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On Increasing Computational Efficiency of Local Integral
Equation Method Combined with Meshless

Implementations
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Abstract: The paper deals with diminishing the prolongation of the computa-
tional time due to procedural evaluation of the shape functions and their derivatives
in weak formulations implemented with meshless approximations. The proposed
numerical techniques are applied to problems of stationary heat conduction in func-
tionally graded media. Besides the investigation of the computational efficiency
also the accuracy and convergence study are performed in numerical tests.
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1 Introduction

In two last decades, mesh-free methods have become popular and well developed
in various branches of science and engineering. Practically it is impossible to give a
comprehensive review of the literature devoted to the development and applications
of mesh-free methods. It is neither the aim of this paper to refer the most recent
works in that field. Instead of this, we mention three journals (CMES-Computer
Modeling in Engineering & Sciences, EABE-Engineering Analysis with Boundary
Elements, IJNME-International Journal for Numerical Methods in Engineering)
publishing plenty of contributions to mesh-free simulations of engineering prob-
lems. The application of the weak formulation on local sub-domains enables devel-
opment of truly mesh-free formulations in contrast to the weak formulations con-
sidered in the global sense, where the background mesh is still required (Atluri et
al (2003), Atluri (2004)). Besides the numerous advantages of mesh-free methods
(simple pre-processing, elimination of re-meshing, numerical stability in large dis-
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tortions, efficient modeling of separable media, etc), there is one handicap consist-
ing in prolongation of the computational time which is due to procedural evaluation
of shape functions in contrast to polynomial shape functions utilized in mesh-based
methods.

In this paper, we propose several improvements upon the application of the standard
Moving Least Squares (MLS) approximation (Atluri (2004), Lancaster and Salka-
uskas (1981)) to mesh-free formulations for solution of boundary value problems.
Apparently the prolongation of the computational time is increasing with increas-
ing the amount of points at which the shape functions are required. Therefore the
strong formulations with collocating the governing partial differential equations
only at nodal points guarantee better computational economy than the weak for-
mulations with integrating over the analyzed domain or at least over its boundary.
On the other hand in strong formulations, we need higher order derivatives of the
field variable whose accuracy is decreasing with increasing the order of differenti-
ation and also the computational complexity is increasing. We shall discuss both
the strong and weak formulations. Certain time savings can be achieved by using
MLS-CAN (Central Approximation Node) concept (Sladek et al (2008a,b)). An-
other saving is achieved by performing the integrations in the weak formulation
analytically (Sladek et al (2008c), (2009), (2010)). Then, we need the derivatives
of the shape functions only at nodal points. However, the order of the derivatives
is increased. Besides the standard differentiation we propose also a modified dif-
ferentiation with improving the accuracy of higher order derivatives. Savings in
computational time by new proposed computational techniques are quantified in
order to assess the computational economy. The accuracy and convergence study
are performed too. All the numerical experimentation is performed on a simple ex-
ample for the stationary heat conduction in a square domain of functionally graded
medium. The analytical solution is employed as the benchmark solution. The
computational effort in the proposed weak formulation resembles that in the fi-
nite difference method. The relationship with the strong formulation based on the
collocation of the partial differential equation at nodal points is discussed too. Con-
sideration of the material non-homogeneity does not give rice to any complication
as compared with the homogeneous case.

2 Stationary potential problems. Governing equations.

The governing equation for stationary potential problems in anisotropic and con-
tinuously non-homogeneous media is given by the partial differential equation of
elliptic type with variable coefficients (Wrobel (2002))

(λik(x)u,k(x)),i =−w(x), in Ω (1)



On Increasing Computational Efficiency 245

where u(x) is the potential field, w(x) is the volume density of sources, and λik(x)
is the tensor of material coefficients (e.g., thermal conductivities). The left-hand
side of Eq. (1) is the divergence of the flux vector

qk(x) =−λik(x)u,i(x) (2)

The physically reasonable boundary conditions of the problem can be of the fol-
lowing types:

(i) Dirichlet b.c.:

u(ηηη) = ũ(ηηη) at ηηη ∈ ∂ΩD,

(ii) Neumann b.c.:

ni(ηηη)qi(ηηη) = q̃(ηηη) at ηηη ∈ ∂ΩN , (3)

(iii) Robin b.c.:

αu(ηηη)+βni(ηηη)qi(ηηη) = 0 at ηηη ∈ ∂ΩR,

where ∂Ω = ∂ΩD ∪ ∂ΩN ∪ ∂ΩR, ni(ηηη) is the unit outward normal vector to the
boundary, α and β are real constants, and a tilde over a quantity denotes the pre-
scribed value.

The governing equation in the differential form (1) is derived form the physical
balance principles which take an integral form in a continuum theory. Let us con-
sider an arbitrary piece of continuum contained in a domain Ωc bounded with the
boundary ∂Ωc. Then, the energy balance for a steady state field in the considered
piece of continuum is expressed as∫

∂Ωc

ni(ηηη)qi(η)dΓ(ηηη) =
∫
Ωc

w(x)dΩ(x) (4)

In view of the Gauss divergence theorem, one can see that Eq. (4) is an equivalent of
Eq. (1) since each of them can be derived from the other one under the assumption
of arbitrary choice of the sub-domain Ωc ⊂Ω.

3 Strong and local weak formulations

The main difference between the differential and integral forms of the governing
equations consists in the order of differentiation. This feature is rather important
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from the point of view of numerical implementation, since the accuracy of approx-
imated derivatives is usually decreasing with increasing the order of the differenti-
ation. Another aspect is the effort for the numerical integration and evaluation of
the shape functions at integration points.

It is well known that the fundamental solution for the governing PDE with variable
coefficients is not available in closed form, in general. Consequently, neither a pure
boundary formulation is available, in general. Thus, the discrete unknowns will be
associated with nodes distributed in both the analyzed domain and its boundary. On
the other hand, utilization of a domain-type approximation (when the dimension of
the approximation domain is the same as that of the analyzed domain) enables us
to express approximations of derivatives of the field variable by differentiating the
approximation of the field variable. Then, the same discrete d.o.f. as used for ap-
proximation of both the field variable and its derivatives. Without any detailed spec-
ifications, we assume the potential field to be approximated within a sub-domain
Ωx ⊂Ω in terms of certain nodal values ûa and shape functions ϕa(x) as

u(x) = ∑
a

ûa
ϕ

a(x), (5)

where the sets of nodes contributing to the summations are dependent on the point
of approximation (Liu 2003)). Then, the derivatives of the potential field can be
approximated in terms of the same nodal values and the derivatives of the shape
functions as

u,i j...(x) = ∑
a

ûa
ϕ

a
,i j...(x) (6)

Such an approach will be referred as standard differentiation approach (sdif ). Now,
one can discretize both the governing equations and the boundary conditions. Col-
locating the boundary conditions at boundary nodes and the governing equation (1)
at interior nodes, one obtains the discretized strong formulation

∑
a

ûa
ϕ

a(ηηηb) = ũ(ηηηb) at ηηη
b ∈ ∂ΩD (7a)

−ni(ηηηb)λik(ηηηb)∑
a

ûa
ϕ

a
,k(ηηη

b) = q̃(ηηηb) at ηηη
b ∈ ∂ΩN (7b)

∑
a

ûa
{

αϕ
a(ηηηb)−βni(ηηηb)λik(ηηηb)ϕa

,k(ηηη
b)
}

= 0 at ηηη
b ∈ ∂ΩR (7c)

λik(xc)∑
a

ua
ϕ

a
,ik(x

c)+λik,i(xc)∑
a

ua
ϕ

a
,k(x

c) =−w(xc) at xc ∈Ω, (8)
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Equation (8) will be referred as CPDE – collocated partial differential equation.
Alternatively to the strong formulation, one can get the local weak formulation
replacing Eq.(8) by the discretized LIE (4)

∑
a

ua
∫

∂Ωc

ni(η)λik(ηηη)ϕa
,k(ηηη)dΓ(ηηη) =−

∫
Ωc

w(x)dΩ(x) at xc ∈Ω. (9)

Strictly speaking, the utilization of Eq.(9) with collocated boundary conditions (7)
yields a mixed formulation in which the governing equation is considered in a weak
sense while the boundary conditions in the strong sense.

3.1 Analytical integrations in local weak formulation

The main advantage of the weak formulation is the lowest order of the derivative of
the field variable. On the other hand, the gradients of the shape functions are to be
evaluated at each integration point what is the main handicap of this formulation as
long as the shape functions and their derivatives are not available in closed form,
but a procedural evaluation is necessary. Therefore our aim is to perform the inte-
grations analytically when the evaluation of the derivatives of the shape functions
is reduced to nodal points (Sladek et al (2008c)). For this purpose, we assume cir-
cular sub-domains ∂Ωc around each interior xc node and employ the Taylor series
expansion for the gradients of the potential field and the material coefficients

u,k(ηηη)|
∂Ωc

.= u,k(xc)+ rc
s np(η)u,kp(xc)+

(rc
s)

2

2
np(ηηη)ns(ηηη)u,kps(xc)+ ... (10)

λ (ηηη)|
∂Ωc

.= λ (xc)+ rc
s nm(η)λ,m(xc)+

(rc
s)

2

2
nm(ηηη)nt(ηηη)λ,mt(xc)+ ..., (11)

where rc
s is the radius of the sub-domain and ni(ηηη) is the unit outward normal

vector to ∂Ωc at ηηη . For simplicity, we consider the medium with gradation λik(x) =
λ o

ikλ (x).
Assuming the Taylor series expansions up to 6th and 4th orders for λ (x) and φ,i(x),
respectively, and neglecting the terms O

(
(rc

s)
8
)
, one can accomplish the integration

on the l.h.s. of Eq. (9) with the result

λ o
ik

π(rc
s)2

∫
∂Ωc

ni(ηηη)λ (ηηη)u,k(ηηη)dΓ =

Ac
ku,k(xc)+Ac

kpu,kp(xc)+Ac
kpsu,kps(xc)+Ac

kpt f u,kpt f (xc)



248 Copyright © 2010 Tech Science Press CMES, vol.63, no.3, pp.243-263, 2010

and Eq. (9) is converted into the truncated LIE(ai)

Ac
ku,k(xc)+Ac

kpu,kp(xc)+Ac
kpsu,kps(xc)+Ac

kpt f u,kpt f (xc) =

− 1
π(rc

s)2

∫
Ωc

w(x)dΩ(x), (12)

with

Ac
k = λ

o
ik

(
λ

c
,i +

(rc
s)

2

8
λ

c
,imm +

(rc
s)

4

24
1
8

λ
c
,immss

)

Ac
kp = λ

o
ik

[
λ

c
δip +

(rc
s)

2

8
(
2λ

c
,ip +λ

c
, j jδip

)
+

(rc
s)

4

24

(
1
2

λ
c
,ip j j +

δip

8
λ

c
,ss j j

)
+

(rc
s)

6

256

(
1
6

λ
c
,ip j jss +

δip

36
λ

c
,ss j jll

)]

Ac
kps = λ

o
ik

[
(rc

s)
2

8
3λ

c
,iδps+

(rc
s)

4

24

(
3
4

λ
c
,i j jδps +

1
2

λ
c
,ips

)
+

(rc
s)

6

256

(
1
4

λ
c
,i j jllδps +

1
3

λ
c
,isp j j

)]

Ac
kpt f = λ

o
ik

[
(rc

s)
2

8
λ

c
δipδt f +

(rc
s)

4

24

(
λ

c
,ipδt f +

1
4

λ
c
, j jδipδt f

)
+

(rc
s)

6

6×24×192
(
72λ

c
,ip j jδt f +24λ

c
,ipt f +9λ

c
, j jllδipδt f

)]
In the derivation of Eq. (12), we have utilized the following integrals

1
rc

s

∫
∂Ωc

nin jdΓ =
2π∫
0

nin jdϕ = πδi j,

2π∫
0

nin jnmnpdϕ =
π

4
(δi jδmp +δimδ jp +δipδ jm)≡ π

4
Yi jmp,
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2π∫
0

nin jnmnpntnsdϕ =
π

24
(δi jYmpts +δimYjpts +δipYjmts +δitYjmps +δisYjmpt)

≡ π

24
Yi jmpts,

2π∫
0

nin jnmnpntnsnrnldϕ =

π

192
(
δi jYmptsrl +δimYjptsrl +δipYjmtsrl +δitYjmpsrl +δisYjmptrl+

+δirYjmptsl +δilYjmptsr
)

(13)

and the integrals of the product of odd number of normal vectors are vanishing.

In the limit rc
s → 0, Eq. (12) converges to the equation

λ
o
ikλ (xc)u,ik(xc)+λ

o
ikλ,i(xc)u,k(xc) =−w(xc)

or

λik(xc)∑
a

ûa
ϕ

a
,ik(x

c)+λik,i(xc)∑
a

ûa
ϕ

a
,k(x

c) =−w(xc) (14)

which is equivalent with Eq. (8) derived from the strong formulation (CPDE).
Thus, the strong formulation corresponds to the lowest order expansion terms in
the weak formulation when the material coefficients and the shape functions gra-
dients are expanded into Taylor series. Hence, one can expect better accuracy by
the weak formulation than by the CPDE approach especially for problems in con-
siderably graded materials. Note that the functional dependence of the material
coefficients is usually known and hence also the derivatives of the material co-
efficients are known. However, the derivatives of the unknown solution for the
potential field can be considered only approximately in terms of the derivatives of
the shape functions. Bearing in mind the expected inaccuracy for approximations
of higher-order derivatives, our aim is to decrease the order of the derivatives used
in the Taylor series expansion. Therefore the radius of sub-domains rc

s should be
selected sufficiently small.

4 Moving Least Squares (MLS)-approximation

The MLS-approximation (Lancaster and Salkauskas (1981)) belongs to mesh free
approximations since no predefined connectivity among nodal points is required.
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Besides the standard MLS-approximation, we shall shortly discuss also the Central
Approximation Node (CAN) concept (Sladek et al (2008a,b)) resulting in certain
saving in computational time.

4.1 Standard MLS approximation

The primary field variable (potential field) is assumed to be approximated at a vicin-
ity of the point x as

u(x)≈
m

∑
µ=1

pµ(x)cµ(x), (15)

where {p1(x), ..., pm(x)} is a complete monomial basis and cµ(x) are expansion
coefficients which can be obtained by minimizing a weighted functional

J(x) =
Nt

∑
a=1

m

∑
µ=1

wa(x) [pµ(xa)cµ(x)− ûa]2, (16)

where Nt is the total number of nodes xa(a = 1, 2, ..., Nt) and wa(x) is the weight
function associated with node xa. Hence, one can get the expansion coefficients
and the approximation (15) becomes

u(x)≈ uh(x) =
Nt

∑
a=1

φ
a(x)ûa, φ

a(x) =
m

∑
µ,γ=1

pµ(x)
(
A - 1)µ γ

(x)Bγa(x), (17a)

where

Aµβ (x) =
Nt

∑
a=1

wa(x)pµ(xa)pβ (xa), Bγa(x) = wa(x)pγ(xa). (18)

Recall that the shape functions φ a(x) are not known in closed form and a compu-
tational procedure must run for evaluation at each approximation point x. This is
the main handicap of mesh-free approximations as compared with mesh-based ap-
proximations utilizing mostly polynomial interpolations. The weight function for
each node xa is chosen as a function with a compact support given by the radius ra.
In this paper, we shall consider Gaussian weight functions:

wa(x) =

{[
e−(da/ca)2− e−(ra/ca)2

]
/
[
1− e−(ra/ca)2

]
for 0≤ da ≤ ra

0 for da ≥ ra
(19)

da = |x−xa| .
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Recall that the nodal points are distributed within the analyzed domain arbitrarily
and no connectivity is assumed among the nodal points. The actual number of
nodes contributing to the approximation (17a) Nx is less than Nt , since the shape
function φ a(x) = 0, if wa(x) = 0. Nevertheless, all the Nt nodes are involved into
the evaluation algorithm for the shape functions. The radius ra should be large
enough, in order to have a sufficient number of nodes covered in the domain of
definition of every sample point (Nx ≥ m) to ensure the regularity of the matrix A.
Recall that the shape functions do not satisfy the Kronecker delta property φ a(xb) 6=
δab, in general, and the expansion coefficients ûa are fictitious nodal values (Atluri
(2004)). These nodal unknowns are discrete degrees of freedom in the discretized
formulation.

4.2 MLS-CAN concept

Let xq be the central approximation node for the approximation at a point x. Then,
the amount of nodes involved into the approximation at x is reduced a-priori from
Nt to Nq, where Nq is the number of nodes supporting the approximation at the
CAN xq, i.e. the amount of nodes in the set M q = {∀xa; wa(xq) > 0}Nt

a=1. Then,
instead of the approximation given by Eq. (17a), we shall use

u(x)≈ uh(x) =
Nq

∑
a=1

ûn(q,a)
φ

n(q,a)(x), (17b)

where n(q,a) is the global number of the a-th local node from M q. In this paper,
we shall specify the CAN xq as the nearest node to the approximation point x.

4.3 Approximation of derivatives of the potential field

In view of the standard differentiation approach, the gradients of the potential field
can be approximated as gradients of the approximated potential field by

u, j(x)≈ uh
, j(x) =

Nt

∑
a=1

ûa
φ

a
, j(x), (20a)

in the standard MLS approach, while in the MLS – CAN approach we have

u, j(x)≈ uh
, j(x) =

Nq

∑
a=1

ûn(q,a)
φ

n(q,a)
, j (x). (20b)

Note that calculation of gradients of the shape functions is rather complex proce-
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dure according to the formula

φ
a
, j(x) =

m

∑
µ,γ=1

pµ

, j(x)
(
A - 1)µ γ

(x)Bγa(x)+
m

∑
µ,γ=1

pµ(x)[(
A - 1)µ γ

(x)Bγa
, j (x)−

m

∑
β ,λ=1

(
A - 1)µβ

(x)Aβλ (x)
(
A - 1)λ γ

(x)Bγa(x)

]
. (21)

The higher order derivatives can be obtained in a similar way as

u, j...k(x)≈ uh
, j...k(x) =

Nt

∑
a=1

ûa
φ

a
, j...k(x) (22a)

for the standard MLS approach, and for the MLS-CAN approach as

u, j...k(x)≈ uh
, j...k(x) =

Nq

∑
a=1

ûn(q,a)
φ

n(q,a)
, j...k (x). (22b)

Apparently, higher order derivatives of the shape functions increase the complexity
of the evaluation. According to experience we know that the accuracy of higher
order derivatives fails. In Sect. 3, we have seen that the 1st order derivatives of the
shape functions are required at each integration point in the local weak formulation
(LIE + numerical integration), the 1st and 2nd order derivatives at nodal points are
needed in the strong formulation (CPDE), while higher-order derivatives at nodal
points are required in the weak formulation combined with analytical integration.

Beside the standard differentiation (sdif) presented above, we shall use also the
modified differentiation (mdif ). In the mdif approach (Wen and Aliabadi (2008),
Sladek et al (2008c), (2009)), the higher order derivatives of the potential field will
be expressed in terms of the first order derivatives of the shape functions Fca

k =
φ

n(c,a)
,k (xc) and the nodal values ûn(c,a) using the recurrent formula

u(r)
, j...k(x

c)≈
Nc

∑
a=1

u(r−1)
, j... (xn(c,a))φ n(c,a)

,k (xc), (23)

where the nodal values of the (r− 1) - order derivatives and the first order deriva-
tives of the shape functions are used for approximation of the r-order derivative of
the potential at nodal points with

u(0)(xn(c,a)) = ûn(c,a). (24)
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Then, there is no difference between the sdif and mdif approaches for the first order
derivatives, while for the higher order derivatives we have

u, jk(xc)≈ uh
, jk(x

c)

=
1
2


Nc

∑
a=1

Fca
k

Nv

∑
b=1

v=n(c,a)

Fvb
j ûn(v,b) +

Nc

∑
a=1

Fca
j

Nv

∑
b=1

v=n(c,a)

Fvb
k ûn(v,b)

 ,
(25)

u, jkl(xc)≈ uh
, jkl(x

c)

= sym
jkl


Nc

∑
a=1

Fca
l

Nv

∑
b=1

v=n(c,a)

Fvb
k

Nw

∑
d=1

w=n(v,b)

Fwd
j ûn(w,d)

 ,
(26)

u, jklm(xc)≈ uh
, jklm(xc)

= sym
jklm


Nc

∑
a=1

Fca
m

Nv

∑
b=1

v=n(c,a)

Fvb
l

Nw

∑
d=1

w=n(v,b)

Fwd
k

Nz

∑
e=1

z=n(w,d)

Fze
j ûn(z,e)

 , etc.
(27)

where symmetrization is assumed with respect to the indicated indices.

Note that Eqs. (25) - (27) can be rewritten as

uh
, jk(x

c) =
Mc

∑
a=1

Fca
jk ûm(c,a), (28)

uh
, jkl(x

c) =
Nc

∑
a=1

Fca
l

Mv

∑
b=1

v=n(c,a)

Fvb
jk ûm(v,b) =

Kc

∑
a=1

Fca
l jkûk(c,a), (29)

uh
, jklm(xc) =

Nc

∑
a=1

Fca
m

Kv

∑
b=1

v=n(c,a)

Fvb
jkl û

k(v,b) =
Lc

∑
a=1

Fca
jklmûp(c,a), (30)

where the global numbers m(c,a) as well as Mc and Fca
jk can be obtained from com-

parison of Eqs. (28) and (25). Similarly from (29) and (26), one can find k(c,a),
Kc and Fca

l jk, while from (30) and (27), we receive p(c,a), Lc and Fca
jklm. For the

sake of brevity, we have presented the modified differentiation only for MLS-CAN
approach.
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4.4 Discretized governing equations

Let us summarize various approaches arising in combination of three kinds of for-
mulations for the governing equations (strong formulation – CPDE; local weak
formulations: LIE + numerical integration; LIE + analytical integration) with two
kinds of approximations (standard MLS approximation; MLS-CAN approxima-
tion). Thus, the discussed approaches are shown in Table 1.

Table 1: Review of discussed computational approaches

strong form
local weak form

numerical integr. analytical integr.
stand MLS CPDE + stand MLS LIE(ni) + stand MLS LIE(ai) + stand MLS
MLS-CAN CPDE + (MLS-CAN) LIE(ni) + (MLS-CAN) LIE(ai) + (MLS-CAN)

Moreover, the higher-order derivatives of the potential field can be treated either by
standard differentiation (sdif ) or by the modified differentiation (mdif ) approach.
Anyway the discretized governing equations can be written compactly as

∑
g

Kcgûg =−Rc, (c = 1, 2, ... , Nint) (31)

where Nint is the number of interior nodes, the superscripts c and g stand for the
global numbers of nodal points. The system matrix Kcg and the global numbers of
nodes g are to be specified for particular computational approaches as follows:

(i) CPDE + stand MLS

Kcg = λik(xc)ϕg
,ik(x

c)+λik,i(xc)ϕg
,k(x

c) , (g = 1, 2, ... , Nt), Rc = w(xc) (32)

(ii) CPDE + (MLS-CAN)

Kcg = λik(xc)ϕg
,ik(x

c)+λik,i(xc)ϕg
,k(x

c) , (g = n(c,a) for a ∈M c), Rc = w(xc)
(33)

If the 2nd order derivative is expressed by mdif approach, Eq. (31) can be rewritten
as

λik(xc)
Mc

∑
a=1

Fca
ik ûm(c,a) +λik,i(xc)

Nc

∑
a=1

Fca
k ûn(c,a) =−Rc. (34)

(iii) LIE(ni) + stand MLS

Kcg =
∫

∂Ωc

ni(ηηη)λik(ηηη)ϕg
,k(ηηη)dΓ(ηηη), (g = 1, 2, ... , Nt), Rc =

∫
Ωc

w(x)dΩ(x) (35)
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(iv) LIE(ni) + (MLS-CAN)

Kcg =
∫

∂Ωc

ni(ηηη)λik(ηηη)ϕg
,k(ηηη)dΓ(ηηη), (g ∈ {n(qη ,a); a ∈M qη for ∀ηηη ∈ ∂Ω

c})

(36)

Rc =
∫
Ωc

w(x)dΩ(x)

If the radius of the sub-domain is sufficiently small (rc
s < hc/2, where hc is the

minimum distance of any node from xc), the specification of g is simplified, since
qη = c for ∀ηηη ∈ ∂Ωc and g = n(c,a) for a ∈M c.

(v) LIE(ai) + stand MLS

Kcg = Ac
kϕ

g
,k(x

c)+Ac
kpϕ

g
,kp(x

c)+Ac
kpsϕ

g
,kps(x

c)+Ac
kpt f ϕ

g
,kpt f (x

c), (g = 1, 2, ... , Nt)
(37)

Rc =
1

π(rc
s)2

∫
Ωc

w(x)dΩ(x)

(vi) LIE(ai) + (MLS-CAN)

If the higher-order derivatives are expressed by mdif approach, Eq. (31) can be
rewritten as

Ac
k

Nc

∑
a=1

Fca
k ûn(c,a) +Ac

kp

Mc

∑
a=1

Fca
kp ûm(c,a) +Ac

kps

Kc

∑
a=1

Fca
kpsû

k(c,a) +Ac
kpt f

Lc

∑
a=1

Fca
kpt f û

p(c,a) =

=− 1
π(rc

s)2

∫
Ωc

w(x)dΩ(x). (38)

Recall that in the case of LIE(ai), the derivatives of the shape functions are required
only at the nodal points like in the case of CPDE and in contrast to the LIE(ni)
approach. Moreover, in the case of mdif –approach, the 1st order derivatives are
sufficient.

5 Numerical tests

In order to study the accuracy and convergence of numerical results, we shall con-
sider the example for which exact solution is available. In this paper, we consider a
square domain L×Loccupied by isotropic medium with exponentially graded heat
conductionλik(x) = δikeδx2/L.
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Figure 1: Sketch of the analyzed problem

If constant values of the temperature are prescribed on the bottom u(0) and top
u(L) of the square, while the lateral sides are thermally insulated (Fig.1), the exact
solution is given as (Sladek et al (2005))

u(x) = u(0)+(u(L)−u(0))
1− e−δx2/L

1− e−δ
,

qi(x) =−δi2λ (x2)u,2(x2) =
δ

L
u(0)−u(L)

1− e−δ
δi2.

(39)

In numerical computations, we have used δ = 2, u(0) = 1, u(L) = 20. The uniform
distribution of nodal points is employed with h being the distance of two neighbour
nodes. The % error is evaluated as the average of % errors at all nodal points.

error norm (%) = 100

{
Nt

∑
a=1

∆ua
∆ua

}1/2

/

{
Nt

∑
a=1

uex(xa)uex(xa)

}1/2

, (40)

∆ua = unum(xa)−uex(xa)

As regards the computational parameters, we have selected the radius of the support
domain (support for the weight functions) ra = 3.001× h, the shape parameter
ca = h, the radius of circular sub-domains ra

s = 0.98× h in the case of LIE(ni),
while ra

s = 0.3×h in the case of LIE(ai). The latter is an optimal value selected from
numerical experiments (we have considered also constant values of ra

s independent
on the density of nodes).

First, let us consider the test for accuracy of MLS-approximations for derivatives
of the potential field. For this purpose, we present the derivatives along the vertical
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line (L/2, x2) with x2 ∈ [0, L]. In numerical calculations, we have used 441 nodes.
It can be seen (Fig. 2) that the accuracy by sdif –approach fails for the 2nd and
higher order derivatives, while the mdif –approach gives acceptable results at inte-
rior nodes except the boundary layer zone. The width of the unacceptable boundary
layer zone is increasing with increasing the order of the derivative.

    
 

     
 

Figure 2: Derivatives of the potential field along the vertical line; (a) 1st order
derivative, (b) 2nd order derivative, (c) 3rd order derivative, (d) 4th order derivative

Bearing in mind the superior accuracy for the derivatives of the potential field by
mdif -approach as compared with the sdif -approach, one can expect better accuracy
and convergence rate by the mdif -approach when applied to implementation of
the LIE(ai) technique. This expectation has been confirmed as can be seen from
Fig.3, where the accuracy and convergence of numerical results for solution of the
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considered b.v.p. by both the LIE(ai)+sdif and LIE(ai)+mdif have been investigated
with decreasing h(increasing the density of nodes). Concluding, we recommend to
combine the LIE(ai) computational technique with the mdif -approach.

 

Figure 3: Accuracy and convergence
study by LIE(ai)

 

Figure 4: Accuracy and convergence
study by various computational tech-
niques

Fig. 4 shows the comparison of accuracies and convergence rates for numerical so-
lution of the considered b.v.p. by using various of the discussed techniques. It can
be seen that the best convergence rate is achieved by the LIE(ai) technique, though
the best accuracy gives the LIE(ni) implemented by standard MLS-approximation.
The last observation can be explained by the fact that only 1st order derivative is
required in the LIE(ni) technique and the number of nodes is not truncated in stan-
dard MLS-approximation in contrast to the MLS-CAN. Both these facts, however,
prolong the computational time.

In Sect. 3, it has been shown that the local weak form given by LIE(ai) is converted
to the strong form in the limit rc

s → 0 (as the radius of the local sub-domain ap-
proaches zero). Now, Fig. 5 illustrates the confirmation of this statement also by
numerical results.

For assessment of the efficiency of particular computational techniques, we shall
utilize the computational times tsm - time needed for creation of the matrix of the
system of discretized equations, tsol - time needed for solution of that system, and
ttot- total computational time. From Fig. 6, we can see that the standard differenti-
ation approach (sdif ) yields longer tsm than mdif when combined with the LIE(ai)
technique. Thus, in view of this result and the results on Fig. 3, the LIE(ai) + mdif
is superior.
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Figure 5: Investigation of numerical
limit rc

s → 0 in accuracy study by
LIE(ai)

 

Figure 6: Computational times for cre-
ation of the system matrix in LIE(ai)
technique

From comparison of tsm for various techniques, we see that there is small difference
between the LIE(ai) and CPDE but significantly higher times tsm are needed in
the case of LIE(ni). The utilization of the MLS-CAN approximation can produce
great savings in tsm as compared with standard MLS especially in the case dense
distributions of nodes.

Fig. 8 confirms the expectation that the differences in tsol by various techniques for
creation of the discretized equations are negligible.

Since the tsol is almost independent on the employed computational technique for
creation of the system matrix, the savings in tsm should be visible also in the total
computational time ttot . This fact is illustrated in Fig. 9.

In order to assess the role of solver, we have used for comparison two standard
solvers GELG and DGESV. Fig. 10 shows that the benefit of faster solver is worth-
ful for problems with huge amount of d.o.f. Note that the LIE(ni) is less sensitive to
the employed solver especially if the standard MLS is used for the approximation
of field variables.

6 Conclusions

The meshless approximations prolong the computational time needed for creation
of system matrices especially in weak formulations. We propose to diminish this
handicap in two ways:

(A) by introducing CAN-concept in the MLS-approximation
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Figure 7: Comparison of tsm by various computational techniques for various den-
sities of distribution of nodal points

 

Figure 8: Dependence of tsol on the density of nodes with using the Lapack solver
DGESV
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Figure 9: Dependence of ttoton the density of nodes for various computational tech-
niques

(B) by combining meshless approximations with analytical integrations.

(A) The method based on the LIE+numerical integration involves only the 1st or-
der derivatives. This method results into the best accuracy but also into the worst
computational economy. The MLS-CAN approximation does not introduce higher
order derivatives, while the CPU time is decreased with keeping the accuracy to be
still reasonable.

(B) The analytical integration assumes Taylor series expansion of the shape func-
tions what results in appearance of higher order derivatives of the shape functions.

The reasonable accuracy of higher-order derivatives of shape functions can be
achieved by the proposed modified differentiation based on the representation of
such derivatives in terms of the first-order derivatives.

The are proposed two approaches based on:

LIE+analytical integration+modified differentiation

CPDE+modified differentiation

resulting in significant savings of computational time needed for creation of system
matrix. Moreover, there are achieved higher convergence rate and better accuracy
than by methods utilizing standard differentiation of the shape functions

The effective utilization of savings achieved in tsm requires fast solvers especially
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Figure 10: Influence of employed solver on ttot for: (a) LIE(ai), (b) LIE(ni), (c)
CPDE

in problems with huge amount of unknowns.
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