the fluid is represented by an ensemble of fluid particles which are as-
sumed to exist only on grid points and allowed to move along the lines with small
number of discrete directions α = 0,1, · · · ,q− 1 and travel to the next grid point
on a unit time ∆ tLB with a prescribed velocity cccα (see Fig. 2).

Let fα(xxx, t) be a distribution function of the fluid particles traveling in the α-th
direction. Then the macroscopic variables such as the fluid density ρ and the mo-
mentum ρvvv are given by the 0th and 1st moment of the distribution function

ρ(xxx, t) =
q−1

∑
α=0

fα(xxx, t), (7)

ρ(xxx, t)vvv(xxx, t) =
q−1

∑
α=0

cccα fα(xxx, t). (8)

The distribution function with q directions in d spatial dimensions is referred to as
DdQq model. In this study we choose D3Q19 model (see Fig. 2). Evolution of the
distribution function is given by

fα(xxx+ cccαdt, t +dt)− fα(xxx, t) = Ω[ fα(xxx, t)] (0 5 α 5 q−1) (9)

The left hand side describes the translation and Ω is the collision operator for which
we use the BGK approximation [Bhatnagar, Gross, and Krook (1954)]

Ω =− 1
φ

(
fα(xxx, t)− f eq

α (ρ(xxx, t),uuu(xxx, t))
)
, (10)

where φ is a relaxation coefficient and f eq
α is the local equilibrium distribution

function given by

f eq
α = ρEα

[
1+3cccα · vvv+

9
2
(cccα · vvv)2− 3

2
vvv · vvv
]
, (11)

E0 = 1/3, E1 = · · ·= E6 = 1/18, E7 = · · ·= E18 = 1/36 (12)

for D3Q19 model and is obtained by expanding the Maxwell Boltzmann distribu-
tion function up to the second order in the fluid velocity. It is well known that the
Navier-Stokes equation is deduced from the lattice Boltzmann Eqs. (9) and (10)
and by using the Chapman Enskog expansion. Then φ is related to the kinetic
viscosity ν as

ν =
1
3

(
φ − 1

2

)
. (13)

The spatial accuracy of the LBM is the second order in the grid size.
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Figure 3: Eulerian grid points for LBM and Lagrangian points for the solid body in
IBM.

2.3 Immersed boundary method

Since the time scales of the fluid and solid are widely separated (see Eq.(30)), the
boundary condition at the interface should be the one such that it passes a reduced
information of the fast variables of the solid phase to the slow variables of the fluid
phase while assuring the momentum conservation between the two phases. By as-
suming that the fluid phase is continuum even at the scale of submicron meter, we
choose the grid size of the fluid to be small enough to match with the mean separa-
tion distance of the CGP lattice at the final stage of the RCGP method, from which
the degree of the coarse graining of the carbon atoms is fixed. Then the momentum
exchanged at each time step of the CGP dynamics is accumulated during the one
fluid time step and passed to the fluid motion. The details are as follows.

The macroscopic boundary condition for the fluid is assumed to be vvv(xxxB, t) = UUUB

on the boundary where xxxB and UUUB are the position and velocity vectors of the
boundary, respectively. In LBM, this is achieved by imposing the condition on the
distribution function as

f̃β (xxxB, t) = fα(xxxB, t)−2ρEα

cccα ·UUUB

c2
s

(14)

where f̃β is the distribution function just after the collision at the boundary, β is an
index satisfying cccβ =−cccα and Eα is given by Eq. (12) and cs is the sound velocity
c2

s = c2/3 for D3Q19 model [Ladd (1994)]. When UUUB = 0, the above equation
means the bounce back of fluid particle on the rest wall.

Since the graphene is represented by a set of CGPs in this study, it is natural and
convenient to use IBM [Peskin (1977, 2003); Feng and Michaelides (2004); Niu,
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Shu, Chew, and Peng (2006)]. In IBM, a solid body is regarded as an object which
has a distributed force density on its surface so as to match the boundary condition
at the body surface. Let XXX l(τ) be a position of l-th CGP on the surface which is not
necessarily on the fluid grid point (see Fig. 3), where τ is the time variable in the
CGP time scale. Suppose that the average distance between the nearest neighbor
CGPs on the graphene surface is given by that of CGPs in the thermal equilibrium
at the final stage of the recursive coarse graining process, i.e. ∆xCG = Λ∆xMD.
Then the degree of the coarse graining for the carbon atoms Λ is fixed by requiring

∆xLB = AL∆xCG = ALΛ∆xMD, (15)

where AL is a positive constant of order one. In other words, by this relation, the
CGP spatial scale matches with that of LBE. Now consider the time scales. Because
Λ is already determined by Eq.(15), we can estimate the time increment ∆ tCG in
the CGP computation by using ∆ tCG = Λ∆ tMD and the typical value of ∆ tMD for
the graphene carbon atoms. Since AL∆xCG = ∆xLB = c∆ tLB, we can fix ∆xLB with
an appropriate value of AL, say AL = 1, and we can determine the time increment
∆ tLB by using the sound velocity cs in the fluid and c =

√
3cs. Then the ratio of the

time increments is fixed as

∆ tLB = AT∆ tCG. (16)

Generally AT is large and about 150 in the present case of the air flow and the
graphene (see Eq.(30)). This ratio means that one LBM computational cycle corre-
sponds to AT cycles in the CGP computation.

We use Eq.(14) at the CGP position XXX l which generally does not coincide with the
fluid grid point, therefore it is necessary to compute fα(XXX l(τ), t) from fα(xxx, t) at
the fluid grid points by using the Lagrangian interpolation

fα(XXX l(τ), t) = ∑
i, j

Ψ(XXX l(τ),rrri j) fα(rrri j, t), (17)

where Ψ is the Lagrangian interpolation function and rrri j is the position vector of
the fluid grid point near XXX l(τ). Note that the time variable t of fα is unchanged,
which means that the distribution function is assumed to be still because the distri-
bution function is a slow variable and only the CGP position XXX l(τ) changes rapidly
in the LB time unit. We assume that the fluid particles undergo the elastic collision
at the solid surface and that Eq.(14) holds even at time scale of ∆ tCG = ∆ tLB/AT.
In the following discussion in this section, we use the notation dτ = ∆ tCG for con-
venience. Collisions of the fluid particles with one CGP during time interval dτ

yields the change in the distribution function

δ fβ (XXX l(τ), t) dτ = [ f̃β (XXX l(τ), t)− fα(XXX l(τ), t)] dτ . (18)
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Then the momentum change that the fluid receives is

ggg(Xl(τ), t) δAAAL dτ = ∑
β

cccβ ·δ fβ (XXX l(τ), t) δAAAL dτ , (19)

where δAAAL is the surface element at XXX l(τ) and ggg is the impulse density. The reac-
tion force on the CGP on the surface is given by −gggδAAALdτ , so that the dynamical
equation of the CGP is symbolically written as

dPPPl(τ)
dτ

=−∂HCG

∂XXX l
−gggl(τ) δAAAL . (20)

On the other hand, since the force density ggg(XXX l, t)dτ is distributed on the body
surface, the force acting on the fluid at XXX l must be redistributed on the fluid grid
points by the linear rule

F̃FF(xxx, t + τ) dτ = ∑
l

ggg(XXX l(τ), t)D(xxx−XXX l(τ)) δAAAL dτ , (21)

where D is given by

D(xxx−XXX l) =
d

∏
α

δh (xα − (XXX l)α) , (22)

δh(x) =
{ 1

2h(1+ cos(πx
h )) |x| ≤ h

0 otherwise
(23)

with the grid spacing h = 2∆xLB [Niu, Shu, Chew, and Peng (2006)]. Finally the
force acting on the fluid during the time interval ∆ tLB is given by accumulating the
small impulses F̃FF(xxx, t + τ)dτ

FFFext(xxx, t) =
∫ AT∆ tCG

0
F̃FF(xxx, t + τ) dτ. (24)

When the external force is applied to the fluid, the fluid velocity is changed as

vvv(xxx, t +∆ tLB) = vvv(xxx, t)+
∆ tLBFFFext(xxx, t)

ρ(xxx, t)
(25)

which appears in the velocity field in f eq
α . In the computation of LBE, we use

the following formula with the enhanced numerical stability in the nondimensional
form [Buick and Greated (2000)]

fα(xxx+ cccα , t +1)− fα(xxx, t) =

− 1
φ

(
fα(xxx, t)− f eq

α

(
ρ,uuu− FFFext

2ρ

))
−
(

2φ −1
2φ

)
3
2

Eαcccα ·FFFext. (26)
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Table 1: Characteristic values

Atomic length l̃AU = 5.3×10−11 [m]
Atomic time t̃AU = 2.4×10−17 [s]
Atomic mass m̃AU = 9.1−31 [kg]
Atomic velocity ũAU = l̃AU/t̃AU = 2.2×106 [m/s]
Loschmidt constant n0 = 2.687×1025 [1/m3]
Molecular mass (air) mair = 4.851×10−26 [kg]
Sound velocity c̃s = 3.315×102 [m/s]
Grid distance ∆ x̃LB = ∆ x̃CG = 0.2561×−6 [m]
Time increment in CGP ∆ t̃CG = 2.9734822×10−12 [s]
Time increment in LB ∆ t̃LB = AT∆ t̃CG = 0.44602233×10−9[s] = 0.446[ns]
Force unit in LB F̃LB = 3n0mairc̃2

s ∆ x̃2
LB = 2.8184×10−8 [N]

2.4 Force and velocity units

It is important and necessary for theoretical consideration and numerical computa-
tion to examine the relation between the units used in the dynamics of CGPs and
the fluid. In the molecular dynamics of the solid phase, the Hartree atomic units is
commonly used and we also use it for the CGP dynamics. In the fluid, the length
and velocity are nondimensionalized in terms of ∆ x̃LB and c̃ =

√
3c̃s, respectively,

where quantities with˜are those with dimensions. When the unit is switched from
one phase to the other, the following nondimensional coefficients are necessary :

BV =
ũAU√

3c̃s
, BF =

F̃CG

F̃LB
, (27)

where

F̃LB =
ρ0c̃(∆ x̃LB)d

∆ t̃LB
= ρ0c̃2(∆ x̃LB)d−1 = n0mair

(√
3c̃s

)2
(∆ x̃LB)d−1 (28)

F̃CG = m̃AU ũ2
AU/l̃AU . (29)

When we take AL = 1, Λ = 1024 and the values in Tab. 1, we have

AL = ∆xLB/∆xCG = 1, AT = ∆ tLB/∆ tCG = 150. (30)

Then the coefficients for the present case are

BV = 3.810×103, BF = 2.923 . (31)
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Figure 4: Configuration of the graphenes in the flow. (a) Single graphene with
the angle of attack θ , (b) A pair of graphenes G1 and G2 with separation distance
∆s. Points on the top edge of each graphene are the CGPs used to measure the
displacement due to the graphene vibration.

These values are used to convert the velocity and force in the CGP unit to those in
the LB unit as

vvvLB = BVvvvCG, FFFLB = BFFFFCG. (32)

3 Results

3.1 Single graphene in laminar flow

We have applied the hybrid computational method described in the previous sec-
tion to the problems of the interaction between the graphene and the air flow. First
we consider the motion of a single graphene in a laminar flow. The graphene is
fixed perpendicularly at the bottom plate (see Fig. 4(a)). Incoming flow is assumed
to be steady Blasius type flow for which the fluid velocity is zero at the bottom
and gradually increases and becomes uniform at far distance (y > 0.1H). The flow
field is divided into 120×60×90 cubes in x, y, and z directions, respectively. The
Reynolds number is defined as Re = UmaxH/ν , where Umax is the maximum speed
at the entrance, H the height of the graphene, and ν the kinematic viscosity. The
Reynolds number is controlled by Umax and the four cases of Re = 1,10,20 and
40 are examined which correspond to Umax/c = 0.00260,0.0260,0.0519,0.104, re-
spectively. The graphene is composed of 5× 40 CGPs, and one CGP represents
2×106 carbon atoms, so that the graphene sheet size is 1.2 [µm] in width (W ), and
8.8 [µm] in height (H). The angle of attack to the flow is θ = 0◦,30◦,60◦,90◦.

In order to obtain a well posed initial flow field, the LB equation is integrated for
15000 steps (which corresponds to the time that the mean flow passes through the
whole domain about 7.5 times when Re = 40) to attain a steady state of the flow
during which the graphene is sustained to be rigid. After this time the graphene is
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released to freely move under the action of the flow field.

We examine how the graphene responds to the flow. For this purpose, the time
variation of the displacement of CGP at the middle position of the top edge of the
graphene as marked by red (and blue for a pair of graphenes) point in Fig. 4 (a) is
shown in Fig. 5 for various Reynolds numbers at θ = 90◦. It is seen that immedi-
ately after the release (at t0 = 6.7 [µs]) the graphene begins to bend downstream
with oscillation and attains certain equilibrium state. The graphene bends deeply
with increase of the Reynolds numbers and its oscillation frequency is not equal
but very close to the eigen frequency of the graphene. The eigen frequency of the
graphene was computed by simulating the perturbed CGP graphene in the absent
of fluid. Approach to the equilibrium position is faster for the higher Reynolds
numbers.

Fig. 6 shows the temporal evolution of the drag and lift coefficients defined by

CD =
FD

ρ fU2
b A/2

, CL =
FL

ρ fU2
b A/2

, (33)

where FD and FL denote the drag and lift forces acting on the graphene, respectively,
ρ f is the fluid density, and A is the area of the graphene WH. Ub is the volume-
averaged stream wise velocity defined by

Ub(t) =
1
V

∫∫∫
U(x,y,z, t) dxdydz, (34)

where V is the total volume of the computational domain of the flow. The drag
coefficient is larger by one order than the lift coefficient. Both coefficients become
smaller with increase of the Reynolds numbers, which is consistent with the general
trend of decrease of CD for low Reynolds numbers at macro scale flow, for example
CD = 24/Re for the sphere [Batchelor (1967)].

Consider now the effects of the angle of attack on the graphene motion. Fig. 7
shows the time variation of the displacement of the marked CGP at the top edge of
the graphene for four angles of attack at Re = 40. For θ = 30◦ the oscillation of the
graphene grows in time without bound, while for θ ≥ 60◦ it decays. When 0◦ <
θ < 90◦, the symmetry of the flow field is broken and the lift force is generated.
Although the drag force dominates the lift force, the oscillation amplitude in both
forces are growing in time when θ = 30◦. On the other hand, when θ = 60◦ the
oscillation in the drag and lift forces vanishes. It is worth while to note that the
fluttering of the graphene sheet at moderate angles of attack and its suppression
at large angles of attack are observed also for a wing in the high speed flow at
ordinary macroscopic scale [Tang and Dowell (2001); Hashimoto, Furuta, Yagi,
and Nakamura (2007)].
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Figure 5: Time series of displacement of the marked CGPs of the graphene at
θ = 90◦ for Re = 1,10,20,40. Release time is at t0 = 6.7 [µs]. (a) stream wise
direction, (b) direction normal to the bottom plate.
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Figure 6: Time series of the drag and lift coefficients of the graphene at θ = 90◦

for Re = 1,10,20,40. Release time is at t0 = 6.7 [µs]. (a) drag coefficient, (b) lift
coefficient.
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Figure 7: Time series of the displacement of the marked CGP. Release time is
at t0 = 6.7 [µs] (a) stream wise direction, (b) span wise direction. For θ =
0◦,30◦,45◦,60◦,90◦ at Re = 40.
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Figure 8: Time series of the forces acting on the graphene at Re = 40. Release time
is at t0 = 6.7 [µs]. (a) θ = 30◦, (b) θ = 60◦.
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Figure 9: Single graphene with the angle of attack to the mean flow and the y
component of the vorticity on the plane at y/L = 1/2 at Re = 40 and t = 13.4 [µs].
Particles show positions of CGPs (the particle size does not indicate the CGP size)
and color represents the vorticity amplitudes. (a) θ = 0◦, (b) θ = 30◦, (c) θ = 60◦,
(d) θ = 90◦.
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Fig. 9 shows the graphene and the y component of the vorticity on the plane at y =
L/2 at t = 13.4 [µs] for four angles of attack θ = 0◦,30◦,60◦,90◦ and for Re = 40.
The vorticity is concentrated near the edge of the graphene. When θ = 30◦ and
60◦, the vorticity is distributed asymmetry and the graphene sheet is very weakly
twisted.

3.2 A pair of graphenes in laminar flow

We now consider the motion of a pair of graphenes which are set in parallel to
the flow and fixed to the bottom plate with distance ∆s (see Fig. 4(b)). The nu-
merical parameters, the initial and boundary conditions of the flow are mostly
the same as those in the case of the single graphene. Five cases of spacings
∆s = 1.02,2.05,4.10,8.20, and 11.5 [µm] are examined. For ∆s = 1.02, 2.05 and
11.5 [µm], the total time of integration is 30000 time steps in the LB unit which cor-
respond to 13.4 [µs], and 60000 time steps corresponding to 26.8 [µs] for ∆s = 4.10
and 8.20 [µm].

Unlike the case of the single graphene with the angle of attack θ = 0◦, the pair of
graphenes begins to oscillate after release, irrespective of the Reynolds numbers,
and the oscillation amplitude becomes larger with the Reynolds numbers (figure
not shown). For Re = 40 the pair of graphenes collide each other at latter times. In
order to prohibit crossing of the graphenes we introduce a repulsive force in terms
of the Lennard-Jones type potential between the sheets,

FFF i,Rep(r) =

 4ε

∆xCG
∑ j

{
12
(

∆xCG
ri j

)13
−6
(

∆xCG
ri j

)7
}

rrri j
ri j

, for ri j < ∆xCG

0 for ri j ≥ ∆xCG

(35)

with ε = 1000[eV], where ri j is the distance between two CGPs each of which is
on the different graphene sheet, respectively.

Fig. 10 shows the temporal evolution of the displacement of the marked CGPs on
each top edge of the graphenes for five separation distance at Re = 40. Note that
t = 0 corresponds to the time at which the graphenes are released. After the release
the oscillation amplitudes grow to collide each other irrespective of the separation
distance. When ∆s ≤ 2.05 [µm], the oscillation is periodic even when they are
colliding, but when ∆s≥ 4.10 [µm], the oscillation becomes chaotic at large times.
This may be compared with the case of a pair of flexible filaments in a flowing
soap film in which two modes of parallel flapping and mirror-image clapping are
observed depending on the separation distance between the two filaments [Zhang,
Childress, Libchaber, and Shelley (2000); Zhu and Peskin (2003)]. When ∆s = 11.5
[µm], the graphene configuration becomes identical to the periodic array of the
graphenes with the same distance with the zero angle of attack, so that no oscillation
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Figure 10: Time series of the displacements of the marked CGPs at the top edge of
the graphenes after release for five separation distances at Re = 40. Red : G1, blue
: G2 in Fig. 4.

occurs by the symmetry. The curves at large times for ∆s ≥ 4.10 [µm] look to
cross, but this is not the case. Because one graphene is above the other one as
seen in Fig. 11 in which the strain amplitudes are shown in color at the position of
CGPs for ∆s = 8.20[µm] at three times t = 13.8,15.6, and 22.7 [µs] after release
for Re = 40. The figures show that at the initial phase two graphenes vibrate in
a symmetric way, but as time goes on they begin to collide each other so that the
graphene sheets are vibrating, hitting and even twisting very chaotically.

Flow field is also responding to the chaotic vibration of the graphenes and exhibits
complex pattern. Figure12 shows the distribution of y component of the vorticity
on the plane at y = L/3 at the same time as those of Fig. 11 for ∆s = 8.20[µm]
for Re = 40. It can be seen that the vorticity is large near the graphenes, and
each graphene is accompanied by a pair of positive and negative vorticity in the
y component. Regions with moderate amplitudes of the vorticity extend in the
direction perpendicular to the mean flow, which is due to the rapid vibrating motion
of the graphenes in that direction.

As a result of complex interaction between the graphenes and the air flow the forces
acting on the graphenes become chaotic. Figure13 shows the temporal evolution
of the nondimensionalized drag and lift forces acting on the blue-colored graphene
G2 in Fig. 4(b). It is observed that when the separation distance increases the mean
values become smaller but the fluctuations become larger and chaotic at latter times.
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1

(a) (d)

(b) (e)

(c) (f)

Figure 11: Vibration of a pair of graphenes and the strain distribution for ∆s = 8.2
[µm] at Re = 40. Particles show positions of CGPs (particle size does not indicate
the CGP size) and color represents the strain amplitude. Red : compressed region,
blue: stretched region. View from downstream at (a) t = 13.8 [µs], (b) t = 15.6
[µs], and (c) t = 22.7 [µs], and bird’s eyes view at (d) t = 13.8 [µs], (e) t = 15.6
[µs], and (f) t = 22.7 [µs] after release.
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(a) (b)

(c) (d)

Figure 12: A pair of graphenes and the y component of the vorticity on the plane at
y/L = 1/3 for ∆s = 8.2 [µm] at Re = 40. Particles show positions of CGPs (particle
size does not indicate the CGP size) and color represents the vorticity amplitudes.
(a) t = 13.8 [µs], (b) t = 15.6 [µs], and (c) t = 22.7 [µs], and (d) view from the
bottom plate at t = 22.7 [µs] after release.
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Figure 13: Time series of the nondimensional forces acting on the graphene after
release for Re = 40. (a) stream wise direction, (b) span wise direction.
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Figure 14: Time series of the area strain εl at the bottom, middle and top on the
leading edge of the graphenes after release for Re = 40. Red: G1, blue : G2.

Since the graphenes are deformed due to the hydrodynamics forces, the stress dis-
tribution is generated inside the graphenes. The stress is proportional to the rate
of change in the area of the local surface element at l-th CGP position which is
quantified as area strain by εl = (|δAAAl|− |δAAAl0|)/|δAAAl0| where |δAAAl0| is the area of
the surface element at the equilibrium, so that the distribution of the strain field can
be visualized by εl . The strain distribution inside the graphenes at several times is
shown by color in Fig. 11. When the vibration amplitudes of the graphene pair are
small, the strain fluctuations are small, but when the collision begins strong strain
waves accompanied with large fluctuations are excited.

It would be physically plausible that when the graphenes are fixed on the flat bot-
tom plate with the GaN-AlGaN junction at a few nanometers below the surface
the strain at the bottom of the graphene would change the electron distribution at
the junction. This implies a possibility to develop a flow sensor by measuring the
electron current. Such a composite structure will be realized by further advancing
the fabrication technique for the composite structure of graphenes and carbon nan-
otubes [Kondo, Sato, and Awano (2008)]. In this connection we here note that a
micro-cantilever of piezoelectric material fabricated on a silicon-on-insulator wafer
has already been proposed as a sensitive flow sensor [Kaabi, Kaabi, Sakly, and Ab-
delMalek (2007); Zhang, Ruan, Wang, Zhou, Wang, and Liu (2010)]. To see this,
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we show in Fig. 14 the time evolution of the strain measured at bottom, middle and
top of the leading edges of two graphenes. Each signal becomes chaotic at about
t = 12 [µs] and the strain at the top has the largest amplitudes, which is probably
due to the collision effects. In fact, at early phase before collision, it is observed
that the strain at the bottom of the graphene is the largest although the amplitude is
very small.

4 Summary and discussions

We have developed the hybrid computational method to numerically simulate the
interaction between the graphenes and the air flow from the microscopic description
of the graphene carbon atoms, which is a typical multi-scale multi-physics problem.
In order to match the spatial and time scales of the two different dynamics at the
boundary, three step coarse graining strategy was used. The first step was done
by deducing the CGP Hamiltonian from that of the carbon atoms of the graphene
under the phonon approximation. The second step was to repeat the first procedure
recursively to attain a certain length scale at which the lattice size of the CGP
system is comparable to the smallest fluid grid size. In the first and second steps
(RCGP method) both length and time of the CGP dynamics are scaled in the same
way, but there still exists a gap in time scale. The air flow motion was described
by the LB equation and the momentum exchange at the boundary was treated by
IBM. The third step was to accumulate a number of small impulses acting on the
fluid over the LB time interval.

The numerical computation of the air flow and CGPs with the coarse grained
boundary condition, the hybrid computational method, was used to analyze the
motion of a single graphene and a pair of graphenes in the steady flow. It was
found that the single graphene with the angles of attack 60◦ and 90◦ to the flow
direction begins to bend downstream with oscillation after release and tends to at-
tain the equilibrium form, but the oscillation amplitudes for the angle of attack 30◦

increases in time. Also found was that when the separation distance of a pair of
graphenes is large, the oscillation amplitudes become larger and chaotic, and they
collide each other. The oscillation frequency was very close but not equal to that
of the eigen frequency of the single graphene in the absent of fluid. The vibra-
tion pattern of a pair of graphene becomes quite complicated when the separation
becomes larger. The strain distribution inside the graphene was also computed by
the present method. It was observed that when the collision occurs the strong strain
waves accompanied with large fluctuations are excited. It was argued that this strain
field information can be used to develop a fluid sensor or fluid driver [Kaabi, Kaabi,
Sakly, and AbdelMalek (2007); Zhang, Ruan, Wang, Zhou, Wang, and Liu (2010)].

Although the results by the present hybrid computational method are encouraging,
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there remain points to be carefully examined. First consider accuracy. Error in
the diagonal components of the macroscopic elastic constants computed by the
RCGP method is known to be less than 10% [Inoue, Tanaka, Kobayashi, Ogata,
and Gotoh (2008)] and the error in the drag coefficient by IBM is about 5-10%
in the context of usual fluid mechanics at macro scales, irrespective of using LBE
or the Navier-Stokes equation. Currently we are examining the same problem but
with the Navier-Stokes equation instead of LBE and the preliminary results are
quite promising for the present approach in the accuracy and computational costs,
which will be reported elsewhere. Second, the boundary condition needs more
careful treatment. We have used the bounce back boundary condition Eq.(14) for
the distribution function of LBM at the interface. Underlying assumption is that
the solid phase is a wall with large mass density when compared to that of fluid.
In other words, no mass density ratio, say ζ = ρfluid/ρsolid, appears in the equation,
and the reflection coefficient as a macroscopic parameter for intermolecular force
should also be considered. It is necessary for more accurate computation of the
fluid-solid interaction to study these effects theoretically and numerically with the
help of the molecular dynamics. The hybrid computation which takes into account
those effects is a real challenge to the multi-scale multi-physics simulation.
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