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Lattice Boltzmann Flow Models for Micro/Nano Fluidics
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Abstract: Flow passages in micro/nano-electro-mechanical systems (MEMS/-
NEMS) usually have complicated geometries. The present study thus discusses
on the latest lattice Boltzmann methods (LBMs) for micro/nano fluidics to evalu-
ate their applicability to micro/nano-flows in complex geometries. Since the flow
regime is the continuum to the slip and transitional regime with a moderate Knud-
sen number (Kn), the LBMs presently focused on feature the wall boundary treat-
ment and the relaxation-time for modeling such flow regimes. The discussed micro
flow (µ-flow) LBMs are based on the Bhatnagar-Gross-Krook (BGK) model and
the multiple relaxation-time (MRT) model. The presently chosen µ-flow BGK
LBM (BGK-1 model) consists of the diffuse-scattering wall condition with the sin-
gle relaxation–time sensitized to the Knudsen number whereas the µ-flow MRT
LBMs are combined with the diffusive bounce-back wall condition (MRT-1 model)
and the bounce-back and specular-reflection condition (MRT-2 model). The simu-
lated flow cases are canonical force-driven Poiseuille flows at 0.01≤ Kn≤ 10 and
a flow around an obstacle (a square cylinder) situated in a nanochannel at Kn≈0.1.
The second-order truncated system (nine discrete velocity model for two dimen-
sions: D2Q9 model) is applied for the simulations. The results show that the MRT
models improve the performance of the BGK-1 model. It is also confirmed that
the MRT-1 model is superior to the MRT-2 model for simulating micro/nano-flows
with impinging and stagnating regions though further improvement is required,
particularly, for predicting flow rates.
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1 Introduction

Recently, the lattice Boltzmann method (LBM) [McNamara and Zanetti (1988);
Higuera and Jimenez (1989)] has been successfully applied in simulating complex
flow phenomena [Yu, Luo and Girimaji (2006); Chen, Chang, and Sun (2007);
Han, Feng and Owen (2007); Ho, Chan, Lin and Lin (2009); Niu, Hyodo, Suga
and Yamaguchi (2009)] including flows in porous media [Keehm, Mukerji and Nur
(2004); Pan, Luo and Miller (2006); Suga, Tanaka, Nishio and Murata (2009); Suga
and Nishio (2009)] and multiphase flows [Niu, Munekata, Hyodo and Suga (2007);
Hao and Cheng (2010)] since it is relatively easy to handle complex flow geometries
by the LBM. It should be, however, noted that applying the LBM to micro-flows
such as those in micro/nano-electro-mechanical systems (MEMS/NEMS) requires
further considerations for the flow physics inside the micro/nano-systems. The
flow geometry in those systems is often in a sub-micron meter scale and the flows
are usually distinguished by moderate Knudsen numbers: Kn=λ/H > 10−2, where
λ is the molecular mean free path of the fluid and H is the characteristic length
of the flow domain. Consequently, the continuum Navier-Stokes equations are no
longer applicable to flows at such levels of the Knudsen numbers. The flow physics
should be thus described by the Boltzmann equation (BE) of the gas kinetic theory
[Chapman and Cowling (1970); Cercignani (1975); Karniadakis, Beskok and Aluru
(2005)]. Hence, the direct simulation Monte Carlo (DSMC) simulation has been
applied for such MEMS flows, e.g. [Liou and Fang (2000)]. Although the standard
LBM was developed for the continuum Navier-Stokes flows, because of its kinetic
origin, the LBM has been proven as a basis of schemes to treat micro-flows as well.
Indeed, many studies to develop an LBM for micro flows (µ-flow LBM, hereafter)
have been made so far.

In order to treat flows at moderate Kn, Nie et al. [Nie, Doolen and Chen (2002)]
introduced Kn dependency into the relaxation parameter of the lattice Boltzmann
equation and simulated two-dimensional (2-D) microchannel and cavity flows at
0.01<Kn<0.4 with the conventional bounce-back wall boundary condition. Shen
et al. [Shen, Tian, Xie and Fan (2004)] validated this strategy comparing with the
DSMC simulations of microchannel flows. Succi [Succi (2002)] introduced a com-
bination of bounce-back and specular reflections for the wall boundary condition.
Referring to the analytical velocity slip condition, Sbragaglia and Succi [Sbragaglia
and Succi (2005)] discussed this slip-reflection model as well as the slip-reflection-
accommodation model in which the accommodation effect on the walls is intro-
duced. They showed that the models could be tuned to recover quantitative agree-
ment with the analytical and experimental results. Toschi and Succi [Toschi and
Succi (2005)] introduced a virtual wall collision concept into the bounce-back and
diffuse-scattering boundary conditions of Ansumali and Karlin [Ansumali and Kar-
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lin (2002)]. Zhang et al. [Zhang, Qin, and Emerson (2005)] applied a Maxwellian
scattering kernel to the wall conditions with an accommodation coefficient. Guo
and Zheng [Guo and Zheng (2009)] summarized wall boundary treatments and
showed that the bounce-back/specular-reflection, the diffuse-scattering and the dif-
fusive bounce-back models could be converted to a mathematically equivalent form
for prescribing the slip velocity on the wall.

As for the relaxation time, to address the Knudsen layer effect, Zhang et al. [Zhang,
Gu, Barber and Emerson (2006)] and Guo et al. [Guo, Zhao, Shi (2006)] modified
the relaxation time by an effective mean free path. Although most of the above
LBM studies were based on the single relaxation-time (SRT) Bhatnagar-Gross-
Krook (BGK) model [Bhatnagar, Gross and Krook (1954)], Guo et al. [Guo, Zheng
and Shi (2008)] discussed the multiple relaxation-time (MRT) method [d’Humieres,
Ginzburg, Krafczyk, Lallemand and Luo (2002)] with the combination of the bounce-
back and the specular reflection wall boundary condition of Succi. Verhaeghe et al.
[Verhaeghe, Luo and Blanpain (2009)] proposed a diffusive bounce-back model
that is the combination of the diffuse-scattering and bounce-back boundary condi-
tions for fully diffusive stationary walls in the context of the MRT LBM.

As aforementioned, many LBM studies have been devoted to simulate micro-flows.
However, almost all proposals in the literature have been validated only in sim-
ple canonical flows such as the Couette and Poiseuille flows. Hence, it is now
important to provide information indicating whether those schemes perform well
or not in more complex impinging and stagnating flows. Therefore, recently the
present authors’ group attempted to validate an LBM in a flow around a square
cylinder situated in a nanochannel [Suga, Takenaka, Ito, Kaneda, Kinjo and Hy-
odo (2010)]. Their validated LBM [Niu, Hyodo, Munekata and Suga (2007)] was
based on the diffuse-scattering boundary condition and the SRT BGK model sen-
sitized to Kn with the regularization procedure of the nonequilibrium part of the
distribution function [Zhang, Shang and Chen (2006)]. (This BGK LBM is called
the BGK-1 model, hereafter.) They also performed the molecular dynamics (MD)
simulation using the Lennard-Jones potential [Koplik and Banavar (1995); Haile
(1997)] to produce the reference data. In their report, since the square cylinder
flow results by the LBM and the MD simulations were in good agreement, they
concluded that the BGK-1 model was applicable to complex micro/nano-flows.
Moreover, although the BGK-1 model with the conventional two-dimensional nine
discrete velocity (D2Q9) model predicted flow fields less accurately in the canon-
ical Poiseuille and Couette flows, its predictive accuracy became comparable to
that with the two-dimensional twenty-one discrete velocity (D2Q21) model when
applied to the square cylinder flow.

However, in many flow cases including flows in complex geometries, it is now



226 Copyright © 2010 Tech Science Press CMES, vol.63, no.3, pp.223-242, 2010

recognized that the MRT model is generally more stable and superior to the BGK
model. Pan et al. [Pan, Luo and Miller (2006)] reported that it overcame the defect
of the BGK model which is the viscosity dependency of flows when solid boundary
is present, particularly in complex porous medium flows. Since our final goal is to
establish a cost-effective stable scheme to simulate complex micro/nano-flows, the
MRT based µ-flow LBMs should be discussed. Therefore, the present study com-
pares the performance of our previously evaluated BGK-1 model and the MRT µ-
flow LBMs of Verhaeghe et al. [Verhaeghe, Luo and Blanpain (2009)] (named the
MRT-1 model), and of Guo et al. [Guo, Zheng and Shi (2008)] (named the MRT-
2 model). The MRT-1 model applies the diffusive bounce-back boundary model
which is a modified model of the diffuse-scattering boundary model used in the
BGK-1 model whilst the MRT-2 model applies the combination of the bounce-back
and specular reflection boundary model. The present MRT-1 and MRT-2 models are
slightly modified from the original forms as described in Section 2.2. The chosen
test flow cases are the canonical force driven Poiseuille flows and the square cylin-
der flow of Suga et al. [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)].

2 Numerical Schemes of the µ-flow Lattice Boltzmann Method

Although one should refer to the original papers [Niu, Hyodo, Munekata and Suga
(2007); Verhaeghe, Luo and Blanpain (2009); Guo, Zheng and Shi (2008)] for the
detailed derivation of the lattice Boltzmann equations (LBEs) and their modeling
steps for applying to micro/nano-flows, their brief descriptions are given below.

2.1 BGK µ-flow LBM (BGK-1)

The LBE can be obtained by discretizing the velocity space of the BE into a finite
number of discrete velocities ξα {α = 0,1, · · · ,Q−1}. Although many techniques
to discretize the velocity space have been proposed, in the present study, the BGK
µ-flow LBM: BGK-1 model, employs the D2Q9 model for 2-D flows. Note that
the original BGK-1 model was coupled with the D2Q21 model. However, Suga et
al. [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)] reported that the BGK-
1 model with the D2Q9 performed comparable to that with the D2Q21 model in a
relatively complex flow case: the square cylinder flow. Table 1 lists the sound speed
cs, the discrete velocity ξα and the weight parameter ωα in the D2Q9 model. Let
x be the Cartesian coordinates of the configuration space and ξ that of the veloc-
ity space. The LBE describes evolutions of a single particle distribution function
f (x,ξ , t) defined such that f (x,ξ , t)dξ dx represents the number of particles in the
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phase space element dξ dx time t, and can be written in the following BGK form:

fα(x+ξαδ t, t +δ t) =

fα(x, t)− δ t
τ +0.5δ t

(
fα(x, t)− f eq

α (x, t)
)
+

τδ t
τ +0.5δ t

Fα(x, t) (1)

where the equilibrium distribution function f eq is written as

f eq
α (x, t) = ωαρ

{
1+

ξα ·u
RT

+
1
2

[
(ξα ·u)2

(RT )2 −
u2

RT

]}
. (2)

Equation (2) retains up to the second-order term in the Hermite expansion. The
ideal gas constant is R, and ρ, u and T are respectively the fluid macro density,
velocity and temperature. The sound speed cs =

√
RT is equal to

√
1/3 in the

D2Q9 model. The contribution of the force term Fα is introduced as

Fα (x, t) = ωαρ

{[
ξα ·a
RT

(
1+

ξα ·u
RT

)
− a ·u

RT

]}
, (3)

where a is the acceleration of the force. The variables ρ , u and the pressure p are
respectively obtained by applying the integral of microscopic velocity moment as

ρ =
Q−1

∑
α=0

fα , ρu =
Q−1

∑
α=0

fαξα +
δ t
2

a, p = ρc2
s . (4)

So far, the equations which govern the macroscopic variables of continuum flows
are presented. Only when the non-equilibrium part of distribution is very small
and the distribution function can be approximated by the equilibrium distribution
function, the equations can describe the fluid phenomena. However, when the Kn
becomes larger and the non-equilibrium part is no longer ignorable, the aforemen-
tioned LBE becomes invalid. According to our previous analysis, the difficulty is
cleared by using the three procedures briefly described below. (See [Niu, Hyodo,
Munekata and Suga (2007)] for more details.)

Table 1: Main parameters of the D2Q9 model for the 2-D BGK LBM.

model c2
s ξα ωα

D2Q9 1/3 (0,0) 4/9(α = 0)
(±1,0), (0,±1) 1/9(α=1-4)

(±1,±1) 1/36(α =5-8)
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2.1.1 Diffuse-scattering boundary condition

The non-slip wall boundary conditions used in the continuum LBM are based on
perfect reflection, so the velocity and the temperature of a wall are not reflected into
the distribution of the reflected particles. However, from a microscopic viewpoint,
the wall boundary condition should include the physics on the wall because the
fluid and the wall molecules are interacted with each other. Therefore, the incident
particles are modeled to be reflected with the information of the Maxwell distribu-
tion function at the wall boundary. The modeled form is written in the LBM frame
as

fα(x, t) = ∑α ′ |(ξ ′α −uw) ·n| fα ′(x, t)
∑α ′ |(ξ ′α −uw) ·n| f eq

α ′ (x, t)
f eq
α,w(x, t) := f D

α (x, t),

if[
(ξ ′α −uw) ·n < 0; (ξα −uw) ·n > 0

]
, (5)

where n is the unit wall normal vector, ξ ′α is the velocity of incident particles, f eq
α,w

is the wall equilibrium distribution function, and the subscripts w,α ′,α respectively
denote the wall and the directions of the incident and reflected particles.

2.1.2 Effective relaxation time

In continuum flow, the relaxation-time τ can be defined in terms of viscosity µ ,
then flow is under control of the Reynolds number. In contrast, Kn is a fundamental
dimensionless number in non-continuum flow. Therefore, for applying to moderate
Kn flows, the relaxation-time needs to be associated with Kn. In microscale wall
bounded geometries, the mean free path of the total molecules in the system should
be smaller than that in the unbounded systems due to the wall effects. Stops [Stops
(1970)] then introduced a correction function Ψ(Kn) to the molecular mean free
path as λ ∗ = λΨ. Since the relaxation-time τ can be expressed as τ =

√
2/π csλ ,

the effective relaxation-time τ∗ can be modeled as

τ
∗ = τΨ(Kn), (6)

where Kn is still the conventional Knudsen number without considering the wall
effects. However, in this study, it is defined using the local density to include local
effects as

Kn∗ =
µ

ρH

√
π

2RT
. (7)
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The function Ψ derived by Stops was very complicated and difficult for particular
applications, Guo et al. [Guo, Zhao and Shi (2006)] thus approximated Stops’ Ψ

function by a simple formula as

Ψ(x) =
2
π

arctan(
√

2x−3/4), (8)

where x = Kn∗ in this study. The functional behavior (Ψ decreases as Kn∗ in-
creases) indicates that some molecules will hit walls and their flight time (effective
relaxation-time τ∗) may be shorter than the mean free time defined in an unbounded
system.

2.1.3 Regularization procedure

Generally speaking, the distribution function fα has an aliasing error because it
cannot be entirely projected on to the Hermite space. Such an error is usually very
small, but it can be no longer neglected when the system is far from equilibrium
because of high Knudsen number effects. To resolve this problem, the regulariza-
tion procedure was previously introduced for improving numerical stability [Zhang,
Shang and Chen (2006)]. The procedure is implemented as the following. First, the
distribution function fα is divided as

fα = f eq
α + f ′α , (9)

where f ′α is the non-equilibrium part of the distribution. Second, it is necessary to
convert f ′α to a new distribution f̃ ′α which lies within the subspace spanned by the
first three Hermite polynomials. Using the Hermite polynomials, f̃ ′α is expressed
for the D2Q9 model as

f̃ ′α = ωα

[
1

2c2
s

H(2)
(

ξα

cs

)Q−1

∑
α=o

f ′αξαiξα j

]
, (10)

where, H(n)(x) is the nth order Hermite polynomial of a variable x. By replacing fα

in Eq.(1) with Eq.(9) after converting f ′α in Eq.(9) to f̃ ′α in Eq.(10), one can obtain
the following form:

fα(x+ξαδ t, t +δ t) = f eq
α (x, t)+

τ−0.5δ t
τ +0.5δ t

f̃ ′α +
τδ t

τ +0.5δ t
Fα(x, t). (11)

2.2 MRT µ-flow LBMs

The MRT LBM [d’Humieres, Ginzburg, Krafczyk, Lallemand and Luo (2002)]
transforms the distribution function in the velocity space to the moment space by a
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transformation matrix. Since the moments of the distribution function correspond
directly to flow quantities, the moment representation allows us to perform the re-
laxation processes with different relaxation-times according to different time-scales
of various physical processes. The evolution equation is thus written as

1
δ t

[|f(x+ξαδ t, t +δ t)〉− |f(x, t)〉] =−M−1Ŝ [|m(x, t)〉− |meq(x, t)〉]+ |F〉 , (12)

where the bracketed vector such as |f〉 means |f〉 := ( f0, f1, · · · , fQ−1)
T . The matrix

M is a Q×Q matrix which linearly transforms the distribution function f to the
velocity moment m:

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


, (13)

for the D2Q9 model and the collision matrix Ŝ = M ·S ·M−1 is diagonal:

Ŝ = diag(s0,s1, · · · ,s8). (14)

The moment components have physical significances:

m = (ρ,e,ε, jx,qx, jy,qy, pxx, pxy), (15)

where the density ρ and the momentum j := ρu = ( jx, jy) are conserved moments.
The other six non-conserved moments, e, ε , q := (qx,qy), pxx and pxy are, respec-
tively, related to the energy, the energy square, the heat flux, the diagonal and off-
diagonal components of the stress tensor. The equilibria of the conserved moments
are themselves and those of the non-conserved moments are

eeq = 3j ·j−2ρ, ε
eq = ρ−3j ·j, qeq

x =− jx, qeq
y =− jy, peq

xx = j2
x− j2

y , peq
xy = jx jy.

(16)

Following Lallemand and Luo [Lallemand and Luo (2000)], the kinetic viscosity
ν = µ/ρ and the bulk viscosity ζ are given as

ν = c2
s

(
1
sν

− 1
2

)
δ t, (17)
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ζ =
c2

s

2

(
1
se
− 1

2

)
δ t, (18)

where sν = s7 = s8 is the relaxation rate for the moments related to the stress and
se = s1 is the relaxation rate for the moment related to the energy.

2.2.1 The MRT-1 model

The MRT-1 model by Verhaeghe et al. [Verhaeghe, Luo and Blanpain (2009)]
applies si = sν for i = 0,1,2,3,5,7,8 and sq = s4 = s6 with

sq =
8(2− sν)

8− sν

, (19)

following Ginzbourg and Adler [Ginzbourg and Adler (1994)]. The relaxation rate
sν is defined by Eq.(17) with fixed viscosity. However, since the viscosity is written
as µ = ρλ

√
2c2

s/π , with the effective molecular mean free path λ ∗ discussed in
Section 2.1.2, Eq.(17) can be rewritten as

s−1
ν =

1
2

+
λΨ

csδ t

√
2
π

=
1
2

+
H

csδ t

√
2
π

KnΨ. (20)

For the Ψ function, Eq.(8) is applied. (Indeed, we have found that this modification
leads to better performance than that of the original form in predicting the Poiseuille
flows.)

The MRT-1 model applies the diffusive bounce-back boundary condition that is the
combination of the diffuse-scattering and bounce-back boundary conditions for the
wall boundary as

fα(x, t +δ t) = b fβ (x, t)+(1−b) f D
α (x, t +δ t), (21)

where b is a probability coefficient taking b = 0.0− 1.0, the bounce-back vectors
are ξβ = −ξα and f D

α is the diffuse scattering model given by Eq.(5). This model
turns into the diffuse scattering model when b⇒ 0, whilst it becomes the (non-
slip) bounce-back model with b = 1. To satisfy the first-order slip velocity for the
microscopic slip velocity, Verhaeghe et al. derived the probability coefficient:

b =
3µ−KnHρ̄outδx/δ t
3µ +KnHρ̄outδx/δ t

, (22)

where δx is the lattice spacing. This form can be rewritten as

b =
3ρ
√

2c2
s/π− ρ̄outδx/δ t

3ρ
√

2c2
s/π + ρ̄outδx/δ t

, (23)
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which is independent of Kn. In 2-D incompressible flow cases where δx = δ t = 1,
the probability is almost constant as b≈ 0.16.

2.2.2 The MRT-2 model

The presently applied MRT-2 model of Guo et al. [Guo, Zheng and Shi (2008)]
applies s0 = s3 = s5 = 1, s1 = 1/1.1, s2 = 1/1.2. (Although they optimized these
values, they reported that the relaxation rates except for sν and sq had negligible
influence on the simulation results.) Although the relaxation rate sν is defined by
Eq.(17) with the viscosity, Guo et al. modified it using the effective molecular mean
free path λ ∗(= λΨ) as shown in Eq.(20). For the Ψ function, although Guo et al.
used another function of Kn and the distance from the wall, the present MRT-2
model applies Eq.(8). The relaxation ratesq is given by

τ̃q =
3+24χ2 (τ̃s(0))2 A2

16τ̃s(0)
+

τ ′s(0)δx[12+30τ̃s(0)χA1]

16(τ̃s(0))2 , (24)

where τ̃q = 1/sq−0.5, τs = 1/sν , τ̃s = τs−0.5,τs(0) = τs|wall , τ ′s(0) = ∂τs/∂n|wall
and n is the wall-normal direction. The coefficients are χ =

√
π/6, A1 = 2−σa

σa
(1−

0.1817σa) and A2 = 1/π + A2
1/2 where σa is the accommodation coefficient. (In

all the present test flow cases where the walls are diffusive, σa = 1 is applied.) This
relaxation-time was derived by discussing a second-order slip boundary condition
for the microscopic slip velocity when the combined bounce-back and specular-
reflection model was used. It is, however, obviously difficult to apply Eq.(24) to
complex surface geometry. Indeed, nobody can answer which τs(0) is used for the
region away from the walls such as the core region of a rectangular sectioned duct
since the original Sv, and thus Zs include dependency on the distance from the wall.
Therefore, although it may damage the original performance, the MRT-2 model in
this study simply truncates the model as

τ̃q =
3+24χ2τ̃2

s A2

16τ̃s
. (25)

The MRT-2 model employs the combined bounce-back and specular-reflection bound-
ary condition for slippage at a solid wall in a micro flow originally proposed by
Succi [Succi (2002)]. In this scheme, it is assumed that some of the particles hit-
ting a solid wall bounce back but the others reflect specularly. It is expressed as

fα(x, t +δ t) = rs fβ (x, t)+(1− rs) fγ(x, t), (26)

where rs is a bridge coefficient taking rs = 0.0− 1.0 and vectors ξβ = −ξα and
ξγ = ξα − 2(ξα ·n)n are, respectively, the inverse and the specular symmetric ve-
locity vectors of ξα . By discussing the second-order slip boundary condition for
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the microscopic slip velocity, Guo et al. [Guo, Zheng and Shi (2008)] derived the
bridge coefficient as

rs =
[

1+ χA1 +
τ ′s(0)δx

8(τ̃s(0))2

]−1

, (27)

which is again difficult to apply to complex surface geometry. Thus, the present
MRT-2 model truncates it as

rs = [1+ χA1]
−1 , (28)

which becomes rs = 0.628 in the present study.

3 Results and Discussions

Simulations of canonical flows are firstly discussed and then, a flow around a square
cylinder in a nanochannel [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010)]
is discussed.

3.1 3.1 Force driven Poiseuille flows

Figure 1 compares the velocity profiles of plane Poiseuille channel flows at Kn =
0.01 to 10 with the data of the DSMC by Beskok and Karniadakis [Beskok and Kar-
niadakis (1999)] with fully diffusive wall boundary conditions (the accommodation
coefficient is 1.0). These velocity profiles are normalized by the mean velocity Ub
and the wall normal distance y is normalized by the channel height H. The 2-D
uniform Cartesian lattice of 100×100 is used for the simulations. (This density
of the lattice was confirmed to be more than fine enough by our previous study
[Niu, Hyodo, Munekata and Suga (2007)]). The number of iterations of the LBM
simulations is 5,000 and the results are fully converged.

As in our previous studies [Niu, Hyodo, Munekata and Suga (2007); Suga, Take-
naka, Ito, Kaneda, Kinjo and Hyodo (2010)], although the BGK-1 model with the
D2Q21 model well captures Knudsen number effects in the Poiseuille flows, the
BGK-1 model with the D2Q9 model is not very accurate. Yet, even with the less
accurate D2Q9 model, as shown in Fig.1, the BGK-1 model can capture the general
flow tendency, though its results always show a little deviation from those of the
DSMC up to Kn=1. The MRT models, however, perform better than the BGK-1
model up to Kn=1. This is because in both the MRT-1 and MRT-2 models, the
boundary conditions were optimized by discussing the first or the second-order slip
boundary condition for the microscopic slip velocity.

However, as shown in Fig.1(d) at Kn=10, the BGK-1 model agrees better with the
DSMC. This leads to the better agreement with the DSMC and the linearized BE
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(a) (b)

(c) (d)

 

Figure 1: Velocity profile comparisons of the µ-flow LBMs in Poiseuille flows; (a)
at Kn=0.01, (b) at Kn=0.1, (c) at Kn=1.0, and (d) at Kn=10; the DSMC data are
from [Beskok and Karniadakis (1999)].

in the slip and centerline velocities: Us, Uc, at Kn>2 as shown in Fig.2(a). It is
however clear that both the MRT models predict the slip velocity very accurately
at Kn<0.2. As for the centerline velocity Uc, the MRT models always predict satis-
factory results. As shown in Fig.2(b), the mass flow rate:

Q =
H

∑
y=0

ρU(y)/(ρaxH2/cs), (29)

is satisfactorily predicted only by the MRT-2 model at 0.01 ≤ Kn ≤ 10. This sug-
gests that the MRT-1 model needs further optimization by considering the higher
order slip velocity condition as made in the MRT-2 model. This is because the
near-wall velocity profile affects the slip velocity and the wall shear stress which
significantly correlates with the flow rate. Note that the BGK-1 model predicts the
flow rare satisfactorily when the D2Q21 model is coupled [Niu, Hyodo, Munekata
and Suga (2007)]. It is thus clear that applying the higher order discrete velocity
model gives improvement of the prediction accuracy. Yet, since boundary treat-
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ments become too complicated in complex geometries, it is better to avoid applying
such higher order discrete velocity models if possible.

(a) (b)

 

Figure 2: Dependency of the flow characteristics on Kn; (a) velocity scaling at
wall and centerline of the channels, and (b) flow rate; the DSMC data are from
Karniadakis, Beskok and Aluru (2005), the linearized BE data are from [Ohwada,
Sone and Aoki (1989)].

3.2 Square cylinder flow

A square cylinder flow: a flow around a square cylinder placed in a nanochannel,
is considered. Figure 3(a) illustrates the flow geometry in which a square cylinder
whose section is H/5×H/5 is located at the center of a nanochannel. Periodic
boundary conditions are applied to the inlet and outlet boundary and thus, the flow
regime is regarded as a part of an infinite cylinder array set in a nanochannel. The
force is applied to the x-direction only and the Knudsen number is Kn=0.084 as
in the MD simulation of Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010).
In their MD simulation, the channel height and the square cylinder width were
set as respectively 28σ and 5.6σ , where σ is the diameter of the molecules (they
correspond to 9.5 and 1.9 nm, respectively). The computational domain applied
was 28σ × 28σ × 27.886σ and 6642 fluid molecules surrounded by 4738 wall
molecules of argon monolayers were simulated. Although the flow geometry of
the MD simulation was three dimensional, the 2-D statistic flow characteristics
were obtained by averaging in the spanwise direction.

Thus, all the LBM simulations are carried out on the 2-D grid whose size is 100×
100. (After a series of grid dependency tests using grids of 50× 50 to 200× 200,
results by the grid of 100×100 are confirmed to be grid independent.) The number
of iterations of the LBM simulations is around 40,000 and the results are fully
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converged. Figure 3(b) shows streamlines obtained by the simulation. The flow
impinges onto the square cylinder forming stagnation points on the upstream and
downstream faces.

H

H

H/5

H
/5

x

y

Flow

(a) (b)

 

Figure 3: Flow around a square cylinder in a nanochannel; (a) schematic view, and
(b) streamlines.

Figure 4 compares the normalized streamwise velocity U profiles by the bulk mean
velocity Ub at x/H = 0.0, 0.25, 0.5 and 0.75. These distribution profiles of the LBM
simulations generally agree with those of the MD simulation with difference of up
to 5 percent of the bulk mean velocity. At x/H = 0.0, compared with the BGK-
1 model, both the MRT models show better agreement with the MD simulation,
particularly near the walls and in the center region. This is partly because the MRT
model can predict the slippage velocity better at the wall at Kn≈ 0.1 as shown
in Fig.2(a). (Figure 2(a) indicates that both the MRT models accurately predict
the slippage velocity Us whilst the BGK-1 model underpredicts Us at Kn≤ 0.1.)
As seen in the center region of Fig.4(a), the BGK-1 model predicts the velocity
recovery faster than those of the MRT models and the MD. This confirms that it is
the SRT model that leads to too rapid flow development or recovery from velocity
defect in the wake behind the obstacle. However, as shown in Figs.4(c) and (d), the
predictive accuracy of the MRT-2 model becomes slightly lower than those of the
BGK-1 and MRT-1 models at x/H=0.5 and 0.75.

The difference in the wall boundary conditions clearly seen in Fig.5 which com-
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(a) (b)

(c) (d)

 

Figure 4: Comparison of streamwise velocity around a square cylinder in a
nanochannel at Kn=0.084; (a) at x/H = 0.0, (b) at x/H = 0.25, (c) at x/H = 0.5,
(d) at x/H = 0.75.

pares wall normal velocity V profiles at x/H =0.25, 0.4, 0.6 and 0.75. The regions
of 0.4 ≤ y/H ≤ 0.6 at x/H = 0.4 (Fig.5(b)) and 0.6 (Fig.5(c)) respectively corre-
spond to the foreface and back-face of the square cylinder. As shown in Fig.3(b),
the flow impinges onto the foreface and then slides along it. On the back-face,
the flow slides along the face to the stagnation point. These flow motions are well
predicted by the MRT-1 model as indicated in Fig.5(b)) and (c). Obviously, at the
corners: y/H=0.4 and 0.6, only the MRT-1 model captures well the peak levels of
the velocity profiles whereas the other models overpredict them and the slippage
velocities by more than 10 percent of Ub. At the sections of x/H =0.25 and 0.75,
Figs.5(a) and (d) indicate that the MRT-2 model performs slightly worse than the
other µ-flow LBMs. The above comparisons confirm that the combination of the
bounce-back model with the diffuse-scattering condition improves the performance
of the diffuse-scattering boundary condition and superior to the combined bounce-
back and specular-reflection boundary condition.

Note that in the BGK-1 model, the regularization procedure is required since with-
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(a) (b)

(c) (d)

 

Figure 5: Comparison of wall-normal velocity around a square cylinder in a
nanochannel at Kn=0.084; (a) at x/H = 0.25, (b) at x/H = 0.4, (c) at x/H = 0.6,
and (d) at x/H = 0.75.

out it the BGK based models express oscillative velocity profiles as also discussed
in [Suga, Takenaka, Ito, Kaneda, Kinjo and Hyodo (2010); Suga, Takenaka, Ito and
Kaneda (2010)]. By the MRT models, however, such a process is not needed to
damp the oscillations. This also proves that the MRT models are more stable for
micro/nano-flow applications at this level of Kn.

4 Conclusions

In this study, flow simulations at moderate Knudsen numbers are performed by both
the SRT BGK (BGK-1 model) and the MRT based µ-flow LBMs (MRT-1, MRT-2
models). The BGK-1 model consists of the diffuse-scattering boundary condition
and the single relaxation-time sensitized to Kn with the regularization procedure
of the nonequilibrium part of the distribution function. The MRT-1 model con-
sists of the diffusive bounce-back boundary model that is the combination of the
diffuse-scattering and bounce-back boundary conditions whilst the MRT-2 model
consists of the combined bounce-back and specular-reflection boundary condition
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for slippage at a solid wall. The D2Q9 model is applied to all the cases. The sim-
ulated flow cases are canonical force-driven Poiseuille flows at 0.01 ≤ Kn ≤ 10
and a flow around a square cylinder situated in a nanochannel at Kn=0.084. It is
confirmed that although all the tested µ-flow LBMs successfully reproduce char-
acteristic velocity profiles of the Poiseuille flows at moderate Knudsen numbers,
the MRT models perform better than the BGK model. Among the evaluated MRT
models, the MRT-2 model predicts better the flow rates than the MRT-1 model.
This suggests that further improvement for the MRT-1 model is required by con-
sidering the higher order slip boundary condition as made in the MRT-2 model. In
the square cylinder flow, the MRT models improve the BGK model’s rapid flow
recovery in the wake behind the square cylinder. It is also confirmed that the com-
bination of the bounce-back model with the diffuse scattering condition improves
the performance of the diffuse-scattering boundary condition and it is superior to
the combined bounce-back and specular-reflection boundary condition around the
stagnation point.
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