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Algebraic Formulation of Elastodynamics:
the Cell Method

E. Tonti and F. Zarantonello1

Abstract: This paper completes a preceeding paper on the algebraic formulation
of elastostatics [Tonti, Zarantonello (2009)]. It shows how to obtain a numerical
formulation for elastodynamics by avoiding any process of discretization of dif-
ferential equations, i.e. PDE-free formulation. To this end, we must analyse in
more detail the discretization of time by highlighting the need to introduce a dual
subdivision of the time axis, as we did for a space cell complex. The mass matrix
obtained with the direct algebraic formulation is diagonal.
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1 Computational physics from PDE ?

In computational physics, the algebraic equations needed for the numerical solution
are usually obtained through different discretization methods of differential equa-
tions, such as FVM, FEM, FDM, etc. In all these methods it is taken for granted
that the differential equations contain all the information on the physical law which
they describe. But, are we sure that the differential formulation is the best starting
point for the algebraic or discrete or finite formulation? Are we sure that the differ-
ential formulation channels all the physical and geometric features of the physical
phenomenon? The answer is no and the source of this absence lies upstream from
the differential equations. In fact, some physical features are lost in the very mo-
ment in which we introduce the physical variables. In other words, we must ask
whether the differential formulation, which is only one of the tools which math-
ematics has to offer, the other being algebra, is the most suitable for thoroughly
describing the physical phenomenon.

The main information lost in the differential formulation are

• the distinction between configuration, source and energy variables;
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• the introduction of global variables at the outset;

• the notion of the two kinds of orientation of space elements: inner and outer;

• the association of global variables with oriented space elements;

• in time-dependent phenomena it is not often taken into account that some
physical variables must be evaluated at the instant in between the initial
and final instants. This fact is relevant because in the algebraic formula-
tion, hence in the numerical formulation, the lack of this distinction implies
a loss of accuracy, instability and the violation of energy conservation.

Configuration and source variables. Recalling the subdivision of physical quan-
tities into physical constants and physical variables, we can see that in all physical
theories, physical variables can be divided into three classes: configuration, source
and energy variables. For example, in the electric field we have electric potential
(configuration) and electric charge (source); in solid mechanics we have displace-
ment (configuration) and force (source). This fundamental distinction, based on the
role that physical variables play in a theory, is usually ignored and this yields a loss
of information.

Global variables. Since the differential formulation makes use of field functions,
it does not give importance to the global variables from which the field functions, in
general, are deduced. Instead of reconstructing global variables by the integration
of field variables, as in FVM, obtaining the so-called integral variables, it is more
natural to deduce field variables from global variables. Since global variables are
associated with extended space elements, they are rich in geometric information.
The field functions do not contain the same information as the global variables
because the passage to the limit loses the link with geometry. We remark that
when writing a balance law in the differential form, even if the volume element is
infinitesimal, we must use global variables (e.g. surface forces not stresses).

Oriented space elements. Space elements, i.e. points, lines, surfaces, volumes,
can have two kinds of orientation: inner and outer orientation. The most natural
way to use the two types of orientation is to make use of two cell complexes, with
one being the dual of the other. If we provide all elements of the primal complex
with internal orientation, automatically all the elements of the dual complex will be
endowed with outer orientation.
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Global variables and space elements. Global physical variables are naturally
associated with oriented space and time elements the last being instants and inter-
vals. In fact, from the analysis of a great number of physical variables of classical
fields one can infer the

ASSOCIATION PRINCIPLE. In spatial description, global configura-
tion variables are associated with space elements endowed with inner
orientation. In contrast, global source variables and global energy
variables are associated with space elements endowed with outer ori-
entation.

This principle offers a rational criterion for associating global variables of every
physical theory to space and time elements and, as such, it is useful in computa-
tional solid mechanics, as we will explain later.

Let us give an example of the role of this space association by considering the two
Maxwell equations of electromagnetism

∇ × ~E +∂t ~B = 0 ∇ × ~H−∂t ~D = ~J (1)

which describe Faraday’s and Ampère’s laws, respectively. Even though the two
equations appear very similar in the differential formulation, in an algebraic for-
mulation they are very different because of the different association with space
elements. In fact, the two equations must be associated with edges and faces of the
primal complex and edges and faces of the dual complex, respectively. The reason
for this loss of information is that, during the discretization process, it is not usually
taken into consideration that ~B is an axial vector while ~D is a polar vector. This dif-
ference is the clue that the corresponding global variables, i.e. the magnetic flux Φ

and the electric flux Ψ, are associated with a surface endowed with inner and outer
orientation respectively [Tonti (2001b)]. Hence, in an algebraic formulation, the
variables of the first equation must be associated with the primal complex, while
those of the second equation must be associated with the dual complex.

The use of staggered grids enables the recovery of this lost information. Histor-
ically, the introduction of staggered grids in the middle of the 1960s in fluid dy-
namics [Harlow-Welch (1965)] and in electromagnetism [Yee (1966)] constituted a
major advance in computational physics. Staggered grids are preferable to nonstag-
gered grids. In fact, in fluidynamics, one of the advantages of staggered grids is to
prevent non-physical pressure oscillations that may occur on the non-staggered grid
[Ferziger-Peric (1997), p.157]. Moreover, in electromagnetism the use of staggered
grids avoids spurious solutions [Jiang-Wu-Povinelli, (1996)]. This shows that the
introduction of staggered grids was dictated by an attempt to improve the accuracy
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of the solution and avoid some of the inconvenient features of FEM. Hence this
choice was not induced from the natural association of global physical variables
with oriented space elements and, as a consequence, with the primal and dual cell
complexes.

FVM, which starts from the differential formulation using field variables, has no
rule linked with physical reasons for the association of variables with space ele-
ments: take for example velocity and pressure. In contrast, the natural association
of global variables with oriented space elements provides a rule for avoiding a trial
and error procedure. Moreover, starting from field variables, the global variables,
which are nedeed to express conservation laws, must be reconstructed by an ap-
proximate integration, which introduces a further approximation in the algebraic
formulation. The direct use of the global variables makes avoiding this approxi-
mation possible. By itself FVM is unable to indicate the best placement of field
variables in space and time because it tries to satisfy a numerical requirement and
not a physical demand. In contrast, if the mathematical formulation of physical
laws starts from global variables rather than their densities, the right association
with the extended space elements can be immediately seen.

The direct algebraic formulation permits higher order of convergence [Tonti (2001a)]
than has been obtained with FVM [Ferziger-Peric (1997), p.229].

Time dependent phenomena. To give another example of information loss with
regard to evolution problems, let us consider two adjacent rooms separated by a
wall, as shown in Fig. (1). If the temperatures in the two rooms are different, they
will tend to level off because of heat transmission. Let us now mathematically
describe the law which regulates the heat balance, preserving the physical content.

T1(ti)
T1(t f )

T2(ti)

T2(t f )

Figure 1. Temperature behavior in unsteady heat conduction.

The drawings refer to two situations, one at a starting instant ti, the other at a final
instant t f . By indicating with T1 and T2 the temperatures, which are supposedly
uniform in the two rooms, the temperature differences at the initial and final instants
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are

T1(ti)−T2(ti) T1(t f )−T2(t f ) . (2)

Clearly, the amount of heat Q moved from left to right in the interval (ti, t f ) does not
depend only on the initial temperature difference nor only on the final temperature
difference, but, intuitively, on the difference evaluated at an instant in between. For
small time intervals, we can consider the middle instant tm of the interval, i.e.

tm =
t f + ti

2
. (3)

Denoting by A the area of a piece of the wall and with d the thickness of the wall,
λ thermal conductivity, the heat Q crossing this surface during the time interval
(ti, t f ) will be approximately

Q(ti, t f ) =−λ A(t f − ti)
T2(tm)−T1(tm)

d
. (4)

In fact, since the initial temperature difference is different from the final temper-
ature difference, it is unreasonable to choose the initial or the final temperature
difference to evaluate the heat flow.

We usually start from the traditional case of steady heat conduction

Q(ti, t f ) =−λ A(t f − ti)
T2−T1

d
(5)

in which the time variation of temperature is not taken into account. Once the heat
current density q = Q/[(t f − ti)A] has been introduced, the elementary Fourier law,
given by Eq. (5), in vector form is written as

~q =−λ ∇T . (6)

If we put this relation in the law of energy balance, we obtain the Fourier equation

∂t(cvT ) = λ ∇
2T +σ . (7)

When Eq.(7) is discretized, we do not say in which time instant we should evaluate
the temperature on the right hand side. In fact, in FDM on a Cartesian grid, the
discrete form of Eq. (7) is usually written in one of the two forms

cv
(
T n+1

i −T n
i
)

=
λ τ

h2

(
T n

i−1−2T n
i +T n

i+1
)
+ τ σ

n
i (8)

or

cv
(
T n+1

i −T n
i
)

=
λ τ

h2

(
T n+1

i−1 −2T n+1
i +T n+1

i+1

)
+ τ σ

n+1
i (9)
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where arbitrarily the right hand side is evaluated at the initial or at the final in-
stant of the interval [Vesely (1994), p.152; p.153][Isaacson & Keller (1966), p.501;
p.505].

Discretization according to Eq. (8) leads to a scheme that is explicit, of the first
order, which is stable, but rather inefficient [Vesely (1994), p.153]. Discretization
according to Eq. (9) improves things, but leads to a scheme that is of the first order,
stable, implicit and implies the resolution of a tridiagonal matrix at every time step.

These two discretizations do not respect the fact that the jump in temperature must
be evaluated at an intermediate instant for evident physical reasons. This informa-
tion loss is typical of the discretization of the differential formulation and leaves an
arbitrary choice of the instant.

In contrast, using Eq.(4), we come to the following discrete form (omitting for
brevity the source term)

cv
(
T n+1

i −T n
i
)

=
λ τ

2h2

[(
T n+1

i+1 −2T n+1
i +T n+1

i−1

)
+
(
T n

i+1−2T n
i +T n

i−1
)]

. (10)

This approach leads directly to the Crank-Nicholson scheme, which is second or-
der, by starting from physical considerations and not from a purely mathematical
requirement of increasing the order of convergence.

By putting a = (λ τ)/(2h2 cv), we can write

T n+1
i = T n

i +a
[(

T n+1
i+1 −2T n+1

i +T n+1
i−1

)
+
(
T n

i+1−2T n
i +T n

i−1
)]

(11)

which becomes [Vesely (1994), p.155]

−aT n+1
i−1 +(1+2a)T n+1

i −aT n+1
i+1 = +aT n

i−1 +(1−2a)T n
i +aT n

i+1. (12)

We see that the Crank-Nicholson method, which is implicit, requires the inversion
of a tridiagonal matrix at each time step.

1.1 Algebraic formulation of elastodynamics

The direct algebraic formulation is not another method of discretization of differen-
tial equations, it is rather a different philosophy which allows physical equations to
be written directly in an algebraic form without the intermediacy of the differential
formulation. This is the essence of the Cell Method.

This method is opposite to the mimetic discretization methods whose objective is
just to mimic the differential formulation [Bochev (2006)].

The direct algebraic formulation of a physical problem, making widespread use of
global variables and their association with oriented space elements, avoids all the
inconveniences described in the previous section.
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Figure 2. The direct algebraic formulation: the Cell Method.

Based on the association principle we will put into square brackets the space ele-
ments associated with the variables. Thus displacement is associated with points
endowed with inner orientation and we will use the notation~u [P]. The relative dis-
placement of two points is associated with a line, which connects the two points and
which is endowed with an inner orientation because we must decide which is the
previous and which is the following point, hence~h [L]. The internal surface force is
associated with a surface endowed with an outer orientation because it depends on
the normal to the surface, hence we write ~T [

∼S ]. The body force is associated with
a volume endowed with an outer orientation because we must distinguish between
the inside and the outside of the volume, hence ~F [

∼V].
This correspondence makes possible to build a general classification diagram of
physical variables for every physical theory (see the classification diagrams on the
website discretephysics.dica.units.it). Table 1 shows the logical relation between
the physical variables of elastodynamics. The classification of global physical
variables highlights the geometric content of variables. Since displacement and
relative displacement, from which the notion of strain is defined, are associated with
space elements endowed with inner orientation, they involve vertices and edges of
the primal cell complex. In contrast, since equilibrium makes use of surface and
body forces and these forces refer to volumes and surfaces endowed with an outer
orientation, the equilibrium equation must be imposed on every cell of the dual
complex. Hence, the use of two space cell complexes has its roots in the need to
consider two kinds of orientations.

In elastodynamics there are two constitutive relations. One links the internal sur-
face forces, which are associated with the faces of the dual complex, with the rel-
ative displacements, which are associated with the edges of the primal complex.
Another constitutive relation links velocities, that are associated with points of the
primal complex, with momenta that are associated with volumes of the dual com-
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Table 1. Classification diagram of elastodynamics.
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This direct algebraic formulation of elastodynamics is made possible by the use of
global variables and the following requirements:

1. every displacement field in a region of regularity, i.e. where it is continuous
and has continuous variation, can be locally approximated by an affine field.
We remark that even in the differential formulation the regularity requirement
is needed in order to perform the partial derivatives. The definition of the
strain matrix in terms of displacements can be done without making use of
derivatives: in fact, displacement can be considered as having linear behavior
in a small region. This fact opens the way to a purely algebraic formulation
of the strain measure;

2. the equilibrium equation is a global law and, as such, needs not to be applied
to infinitesimal portions of matter. The fact that the sum of the forces applied
to a finite portion of matter must vanish in order to ensure equilibrium opens
the way to an algebraic formulation of the equilibrium condition. The equi-
librium equation is exact until we express the surface forces in terms of the
Cauchy relation, which is an approximate relation. In fact, the relation be-
tween the surface forces and the area vectors, which the forces are associated
with, is an approximate one when we consider a small region (not an neces-
sarily infinitesimal) region. At any rate, the Cauchy relation is an algebraic
relation;
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3. the constitutive law, which is commonly written in a differential setting by
using field variables, is laboratory tested on specimens of finite size in con-
ditions of uniform strain. Under these conditions Hooke law is described by
an algebraic relation. Therefore, their application to small portions of matter,
even if approximate, is an immediate consequence of experiments.

By assembling these relations, we obtain the fundamental algebraic equation of
elastodynamics which is, as such, necessarily approximate.

A word on approximation. Every numerical method is necessarily approximate:
while the traditional methods like FEM, BEM, FDM, FVM introduce an approxi-
mation when the differential equations are discretized, the direct algebraic formu-
lation introduces an approximation from the outset. This happens because, in small
space regions, the displacement can be considered as having linear behavior in
space and, in small time intervals, it can be considered as having a linear behavior
in time.

1.2 Time elements

When dealing with time-dependent phenomena, computational physics discretizes
time and considers a discrete set of instants and the corresponding intervals. In this
way, a one-dimensional cell complex on the time axis is created.

In this cell complex there are two time elements, i.e. instants I and intervals T.
We use boldface capital letters to render this notation uniform with the notation
used for space elements and reserve the letter T to denote the measure of the time
interval, i.e. its duration.

A more refined description of time dependent phenomena suggests considering the
middle instants of each time interval as forming a second subdivision which gives
rise to a second time cell complex, staggered with respect to the first one. If the first
cell complex is called primal, the second cell complex will be called dual. We will
call the elements of the primal time complex primal instants and primal intervals
and we will denote them with a bar over the letters, i.e. I and T. We will call the
middle instants dual instants, denoting them with

∼I and a time interval between
two dual instants as dual time interval, denoting it by

∼T (Fig. 3).
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primal complex

dual complex

t

∼I
∼T
T
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∼I ∼I ∼I
∼T ∼T

I I I
T T

Figure 3. A primal cell complex in time and its dual.

1.3 Global variables in time

An algebraic formulation of time dependent phenomena requires not only a space
classification, but also a time classification of the variables involved. As we shall
see in the following, all variables of a physical field are associated with one of the
four time elements, i.e. I,T,

∼I ,
∼T. This implies that the direct algebraic formulation

naturally assigns the correct instant where the physical variable must be evaluated,
i.e. it is not an arbitrary choice, but the reason of this choice has a physical motiva-
tion.

Among the physical variables which are functions of time instants there are those
which are rates of variables associated with time intervals and those which are not.
This distinction suggests the introduction of the following definition: we call global
variable in time every variable which is not the rate of another physical variable.

Table 2. Distinction between rate and derivative.

~r (t) ~η =~r (t+)−~r (t−)
increment

~η (t−, t+)

~v(t) =
d~r
dt

derivative

~v(t) = lim
~η

τ

rate

~v(t)

radius vector displacement

-

?

Q
Q

QQ

Q
Q

Q
QQs

velocity

~p(t) ~J = ~p(t+)−~p(t−)
increment

~J (t−, t+)

~F(t) =
d~p
dt

derivative

~F(t) = lim
~J
τ

rate

~F(t)

momentum impulse

-

?

Q
Q

QQ

Q
Q

Q
Qs

force

Table 2 helps to grasp the notion of global variable in time. Hence the displacement,
the impulse of a force, the radius vector and momentum are global variables in time,
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while velocity and force are rates.

A distinction needs to be made regarding these four global variables: some of them
refer to a time instant, like radius vector and momentum, while others refer to a
time interval, like displacement and impulse.

2 Algebraic formulation of particle dynamics

The best way to show the role of a primal and a dual cell complex in time is to
describe particle dynamics. This is also useful for introducing elastodynamics. In
fact elastodynamics combines notions of elastostatics and of particle dynamics.

To perform a direct algebraic formulation we need to classify the physical variables
of particle dynamics. This must be done to find the correct instant (primal or dual)
at which we have to evaluate the variables.

2.1 Useful concepts for classification

It is not always immediate to find the right association with time elements as in
the case of radius vector, and velocity, i.e. performing a time classification. Useful
classification rules for this purpose are obtained by analyzing the notions of reversal
of motion and oddness condition.

Reversal of motion. Reversal of motion means the inversion of the time order,
hence the reversal of the orientation of time intervals, i.e. T −→ −T. This fact
sometime implies that the sign of the variable changes into into its opposite. Hence,
for ex. when the order of the time sequence is reversed, the displacement of the
particle changes sign, i.e.

R~η
def=~r (tn−1)−~r (tn) =−[~r (tn)−~r (tn−1)] =−~η . (13)

This fact is important for the present analysis because the behavior of a physical
variable under reversal of motion gives the criterion for the association with primal
or dual time elements.

Oddness condition. We make explicit a truth that is implicitly used in physics: a
global physical variable, associated with a space or time element, changes its sign
if the element reverses its orientation. This will be taken as a general principle. In
algebraic topology this condition is known as oddness condition and we will use
the same name in physics.
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2.1.1 Classification rules

We want to highlight the logical path which allows us to identify the right time
element with which a given physical variable is associated. Given a variable, we
first identify whether it is associated with an instant or an interval by using the very
definition of the variable.

To decide if the time element is primal or dual we must see how the variable behaves
under reversal of motion and make use of the oddness condition. If the variable
changes its sign by reversal of motion and it is associated with an interval, the
interval is primal; if the variable is associated with an instant, the instant is dual.
Conversely, if the variable does not change sign under reversal of motion and it is
associated with an interval, then the interval cannot be primal, hence by exclusion
it must be dual; if the variable is associated with an instant and does not change its
sign under reversal of motion, the instant is primal.

Table 3 summarizes the above discussion.

Table 3. Procedure to find the association.

time changes sign?
elem. yes no

I ∼I Ia given variable is associated with
T T ∼T

2.2 Classification of variables of particle dynamics

The main variables of particle dynamics are: position vector ~r, displacement ~η ,
velocity~v, momentum ~p, impulse ~J, force ~F . The first thing we have to do is divide
these variables into configuration and source variables.

We will see that configuration variables will be associated with the primal time
complex, while source variables will be associated with the dual time complex.

Radius vector. This is a configuration variable. With reference to Fig. (4) left, let
us consider the motion of a particle. At every instant I, the position of the particle is
described by the position vector,~r [I]. Is it a primal or a dual instant? Since~r does
not change sign under reversal of motion it is associated with the primal instants:
hence~r [I].



Algebraic Formulation of Elastodynamics 49

x
y

z

O

P(t−)
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~r(t−)

~r(t+)

~η

brr
P(0)
P(t−)
P(t+)
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Figure 4. left) Displacement in particle dynamics; right) displacement in contin-
uum mechanics.

Displacement. This is a configuration variable. The time analysis of the displace-
ment requires a clarification because the term “displacement” is used with different
meanings in particle mechanics and in continuum mechanics.

a) PARTICLE DYNAMICS. Considering two instants t− and t+, the displacement ~η
is the difference between the position at the final and the initial instant of a time
interval and can be properly called incremental displacement

~η (t+, t−) def=~r (t+)−~r (t−) . (14)

Since the radius vector is associated with a primal instant I, the displacement ~η is
associated with a primal time interval T. Hence we can rewrite Eq.(14) as follows

~η [T] =~r (Ī+)−~r (Ī−). (15)

This equation underlines something new with respect to the traditional notation,
i.e. the time elements involved are those of the primal time complex. In fact, the
traditional notation is unable to show whether the istant or the interval belongs to a
primal or a dual time complex.

b) CONTINUUM MECHANICS. In the deformation of a continuum, the displace-
ment ~u of a point is measured from a fixed position, i.e. from its position in the
reference configuration to its actual position at the instant I (Fig. 4 right), hence ~u
is associated with a primal instant, i.e. ~u [I]. The vector~u can be properly called ini-
tial displacement. We see that the initial displacement ~u in continuum mechanics
plays the same role as the position vector~r of particle dynamics and it is a function
of an instant. The incremental displacement ~η , defined by

~η (t,x,y,z) def= ~u(t+,P)−~u(t−,P) (16)

can be rewritten as follows

~η [T,P] def= ~u(Ī+,P)−~u(Ī−,P). (17)
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In continuum mechanics there is also the relative displacement of two points, P
and Q, defined as the difference of the displacement ~u at two points at a same
instant, i.e.

~h[I,L] def= ~u [I,Q]−~u [I,P]. (18)

Hence ~h is associated with a primal instant and with a line endowed with inner
orientation.

Velocity. This is a configuration variable. Let us pose the question: Which time
element is velocity associated with? To answer this question let us consider the
mean velocity 〈~v〉 of a particle, given by the ratio between the displacement and
the duration of a primal time interval. Since velocity requires a time interval for its
definition, we will say that the velocity inherits from the displacement an associa-
tion with a primal time interval T: we write ~v [T]. But which is the time instant at
which we have to evaluate velocity? To answer this question, we have to consider
the instantaneous velocity. In a small time interval in which the motion is regular,
i.e. continuous and with continuous variation (no rebounds), we can approximate
particle motion with uniformly accelerated motion. The mean velocity is given by

〈~v〉=
~η

T
=

~r (t +)−~r (t−)
t+− t−

=~v0 +~a
t−+ t+

2
=~v
(

t−+ t+

2

)
(19)

therefore, it coincides with the instantaneous velocity in the middle instant of the
interval which is a dual instant. It becomes natural to say that velocity is a function
of the dual instants, i.e. ~v(

∼I ).
Hence, velocity has two features: it is a function of dual instants and it is associated
with a primal intervals; these two features are described by the notations~v(

∼I ) and
~v [T] respectively. It is somewhat similar to the name (round brackets) and surname
(square brackets) of a person.

REMARK. By stating that a physical variable is associated with a time interval or a time
instant we want to emphasize that a time interval or a time instant enters in the definition
of the physical variable and therefore in its measurement, when the variable is measurable.

Let us remark that velocity in particle mechanics is the rate of the incremental
displacement ~η and, consequently, it is the time derivative of the position vector
~r; in continuum mechanics velocity is the rate of the incremental displacement ~η
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and, consequently, it is the time derivative of the initial displacement ~u.

particle mechanics continuum mechanics

~v = lim
~η

τ
=

d~r
dt

~v = lim
~η

τ
=

d~u
dt

.
(20)

Impulse. It is a source variable. The impulse communicated to a particle during
a time interval is the definite time integral of force

~J(t1, t2)
def=
∫ t2

t1

~F (t) dt . (21)

Hence ~J is associated with intervals, i.e. ~J [T]. We want to explore if the impulse
is associated with a primal or a dual interval. In agreement with the oddness con-
dition, if the impulse changes sign under reversal of motion, it will be associated
with the primal interval. Otherwise, by exclusion, it will be associated with the
dual interval.

Impulse does not change sign under reversal of motion: in fact let us consider the
rebound of a ball on a wall (Fig. 5). In forward motion or in backward motion the
ball always gives the same impulse to the wall. This implies that, to respect the
oddness condition, the impulse is not associated with primal intervals, hence ~J [

∼T].

a) b)

J

p

p+

J

p+

Jp

p+

J

p+

-p-
-p-

-

-

Figure 5. a) forward motion; b) backward motion.

Force. This is a source variable. In dynamics force is not a global variable be-
cause it is the rate of the impulse. Hence, force inherits from impulse the associa-
tion with dual time intervals, i.e. ~F [

∼T]. A further reason which confirms that force
is associated with dual intervals is that force does not change sign under reversal of
motion. For example, the force of gravity acting on a stone is the same when the
motion is upwards or downwards, while in the two cases its velocity is reversed.
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Momentum. This is a source variable. The algebraic formulation of particle dy-
namics, as well as all other physical theories, is based on an operative definition of
its variables. We define momentum as the indefinite time integral of force

~p(t) def=
∫ t

0
~F (t ′) dt ′ (with the condition that for t = 0 is~v = 0). (22)

This agrees with [Weyl (1962)]; [Van Dantzig (1954)]; [Williams (1996), p. 138].

Force and momentum are measurable physical variables: the devices for doing so
are the dynamometer and the ballistic pendulum, respectively.

The momentum of a particle in motion is the physical quantity measured with a
ballistic pendulum when the particle has stopped.

Momentum is a function of time instants and since it is not the rate of another
variable, it is a global variable in time, hence it is associated with time instants I.
Is it a primal or a dual instant?

When a ball impacts on a wall, the momentum of the ball is directed towards the
wall. In a reversal of motion the momentum of the ball is reversed, hence it cannot
be associated with primal time instants but, by exclusion, it is associated with dual
time instants: ~p [

∼I ].
The impulse, defined by Eq. (21), can be expressed in terms of momentum as fol-
lows

~J [
∼T] def= ~p(

∼I +)−~p(
∼I −) . (23)

This equation shows that impulse plays the same role with respect to momentum
that the incremental displacement plays with respect to the position vector, Eq. (14).

REMARK. In the differential formulation, the limit process removes the distinction be-
tween primal and dual instants or between primal and dual intervals: this is a great loss for
a numerical formulation. So, the integrals

~η =
∫ t1

t0
~v(t)dt ~J =

∫ t1

t0

~F (t)dt (24)

are considered the same process applied to two different vector valued functions, i.e. ve-
locity and force. The different behavior under reversal of motion is not taken into consid-
eration. In contrast, the algebraic setting mantains information about the association with
time (and space) elements. Dividing a time interval T into small intervals Tn and, in an
analogous way, a time interval

∼T into small intervals
∼Tn, Eqs. (24) can be rewritten in the

form

~η [T] = ∑
n

~v(
∼I n)T n ~J [

∼T] = ∑
n

~F (In) T̃n (25)
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which takes into consideration that velocity is a function of dual instants
∼I , while force is

function of primal instants I. Note that the time intervals are not in bold because they mean
a duration.

Fig. 6 shows the association between physical variables of particle dynamics and
time elements of the primal and dual complexes.

t
Ī− Ī+T

∼I− ∼I+
∼T

dual cell
complex

primal
cell complexdisplacement

velocity

impulse
force

radius vector

momentum
?

?

6 6

Figure 6. The association of variables of particle dynamics with time elements.
Global variables are in bold.

2.3 Constitutive laws

Now we can explore the constitutive laws of particle dynamics.

Momentum-velocity. Since we gave an operative definition of momentum and
velocity, we can explore the nature of their link. To this end, let us consider the
ballistic pendulum, the calibration of which has been obtained by firing bullets of
a same mass with the same velocity. We can fire the same bullet with various
velocities and measure the corresponding momenta. The data thus obtained can be
mapped in a diagram (p,v). Measurements show that momentum is proportional
to velocity and has the same direction: i.e. ~p ∝ ~v. This leads us to introduce a
parameter m and to write

~p law= m~v . (26)

The parameter m is a proportionality constant between two variables previously and
independently defined and is called inertial mass.

REMARK. The interpretation of the relation (26) as a constitutive equation was given
by Van Dantzig [Van Dantzig (1954)]. He stated: “The relation between momentum and
velocity ~p = m~v is a linking equation and implies metrics.” 1



54 Copyright © 2010 Tech Science Press CMES, vol.64, no.1, pp.37-70, 2010

Relation (26) can be written in an algebraic setting as

~p(
∼I ) law= m~v(

∼I ) commonly ~p(t) law= m~v(t). (27)

Table 4. Classification diagram of particle dynamics.

�� ��~r

?�� ��~v

�� ��~F
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�� ��~p

~v =
d~r
dt

~F =
d~p
dt

~F =−k~r -

~p = m~v -

~F =−h~v

�
�
�
�
�
�
��

�
�
�
�
�
�
��3

I

T

∼T

∼I

Particle dynamics
kinematical variables

configuration variables
primal time complex

dynamical variables
source variables

dual time complex
elastic restoring force

viscous
damping

constitutive equation

radius
vector

velocity

force

momentum

Force-displacement. Force can depend on the position of the particle, on its ve-
locity and on other field variables. In the simple case of an elastic restoring force
we have the constitutive relation

~F (I) law= −k~r (I) commonly ~F (t) law= −k~r (t) (28)

where k is the stiffness. Every possible link between force and position, like
Coulomb force, is a different constitutive relation.

1 Here the word metric means measure of lengths, areas, angles, that are indispensable notions in all
constitutive equations.
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Force-velocity. Let us consider a force-velocity relation, like the one of viscous
force

~F (I) law= −h~v(
∼I ) commonly ~F (t) law= −h~v(t). (29)

The fact that velocity changes sign under reversal of motion, while force does not
change sign, is a spy that this relation describes an irreversible link.

After we have performed the classification of physical variables and equations, we
can put them into a classification diagram as shown in Table 4.

2.4 Numerical formulation of particle dynamics

For a numerical formulation it is useful to number the primal and the dual instants
respectively with n and ñ and abandon the notation I and

∼I used until now. With the
preceeding analysis we found the correct association between physical variables of
particle mechanics and time elements of the primal and dual time cell complexes.
We know that position vector, which is associated with primal instants, must be
evaluated at n, i.e. ~r (n), while velocity must be evaluated at ñ, i.e. ~v(ñ). Mo-
mentum must be evaluated at ñ, i.e. ~p(ñ); force must be evaluated at n, i.e. ~F (n).
In this way the algebraic formulation leads to the leapfrog algorithm as a natural
consequence of physical considerations and not as a simple mathematical expedi-
ent to increase accuracy. In this formulation the leap-frog alghoritm stems from the
discovery that some variables are function of the primal instants, while others are
function of dual instants.

Now we can write the fundamental equation of particle dynamics in algebraic form.
With reference to Fig. 7, by combining Eq. (17), Eq. (27), Eq. (23) and being τ n

and τ̃ n the duration of the n−th primal and dual interval respectively, we obtain the
equations

~v(ñ) def=
~r (n)−~r (n−1)

τ n ~p(ñ) law= m~v (ñ) ~F (n) def=
~p(ñ+1)−~p(ñ)

τ̃ n (30)

which are the algebraic equivalent of the differential equations

~v def=
d~r
dt

~p law= m~v ~F def=
d~p
dt

. (31)
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t

n − 1 n0 1

1̃ 2̃ ñ ñ + 1

position
known

momentum
known

initial
momentum

initial condition
on position

initial condition
on velocity

Figure 7. The time sequence of the position vector and momentum.

The fact that the force ~F is, by definition, the derivative of momentum is a con-
sequence of Eq. (22). This is in contrast with the traditional interpretation of this
equation as Newton’s law as a consequence of an incorrect definition of momentum
as mass time velocity.

We see from Eq. (30) that displacement is the backward difference of the position
vector in the primal time complex, while impulse is the forward difference of mo-
mentum in the dual time complex. We will choose a time complex with equally
spaced intervals: τ̄ = τ̃ = τ .

Eqs. (30) can be combined in the following system of two equations ~r (n) = ~r (n−1)+ τ
1
m

~p(ñ)

~p(ñ+1) = ~p(ñ)+ τ ~F (n) .

(32)

With reference to Fig. 7, we see that we need to know momentum at the dual instant
ñ = 1. We suppose that at the initial instant n = 0 the position vector and the
velocity are assigned. This is obtained with the application of the second formula
of system (32) using the interval τ/2.

The leap-frog alghoritm is commonly written by using velocities instead of mo-
menta and acceleration instead of force. By dividing the second equation by the
mass m and eliminating velocity we obtain

~r (n+1) = 2~r (n)−~r (n−1)+ τ
2~a(n) (33)

which is the traditional form of the leap-frog algorithm [Vesely (1994), p.115].

For a damped harmonic motion in one dimension, while in the differential formu-
lation the force is given by ~F = −c~v− k~r, in the algebraic formulation we must
write

~F (n) =−c~v(n)− k~r (n) . (34)
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This implies that velocity must be known at primal instants, while we evaluate it at
the dual instants. This is accomplished with the formula

~v(n) =
~v(ñ+1)+~v(ñ)

2
. (35)

Substituting Eq. (34) and Eq. (35) in system (32) and putting s = cτ/2m we obtain
~r (n) = ~r (n−1)+

τ

m
~p(ñ)

~p(ñ+1) =
(

1− s
1+ s

)
~p(ñ)+

(
τ

1+ s

) [
− k~r (n)

]
.

(36)

Since this system makes use of the leap-frog algorithm, its solution gives an accu-
racy of second order in time.

2.5 Implementation

The dual complex in time gives rise to a staggered grid, as in the Finite-Difference
Time-Domain method [Taflove (2005)]. In order to avoid the use of the cumbersome
notation like tn+1/2, with reference to Fig. (8), we show the pseudocode of the leap-
frog algorithm for one-dimensional motion using only integers.

t
x (0) x (1) x (2)
t (0) t (1) t (2)

p (1) p (2)dual complex

primal complex

Figure 8. A convenient arrangement of indices for the leap-frog algorithm.

% damped harmonic motion
% xe(t) = A*exp(-D*t)*sin(w*t); exact solution
m = 1 , k = 400 , c =0.1 , A = 10 % assigned parameters
D = c/(2*m) , w = sqrt(k/m-D*D) % derived parameters
tau = 0.005 , N = 2000 , s = c*tau /(2*m)
t(0) = 0 , x(0) = 0 , p0 = m*A*w
p(1) = p0*(1-s)/(1+s) - h/2*k*x(0)/(1+s)
FOR n = 1 TO N-1
t(n) = t(n-1)+ tau
x(n) = x(n-1) + tau*p(n)/m
p(n+1)= p(n)*(1-s)/(1+s) - tau*k*x(n)/(1+s)

ENDFOR
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3 Algebraic formulation of elastodynamics

The direct algebraic formulation of elastodynamics is obtained by combining the
results of elastostatics, see the paper [Tonti, Zarantonello (2009)], with the results
just exposed here for particle dynamics.

The space and time global variables of elastodynamics and their densities are listed
in the following. The corresponding association with the elements of the primal
and dual complexes in space and in time is highlighted.

Configuration variables

• ~u [I,P]: the initial displacement is associated with primal instants I and pri-
mal nodes P;

• ~h [I,L]: the relative displacement is associated with primal instants I and
primal edges L;

• ~η [T,P]: the incremental displacement is associated with primal intervals T
and primal nodes P;

• ~v [T,P]: the velocity inherits the association with T and P from the displace-
ment ~u.

• H[I,L]: the displacement gradient matrix inherits the association with I and
L from the relative displacement~h;

• ε[I,L]: the symmetric strain matrix inherits the association with I and L from
the relative displacement~h.

Source variables

• ~P [
∼I ,
∼V]: the momentum is associated with dual instants

∼I and dual volumes
∼V;

• ~J v[
∼T,
∼V]: the impulse of the body forces, acting on the matter contained in

the dual cell, is associated with dual intervals
∼T and dual volumes

∼V;

• ~J s[
∼T,
∼S ]: the impulse of the surface forces, acting on the faces of the dual

cells, is associated with dual intervals
∼T and dual volumes

∼V;

• ~F [
∼T,
∼V]: the resultant of the body forces, acting on the dual cell, inherits the

association with
∼T and

∼V from the impulse of body forces;



Algebraic Formulation of Elastodynamics 59

• ~T [
∼T,
∼S ]: the resultant of the internal surface forces, acting on the bound-

ary of dual cells, inherits the association with
∼T and

∼S from the impulse of
surface forces;

• ~B [
∼T,
∼S ]: the resultant of the external surface forces, acting on the bound-

ary of the broken dual cells, inherits the association with
∼T and

∼S from the
impulse of surface forces;

• τ[
∼T,
∼S ]: the stress matrix inherits the association with

∼T and
∼S from the

impulse of surface forces;

• σ [
∼T,
∼S ]: the symmetric stress matrix inherits the association with

∼T and
∼S

from the impulse of surface forces.

These variables are collected in Table 5: the global variables are in the first row,
while the corresponding rates and densities are in the second row.

Table 5. The space and time global variables of elastodynamics and
their densities and rates.

configuration variables source variables
(geometric and kinematic variables) (static and dynamic variables)

~u [I,P] ~η [T,P] ~h [I,L] ~P [
∼I ,
∼V] ~J v[

∼T,
∼V] ~J s[

∼T,
∼S ]

↓ ↓ ↓ ↓
rate density rate dens.rate

~v [T,P] H [I,L] ~F [
∼T,
∼V] τττ [

∼T,
∼S ]

With reference to Fig. (11), let us consider a space region which can be constituted
by one or more different materials. Let us subdivide this region into triangles form-
ing the primal cell complex and consider the barycentric subdivision to form the
dual cell complex. We apply the equation of motion to each dual cell. If we de-
note by N the number of primal nodes, we obtain a system of 2N equations in 2N
unknowns.

Note that the dual cells are the core of the direct algebraic formulation because all
forces and, as a consequence the equations of motion, make reference to these cells.

3.1 Center of mass of the dual cell

We will make the approximation of considering the center of mass of every dual cell
h coincident with the node h. The stars in Fig. (9) show some of the positions of the
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center of mass of the dual cell, in the worst cases: the center of mass lies near the
common vertex of the triangles. We will see that on account of this approximation
one obtains a diagonal mass matrix.

h h
h

C
C

C

Figure 9. The center of mass, denoted by a star, of the dual cell, in the worst
cases.

Let us express this approximation in mathematical terms. With reference to Fig. (10),
the center of mass C of the dual cell is contained in one of the triangles with a com-
mon vertex h. By denoting the vertices of this triangle with the labels h, i, j, and the
local affine coordinates with the origin in the vertex h with the labels ξ and η and
with reference to the x coordinate alone, we can write

x(C) = x(h)+ξ [x(i)− x(h)]+η [x( j)− x(h)]

= [1−ξ −η ]x(h)+ξ x(i)+η x( j).
(37)

After a displacement, the new x coordinate of C is

x′(C) = [1−ξ −η ]x′(h)+ξ x′(i)+η x′( j). (38)
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η

ξ
x

y

h

i

j

C

η (x j − xh)

ξ (xi − xh)

Figure 10. The center of mass C and the affine coordinates.

The horizontal and vertical components of the displacement of the center of mass
are

{
ux(C) = [1−ξ −η ]ux(h)+ξ ux(i)+η ux( j)
uy(C) = [1−ξ −η ]uy(h)+ξ uy(i)+η uy( j)

. (39)

The fact that the center of mass C is very near to the h node implies that ξ and
η are very small with respect to unit. This suggests making the approximation
ux(C)≈ ux(h) and uy(C)≈ uy(h).

3.2 Numerical formulation

Let us go into more detail and consider a generic dual cell h, see Fig. (11), the one
with the same label as a primal node h and let us apply the formulae of Eq. (30) of
particle dynamics to the dual cell.
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Figure 11. A generic domain subdivided into primal and dual cells. Bottom: a)
nodal displacements; b) body forces; c) surface forces; d) momenta; e) boundary
forces.

Let us consider the momentum ~P of the dual cell h. It is expressed as the product of
the mass of the dual cell for the velocity of its center of mass C: ~P(h) = m(h)~v(C) =
m(h)~u(C)/τ . As previously stated, we can express the displacement of the center
of mass as a linear combination of the displacements of the three nodes h, i, j of the
triangle within which the mass center is located, see Eq. (39). Therefore we can
express the momentum in the form

~P(h) =
m(h)

τ

[
(1−ξ −η)~u(h)+ξ~u(i)+η~u( j)

]
. (40)

So the momentum of the dual cell h does not depend only on the velocity of node
h, but also on the velocities of the two nodes i and j. Thereby we obtain a system
characterized by a sparse matrix with a diagonal dominance. Since the center of
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mass is very close to the node h, see Fig. (9), the affine coordinates ξ and η are
small compared to unity and can be neglected. By doing this approximation, the
momentum of the node h is dependent only on the displacement of node h and
therefore the mass matrix thus obtained is diagonal.

We will use two sets of equations, as in Eq. (32): one to increment the initial dis-
placement ~u, the other to increment the momentum ~P. The notation ~u(n,h) means
that the displacement~u is a function of the primal instant n and of the node number
h. In a two-dimensional problem Eqs. (32) become

ux (n,h) = ux (n−1,h)+
τ

m(h)
Px (ñ,h)

uy (n,h) = uy (n−1,h)+
τ

m(h)
Py (ñ,h)

Px (ñ+1,h) = Px (ñ,h)+ τ

[
Tx (n,h)+Fx (n,h)+Bx (n,h)

]
Py (ñ+1,h) = Py (ñ,h)+ τ

[
Ty (n,h)+Fy (n,h)+By (n,h)

]
.

(41)

This requires transporting the initial condition on momenta to the midpoint of the
first interval, as shown in Fig. 7. This is accomplished with the equations

Px (2,h) = m(h)v0x(h)+
τ

2

[
Tx (1,h)+Fx (1,h)+Bx (1,h)

]
Py (2,h) = m(h)v0y(h)+

τ

2

[
Ty (1,h)+Fy (1,h)+By (1,h)

]
.

(42)

By eliminating the momenta, we can write the fundamental equation of elastody-
namics in the form

m(h)
τ2

[
ux (n+1,h)−2ux (n,h)+ux (n−1,h)

]
= Tx (n,h)+Fx(n,h)+Bx(n,h)

m(h)
τ2

[
uy (n+1,h)−2uy (n,h)+uy (n−1,h)

]
= Ty (n,h)+Fy(n,h)+By(n,h) .

(43)

If we introduce the global vectors

U(n) def=



ux(n,1)
uy(n,1)
· · ·
· · ·

ux(n,N)
uy(n,N)

 F(n) def=



Fx(n,1)
Fy(n,1)
· · ·
· · ·

Fx(n,N)
Fy(n,N)

 T(n) def=



Tx(n,1)
Ty(n,1)
· · ·
· · ·

Tx(n,N)
Ty(n,N)

 (44)
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B(n) def=



Bx(n,1)
By(n,1)
· · ·
· · ·

Bx(n,N)
By(n,N)

 P(ñ) def=



Px(ñ,1)
Py(ñ,1)
· · ·
· · ·

Px(ñ,N)
Py(ñ,N)

 (45)

and the diagonal matrix Q of the inverses of masses

Q def=



1/m(1) 0 · · · 0 0
0 1/m(1) · · · 0 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 0 · · · 1/m(N) 0
0 0 · · · 0 1/m(N)

 (46)

remembering that the vector of surface forces T is linked to the vector of displace-
ments U by the stiffness matrix K, the two sets of equations, i.e. Eq. (41), can be
written as{

U(n) = U(n−1)+ τ Q P(ñ)

P(ñ+1) = P(ñ)+ τ
[
−KU(n)+F(n)+B(n)

]
.

(47)

Note that the matrix Q is diagonal and its elements are the inverse of the masses,
hence with this method we obtain a diagonal mass matrix. By eliminating the
momentum and denoting with M = Q−1 the diagonal mass matrix, we can write
the fundamental equation of elastodynamics in the form

1
τ2 M

[
U(n+1)−2U(n)+U(n−1)

]
=−KU(n)+F(n)+B(n) . (48)

Note that in Eq. (48) all variables are evaluated at the instants of the primal time
complex. This algebraic equation, compared with the Navier differential equa-
tion

ρ ∂tt~u = (λ + µ)∇(∇ ·~u)+ µ ∇
2~u+~f (49)

has the advantage of including the boundary conditions on forces, i.e. the natural
boundary conditions of the variational formulation.

The Navier differential equation has lost the visual immediacy of the physical phe-
nomenon while the algebraic formula Eq. (48) remains adherent to the physical
fact, see Fig. (11). For a comparison with FEM see [Cosmi(2005)].
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In the case of damping, denoting by c the damping coefficient of the dual cell h, we
must add to the body force ~F a damping force ~Fd which can be written as follows

~F d(n,h)=−c~v(n,h)=− c
m(h)

~P(n,h)=− c
2m(h)

[
~P(ñ+1,h)+~P(ñ,h)

]
. (50)

Putting s(h) = [τ c]/ [2m(h)] the second set of Eq. (41) becomes

~P(ñ+1,h) = ~P(ñ,h)+ τ

[
~T (n,h)+~F(n,h)− s(h)

(
~P(ñ+1,h)−~P(ñ,h)

)
+~B(n,h)

]
.

(51)

Rearranging the terms, we obtain

~P(ñ+1,h) =
[

1− s(h)
1+ s(h)

]
~P(ñ,h)+

[
τ

1+ s(h)

] (
~T (n,h)+~F(n,h)+~B(n,h)

)
(52)

which can be compared with Eq. (36) of damped motion of particle dynamics. For
a damping model see [Cosmi(2008)].

All the formulae from Eq. (41) to Eq. (46) can be immediately extended to three
dimensional elastodynamics referring them to a tridimensional simplicial complex
and to its dual, as shown in Fig. (12).

h

i

j

k
~Ah

~A j ~uM
~uN

~uh

~ui

~u j

~uk

1

Figure 12. A simplicial cell in 3D and its dual.

3.3 Normal modes in elastodynamics

Since the left side of Eq. (48) is the acceleration, putting

U = b sinω(t) (53)



66 Copyright © 2010 Tech Science Press CMES, vol.64, no.1, pp.37-70, 2010

and ignoring the volume and boundary forces, we obtain

−ω
2 Mb sinω(t) =−Kb sinω(t). (54)

Dividing by sinω(t) and multipliying for the inverse mass matrix Q, putting λ =
ω2, we have

QKb = λ b. (55)

It follows that the values λ , which allow the eigen-frequencies to be obtained, are
the eigenvalues of the matrix QK.

3.4 Compressional waves

A possible application of elastodynamics is the study of compressional waves (P-
waves). These waves are usually obtained by considering the divergence of the
displacement vector or applying the Helmholtz decomposition.

In the direct algebraic formulation P-waves, which are characterized by the bulk
dilatation Θ, are obtained without resorting to divergence but by means of simple
geometric considerations based on the physical meaning of Θ. Note that both vari-
ables are obtained from the displacement vector and as such must be associated
with primal cells.

Let us show how to evaluate in discrete terms the bulk dilatation Θc for a generic
primal cell c for a plane problem function of a simplicial complex. We focus our
attention on a simplex (triangle) of this complex. The triangle must be conceived
as the face of area Ac of a triangular prism of uniform thickness t, Fig. 13.

The bulk dilatation is the ratio of the linear part of the volume variation ∆Vc and the
volume Vc. Let us consider the triangle h, i, j which represents the upper face of the
prism. Let us indicate the area vectors related to the lateral sides of the prism with
the label of the opposite vertex.
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j
tr

r
r

~A j

~Ah

~Ai
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h i

j

h′ i′

j′

~uh ~ui

~u j

Figure 13. Deformation of a primal cell h, i, j.



Algebraic Formulation of Elastodynamics 67

As shown in Fig. 13, after a plane deformation the prism has changed its volume
and the vertices of the triangle have moved to h′, i′, j′. Then, for each lateral face
of the prism we evaluate the volume variation. We calculate the linear part of this
increase because we consider only small displacements.

h i

α β
h′

i′

~uh
~ui~uM

n̂ S
T

M a

b

g
g′

1

Figure 14. The shaded area multiplied by the thickness t represents the linear
portion of the volume variation of the side hi.

Let us consider the side hi of the triangle in Fig. 14. We propose to evaluate the
area of the quadrilateral hii′h′h. The volume variation for the side hi is evaluated
by calculating the area A of the quadrilateral times the thickness t of the cell.
Assuming small displacements, the linear part of the volume variation is

t A =
g+g′

2
bt ≈~uM · n̂at =

~uh +~ui

2
·~Ak . (56)

Hence the change in volume of the triangular prism is given by

∆Vc = t ∆Ac =
~uh +~ui

2
·~A j +

~ui +~u j

2
·~Ah +

~u j +~uh

2
·~Ai

=
1
2
[~uh · (~A j +~Ai)+~ui · (~A j +~Ah)+~u j · (~Ah +~Ai)] .

(57)

Since the sum of the three oriented sides ∑k~Lk vanishes and the area vectors ~Ak are
obtained by rotating the vectors~Lk of 90◦ multiplied by the thickness t, it follows
that also the sum of the three area vectors ∑k

~Ak vanishes. Thus from Eq. (57) we
obtain

Θc =
∆Vc

Vc
=− 1

2 t Ac

[
~uh ·~Ah +~ui ·~Ai +~u j ·~A j

]
(58)

which is the expression sought for Θc.

With reference to Fig. (12) in three dimensions we have

∆Vc =
~ui +~u j +~uk

3
·~Ah +

~uh +~u j +~uk

3
·~Ai +

~uh +~ui +~uk

3
·~A j +

~uh +~ui +~u j

3
·~Ak
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(59)

from which

Θc =− 1
3Vc

[
~uh ·~Ah +~ui ·~Ai +~u j ·~A j +~uk ·~Ak

]
. (60)

For the application of the Cell Method to acoustics in fluids see [Tonti (2001c)].

4 Conclusion

Let us summarize the features of the direct algebraic formulation, briefly called
Cell Method.

• It works on unstuctured grids;

• it is free of singularities because even concentrated loads are added to other
forces acting on the dual cell and are not assigned to nodes according to the
level rule;

• it works even in presence of different materials.

• it gives rise to a diagonal mass matrix, hence it produces an explicit time-
stepping scheme;

• it avoids the integration on lines, surfaces and volumes because it makes use
direcly of global variables;

• it uses two cell complexes in space and in time, one dual of the other. Some
variables are evaluated at the primal instants, while other at the dual instants:
this choice is not arbitrary but stems from the physical meaning of the vari-
able. This avoids loss of accuracy, instability and the violation of energy
conservation;

• physical equations are directly written in algebraic form, without the inter-
mediation of the differential formulation and can be directly implemented;

• the direct algebraic formulation is based on two approximations: one is that
the displacement field within each primal cell is considered as affine and
higher degree interpolations are possible; the other is that the velocity of
the center of mass of the dual cell is approximated to the velocity of the
corresponding primal node;

• the core of the direct algebraic formulation are the dual cells;
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• the boundary conditions involving forces are included the fundamental equa-
tion;

• is valid also for a non linear constitutive equation;

• the direct algebraic formulation remains adherent to the physical content un-
til the end of the treatment: in fact, it uses intuitive physical concepts without
passing through purely mathematical expedients such as the weak formula-
tion, the introduction of the residual of a differential equation and its orthog-
onality to the shape functions;

• the direct algebraic formulation is automatically consistent. In fact, it per-
forms the same steps that lead to the differential formulation, but operating
on a finite portion (dual cell) rather than an infinitesimal portion of the con-
tinuum.
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