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A Mixed Perfectly-Matched-Layer for Transient
Wave Simulations in Axisymmetric Elastic Media

S. Kucukcoban1 and L.F. Kallivokas2

Abstract: We are concerned with elastic wave simulations arising in elastic,
semi-infinite, heterogeneous, three-dimensional media with a vertical axis of sym-
metry through the coordinate origin. Specifically, we discuss the development of a
new mixed displacement-stress formulation in PML-truncated axisymmetric media
for forward elastic wave simulations. Typically, a perfectly-matched-layer (PML)
is used to surround a truncated finite computational domain in order to attenu-
ate outwardly propagating waves without reflections for all non-zero angles-of-
incidence and frequencies. To date, standard formulations use split fields, where
the displacement components are split into normal and parallel to the PML inter-
face components. In this work, we favor unsplit schemes, primarily for the com-
putational savings they afford when compared against split-field methods. We use
complex-coordinate stretching in the frequency-domain, but retain both unsplit dis-
placements and stresses as unknowns prior to inverting the stretched forms back
into the time-domain. We use a non-classical mixed finite element approach, and
an extended Newmark-β scheme to integrate in time the resulting semi-discrete
forms, which in addition to the standard terms, include a jerk or jolt term. We
report on numerical simulations demonstrating the stability and efficacy of the ap-
proach.

Keywords: Perfectly matched layer; transient elastodynamics; wave propaga-
tion; mixed finite elements; axisymmetric media

1 Introduction

Problems requiring the simulation of waves in unbounded domains arise commonly
in many science and engineering disciplines. When domain discretization methods
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are enlisted for the resolution of the wave motion, the only computationally mean-
ingful strategy mandates truncation of the infinite or semi-infinite extent of the
originally unbounded domain. Truncation, in turn, introduces artificial boundaries
that demand special treatment: the boundaries have to be either transparent to or ab-
sorbent of outgoing waves, so that the finite domain of interest ends up mimicking
the physics of the originally infinite or semi-infinite domain.

Transparent conditions are, typically, conditions prescribed on the truncation sur-
face, and allow for the passage of the waves without, ideally, any reflections from
the truncation surface. Absorbing boundaries or layers require the construction of
a buffer zone within which the waves are forced to decay. The terms “transparent”
and “absorbing” have been used interchangeably in the literature, together with
silent, non-reflecting, transmitting, etc, even though it seems reasonable to reserve
“absorbing” for those truncation surface constructs where the wave motion is truly
absorbed: this is the terminology we adopt herein. The literature on transparent
conditions is considerable: a fairly comprehensive review of various developments
up to about 1998 can be found in Tsynkov (1998). In short, transparent condi-
tions can be roughly classified as local or non-local, with the locality referring to
how strongly coupled the motion is in both the temporal and spatial sense on the
truncation surface. Local conditions are usually less accurate, but computationally
friendlier to implement, whereas non-local conditions, including exact conditions
whenever available, are more accurate, but computationally onerous. More impor-
tantly though, most developments to date, whether pertaining to local or non-local
conditions are not capable of handling material heterogeneity, and they are usually
predicated upon the assumption of an exterior homogeneous host.

When material heterogeneity is present, and especially when one is interested in
direct time-domain simulations, the only presently available approach is based on
the concept of Perfectly-Matched-Layers (PMLs), which is an absorbing layer ap-
proach, pioneered by Bérenger (1994) for electromagnetics. The key idea is based
on enforcement of rapid wave attenuation within buffer zones surrounding the trun-
cation surfaces, while allowing for reflection-less interfaces between the buffer
zones and the computational domain of interest. The last fifteen years have seen
a wide range of applications of PMLs, including, for example, the linearized Eu-
ler equations (Hu, 1996), the simulation of high-power microwaves (HPM) (Wang,
Wang, and Zhang, 2006), Helmholtz equation (Turkel and Yefet, 1998; Harari and
Albocher, 2006), seismic wave propagation in poroelastic media (Zeng, He, and
Liu, 2001), fluid-filled pressurized boreholes (Liu and Sinha, 2003), nonlinear and
matter waves (Farrell and Leonhardt, 2005), acoustics (Zampolli, Tesei, and Jensen,
2007), etc. In this work, our focus is on elastodynamics, and in particular on the
3D axisymmetric case (which reduces to a two-dimensional problem); however, to
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place our own development in context, we review chronologically related devel-
opments in both elastodynamics and electromagnetics, the latter to the extent they
have inspired developments in elastodynamics.

Bérenger’s (1994) original formulation was based on field-splitting, whereby the
contribution of the spatial derivatives of the primary field in each coordinate direc-
tion was isolated, yielding two non-physical components for each field. Chew and
Weedon (1994) reinterpreted the PML using a complex coordinate-stretching view-
point, i.e., a mapping of the spatial coordinates onto the complex space via complex
stretching functions. Chew and Liu (1996) were the first to extend the PML to elas-
todynamics. At the same time, in Hastings, Schneider, and Broschat (1996), a
PML for elastic waves was developed using displacement potentials in a velocity-
stress finite-difference implementation. Later, Gedney (1996) proposed the re-
interpretation of the PML as an artificial anisotropic material. The anisotropic PML
avoided field-splitting and, therefore, it was computationally more efficient when
compared to split-field PML developments. Kuzuoglu and Mittra (1996) proposed
another form of stretching functions, aiming at rendering the PML causal for tran-
sient applications. Though their causality concern was later traced, by Teixeira and
Chew (1999), to an error in the application of Kramers-Krönig relationships, the
proposed fix resulted in an innovative formulation, later referred to as complex-
frequency-shifted PML (CFS-PML). However, the time-domain implementation of
the CFS-PML proved to be onerous, since it entailed the resolution of convolu-
tions. Roden and Gedney (2000b) suggested a recursive scheme for reducing the
computational cost associated with the convolutional operations, and an efficient
implementation of the CFS-PML emerged in electromagnetics, henceforth referred
to as convolution PML (CPML).

The generalization of PML formulations to coordinate systems other than cartesian
is of importance for certain problems where the domain of interest is more naturally
associated with a non-cartesian coordinate system. In electromagnetics, the carte-
sian PML, based on the complex coordinate-stretching approach, was extended to
cylindrical and spherical coordinates in (Teixeira and Chew, 1997a; Chew, Jin, and
Michielssen, 1997; Teixeira and Chew, 1997b,c). As pointed out by Liu and He
(1998), the straightforward extension of the original PML formulation to cylindri-
cal coordinates was not reflection-less (thence the name quasi-PML in electromag-
netics), but it was computationally less demanding when compared against other
implementations of the PML in cylindrical coordinates. Next, Liu (1999) developed
for the first time a PML for elastodynamics in cylindrical and spherical coordinates
based on split fields. The state-of-the-art in the development of PMLs (up to about
2000) was presented by Teixeira and Chew (2000), including a generalization of
the PML to cartesian, cylindrical, and spherical coordinates. Independently, Zhao
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(2000) derived a PML for general curvilinear coordinates in a systematic manner.

Collino and Tsogka (2001) addressed heterogeneity and anisotropy showing nu-
merically that the PML can efficiently handle both. In a formulation similar to
the one presented earlier by Chew and Liu (1996), Collino and Tsogka (2001) dis-
cussed a velocity-stress split-field formulation implemented in a finite-difference
(FD) time-domain setting. In Bécache, Joly, and Tsogka (2001), a mixed finite-
element implementation of the velocity-stress formulation was presented in the
context of a fictitious domain method. Komatitsch and Tromp (2003) introduced
a new displacement-only split-field formulation, by splitting the displacement field
into four components, with the resulting system being either third-order in time,
or second-order coupled with one first-order equation. In Bécache, Fauqueux, and
Joly (2003), the authors discussed the PML’s stability, and the effect of anisotropy:
whereas the PML was proved to be stable for any isotropic material, it is, in gen-
eral, unstable for anisotropic applications (necessary conditions for stability in the
form of material constant inequalities were provided).

Since split-field formulations result in substantial computational cost, there is clear
need for unsplit-field developments. Wang and Tang (2003) presented the first un-
split finite-difference PML formulation for elastodynamics, extending the recursive
integration method of the CPML from electromagnetics. However, the authors used
the standard stretching functions rather than the CFS stretching functions associ-
ated with the CPML. Recently, Drossaert and Giannopoulos (2007a) implemented
the CPML using the CFS stretching functions.

Festa and Nielsen (2003) demonstrated the efficacy of PML even for Rayleigh and
interface waves, where both were attenuated remarkably well. The findings of Ko-
matitsch and Tromp (2003) further supported the efficiency of PML in absorbing
surface waves, however the authors showed degrading PML performance at graz-
ing incidence. The poor performance of the regularly-stretched PML when waves
are incident at near-grazing angles was observed also by Drossaert and Giannopou-
los (2007b,a), however, these peculiarities were not detected when CFS stretching
functions were used in the CPML implementation. Komatitsch and Martin (2007)
and Martin, Komatitsch, and Gedney (2008) also confirmed the superior perfor-
mance of the CPML implementation even at grazing incidence (the use of CFS
stretching functions had already proved its effectiveness in electromagnetics (Ro-
den and Gedney, 2000a; Bérenger, 2002b,a)). In a recent work, Meza-Fajardo and
Papageorgiou (2008) proposed the adoption of stretching functions in all directions,
i.e., not only along the direction normal to the PML interface, and have showed su-
perior performance of their multi-axial PML (M-PML) when compared against the
regularly stretched PML and the CPML.

Basu and Chopra (2003, 2004) developed a displacement-based unsplit-field PML
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for time-harmonic and transient elastodynamics using finite elements for the im-
plementation. Though the authors formulated the unsplit-field PML following, ini-
tially, a mixed displacement-stress approach, at the discrete level they gravitated to-
wards displacement-based finite-elements, and proposed a complicated time-integ-
ration scheme to integrate the resulting semi-discrete forms. Basu (2009) has at-
tempted to improve the performance of the scheme, however the gain is still lim-
ited due to the complexity of the displacement-based unsplit-field PML formulation
in the time-domain. Cohen and Fauqueux (2005) reported a unique mixed finite-
element formulation based on an original decomposition of the elasticity system as
a first-order system, where the authors opted for decomposing the strain tensor into
components (as opposed to splitting the velocity/stress fields). Festa and Vilotte
(2005) discussed a split-field velocity-stress PML formulation, originating from a
first-order (in time) decomposition.

In summary, the key PML developments for time-domain elastodynamics can be
roughly grouped in four categories: split-field finite difference (Chew and Liu,
1996; Hastings, Schneider, and Broschat, 1996; Liu, 1999; Collino and Tsogka,
2001), split-field finite element (Bécache, Joly, and Tsogka, 2001; Komatitsch and
Tromp, 2003; Cohen and Fauqueux, 2005; Festa and Vilotte, 2005; Meza-Fajardo
and Papageorgiou, 2008), unsplit-field finite difference (Wang and Tang, 2003;
Drossaert and Giannopoulos, 2007b,a; Komatitsch and Martin, 2007), and unsplit-
field finite element (Basu and Chopra, 2003, 2004; Basu, 2009). Thus far, too little
attention has been paid to unsplit-field PML formulations in transient elastodynam-
ics, and to the best of our knowledge, none has been developed for the axisymmetric
case. This paper seeks to fill this gap by providing an unsplit-field axisymmetric
PML for transient elastodynamics in a new mixed finite element setting. The mo-
tivation derives from both geotechnical and geophysical applications: for example,
non-destructive testing and evaluation of pavements is nowadays commonly per-
formed using either stationary or moving loads that give rise to axisymmetric prob-
lems. Similarly, in geophysical probing applications, the modeling of wave patterns
around boreholes is typically an axisymmetric problem. We favor finite elements
for the ease by which they handle arbitrary geometries; we prefer unsplit-fields for
the ease by which new developments can be incorporated into existing codes, and
for the computational savings they afford when compared to split fields; finally,
we favor a mixed method, whereby both displacements and stresses are retained as
unknowns, since a single-field approach would greatly complicate time integration
(through convolutions or other complexities).

Specifically, we are concerned with elastic wave simulations in semi-infinite, het-
erogeneous but axisymmetric media, which typically arise in seismic and geophys-
ical applications, geotechnical site characterization, and pavement design or as-
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sessment problems. We discuss the development of a new, non-classical, mixed
displacement-stress formulation in PML-truncated axisymmetric media for tran-
sient elastic wave simulations that results in a semi-discrete form that contains a
jerk or jolt term for the displacements. In section 2, we review the basic idea of
complex coordinate-stretching to place our own development in context; in sec-
tion 3, we apply coordinate-stretching to the governing equations in the frequency-
domain, and invert back in the time-domain to obtain the axisymmetric unsplit-field
PML formulation. The details of the mixed finite element implementation are dis-
cussed in section 4. In section 5, we report numerical simulations demonstrating
the stability and efficacy of the approach, and in section 6 we conclude with our
observations.

2 Complex Coordinate-Stretching

The interpretation of the PML in the context of complex coordinate-stretching by
Chew and Weedon (1994) allowed for the PML’s wide adoption and refined de-
velopment. The idea of complex coordinate-stretching is based on analytic con-
tinuation of the solutions of wave equations (Teixeira and Chew, 2000), and is
realized via a mapping of the spatial coordinates onto the complex space via com-
plex stretching functions. This is accomplished by a simple change of coordinate
variables from real to their complex stretched counterparts. The method is applied
in the frequency domain, and the resulting system of equations is inverted back into
the time-domain for transient applications.

2.1 Basic idea

Consider a PML of thickness LPML attached to the computational domain of inter-
est, as depicted in Figure 1. Let s denote the coordinate variable defined along the
direction normal to the interface; the interface is located at so. The regular domain
extends between 0≤ s < so, and the PML buffer zone occupies so < s≤ st . The key
idea is to replace the original coordinate s by a stretched coordinate s̃, wherever s
appears in the wave motion governing equations; s̃ is defined as

s̃ =
∫ s

0
εs(s′,ω)ds′ = so +

∫ s

so

εs(s′,ω)ds′, (1)

where ω denotes circular frequency, and εs denotes a complex stretching function
in the direction of s. Though various forms of stretching functions have been pro-
posed, here we adopt the most-widely used form of a stretching function due to
its straightforward implementation and improved performance with low-frequency
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Figure 1: A PML-truncated computational domain in the direction of coordinate
s. The outgoing waves pass through the interface located at so without reflections,
and decay exponentially with distance within the layer.

propagating waves. Accordingly

εs(s,ω) = αs(s)+
βs(s)
iω

, (2)

where αs and βs are commonly referred to as scaling (or stretching) and attenuation
functions, respectively (both are real-valued). The real part of εs scales the coor-
dinate s, and, thus, acts as a real-valued stretch, effectively resulting in artificial
geometric damping. However, the amount of attenuation imposed by the scaling
function is not enough to attenuate the propagating waves. It is the imaginary part
of εs that is responsible for the exponential decay of the propagating wave, once it
enters the PML. In order not to alter the wave motion (or the governing equations)
within the regular domain, αs(s) = 1 and βs(s) = 0 for 0≤ s < so. However, inside
the PML, αs(s) > 1 and βs(s) > 0, in order to attenuate both the evanescent and
propagating waves. At the interface, the continuity is satisfied by αs(so) = 1 and
βs(so) = 0. The rate of decay within the PML is frequency-independent, since both
the scaling and attenuation functions do not depend on frequency. Although αs is
usually taken as unity, values greater than unity within the PML could improve the
attenuation of strong evanescent waves (Liu, 1999).

To introduce the stretched coordinate s̃ in the governing equations, we make use of
the fundamental theorem of calculus that suggests

ds̃
ds

=
d
ds

∫ s

0
εs(s′,ω)ds′ = εs(s,ω) ⇒ d

ds̃
=

1
εs(s,ω)

d
ds

. (3)

For notational simplicity, we, henceforth, drop the functional dependence of εs.
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2.2 Choice of stretching function

There is no rigorous methodology suggested in the literature for choosing the scal-
ing and attenuation functions αs and βs, respectively, but the key idea is to have
a profile varying smoothly with distance within the PML. To minimize reflec-
tions, generally, either quadratic or linear profiles have been recommended (Chew
and Liu (1996)), though, we have found linear profiles to result in sharp profiles,
sharper than higher-order polynomials, thus exacting the mesh requirements within
the PML. On the other hand, quadratic profiles have been broadly used in elasto-
dynamics (Collino and Tsogka, 2001; Komatitsch and Tromp, 2003; Cohen and
Fauqueux, 2005; Festa and Vilotte, 2005). In general, the commonly adopted form
of the attenuation profile can be cast, for arbitrary polynomial degree m, as

βs(s) =

{
0, 0≤ s≤ so,

βo

[
(s−so)ns

LPML

]m
, so < s < st ,

(4)

where βo is a user-chosen scalar parameter, m is the degree of the polynomial at-
tenuation, and ns is the s− th component of the outward normal to the interface
between the PML and the regular domain. For εs to remain dimensionless, param-
eter βo must have units of frequency. Based on one-dimensional wave propagation
ideas, βo can be shown to assume the form

βo =
(m+1)cp

2LPML
log
(

1
|R|

)
, (5)

where R is user-tunable reflection coefficient controlling the amount of reflections
from the outer PML boundary that is typically set as fixed, and cp is the P-wave ve-
locity (in general, a reference velocity). Once a polynomial degree is specified for
the attenuation profile, the strength of decay in the PML can be tuned by control-
ling R. The scaling function (αs) controls the decay of evanescent waves and affects
the performance of the PML. It is common practice to use similar profiles for both
scaling and attenuation functions. Since αs is required to be unity in the regular
domain, a form similar to the attenuation profile βs requires that αs be expressed as

αs(s) =

{
1, 0≤ s≤ so,

1+αo

[
(s−so)ns

LPML

]m
, so < s < st ,

(6)

where αo is, similar to βo, a user-chosen dimensionless scalar parameter. To avoid
having two different tuning parameters, here, we employ a form similar to βo

αo =
(m+1)b
2LPML

log
(

1
|R|

)
, (7)
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where b is a characteristic length of the domain (e.g., element size). Upon substi-
tution of αs and βs in (2), the stretched coordinate s̃ in (1) becomes:

s̃ =
∫ s

0

(
αs(s′)+

βs(s′)
iω

)
ds′ ⇒ s̃ = ᾱs +

β̄s

iω
, (8)

where ᾱs(s) and β̄s(s) denote the integrated quantities. In this work, we favor
quadratic profiles (m = 2), even though higher-order profiles enforce more gradual
attenuation within the PML. In summary,

αs(s) =

{
1, 0≤ s≤ so,

1+ 3b
2LPML

log
(

1
|R|

)[
(s−so)ns

LPML

]2
, so < s < st ,

(9)

βs(s) =

{
0, 0≤ s≤ so,

3cp
2LPML

log
(

1
|R|

)[
(s−so)ns

LPML

]2
, so < s < st .

(10)

Guided by the numerical experiments that appear later in this article, our experience
with a variable αs parameter shows no significant improvement over a constant αs

of value 1 and we have thus used αs(s) = 1, 0 ≤ s < st . However, we note that
in the presence of strong evanescent waves there may be an advantage in using a
spatially varying αs.

3 Axisymmetric unsplit-field PML

In coordinate-independent form, the propagation of linear elastic waves is governed
by the equations of motion, the generalized Hooke’s law, and the kinematic condi-
tions

divS T + f = ρü, (11)

S = C :E , (12)

E =
1
2

[
∇u+(∇u)T

]
, (13)

where S , E , and C are the stress, strain, and elasticity tensors, respectively. ρ

is the density of the elastic medium, u is the displacement vector, f is the load
vector, (:) denotes tensor inner product, and a dot (˙) denotes differentiation with
respect to time of the subtended function. For the axisymmetric problem of interest
herein, the above equations must be recast in cylindrical coordinates (r,θ ,z), where
r denotes radial distance, θ is the polar angle, and z is vertical distance (along the
domain’s depth); to this end, the gradient of a vector v, and the divergence of a
tensor A are defined as

∇v =
1
hi

∂v
∂ i
⊗ ei, divA =

1
r

∂

∂ i

(
r
A ji

hi
e j

)
, (14)
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where i and j denote one of r,θ ,z, ei is the unit vector along the i-axis, repeated
indices imply summation, ⊗ denotes tensor product, and the scale factors in the
case of cylindrical coordinates reduce to hr = hz = 1, and hθ = r.

The PML formulation results from the application of complex coordinate-stretching
to the governing equations so that the resulting system governs the motion within
both the regular and PML domains. To this end, equations (11-13) must be first
Fourier-transformed, then stretched, and finally inverted back into the time-domain
for transient implementations. Within the regular domain, the stretched equations
reduce, by construction of the stretching function εs, to the original, undisturbed,
system of governing equations.

3.1 Frequency-domain equations

Application of the Fourier transform to the equilibrium, constitutive, and kinematic
equations (11-13) results in

divŜ T + f̂ =−ω
2
ρû, (15)

Ŝ = C : Ê , (16)

Ê =
1
2

[
∇û+(∇û)T

]
, (17)

where we have assumed initially silent conditions for the displacement field, and a
caret (ˆ) denotes the Fourier transform of the subtended function. Next, we apply
complex coordinate-stretching by making use of (1), (2), (8), and the definitions
(14). Since the problem of interest here is axisymmetric, we apply the stretching
only in the r and z coordinates, i.e., in directions normal to the interface between
the regular domain and PML, by replacing r and z with the stretched coordinates r̃
and z̃. In unabridged notation the equilibrium equations become

∂ σ̂rr

∂ r̃
+

∂ σ̂zr

∂ z̃
+

σ̂rr

r̃
− σ̂θθ

r̃
+ f̂r =−ω

2
ρ ûr, (18)

∂ σ̂rz

∂ r̃
+

∂ σ̂zz

∂ z̃
+

σ̂rz

r̃
+ f̂z =−ω

2
ρ ûz, (19)

where σi j denotes the stress tensor component on the plane normal to i in the direc-
tion of j (σi j = (S )i j). Using (3), the above equations can be expressed in terms
of the unstretched coordinates as

1
εr

∂ σ̂rr

∂ r
+

1
εz

∂ σ̂zr

∂ z
+

σ̂rr

r̃
− σ̂θθ

r̃
+ f̂r =−ω

2
ρ ûr, (20)

1
εr

∂ σ̂rz

∂ r
+

1
εz

∂ σ̂zz

∂ z
+

σ̂rz

r̃
+ f̂z =−ω

2
ρ ûz. (21)
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Next, we multiply both sides by εrεz
r̃
r . Using again the definition of divergence

(14), the equations of equilibrium can be compactly recast as

div
(
Ŝ T

Λ̃

)
+ εrεz

r̃
r

f̂ =−ω
2
ρεrεz

r̃
r

û, (22)

where, after making use of (2) and (8), Λ̃ is defined as

Λ̃ =

εz
r̃
r 0 0

0 εrεz 0
0 0 εr

r̃
r

=

αzᾱr
r 0 0
0 αrαz 0
0 0 αrᾱr

r

+
1

(iω)2

 β̄rβz
r 0 0
0 βrβz 0
0 0 βrβ̄r

r

+

1
iω

αzβ̄r+βzᾱr
r 0 0
0 αrβz +βrαz 0
0 0 αrβ̄r+βrᾱr

r

= Λ̃e +
1

iω
Λ̃p +

1

(iω)2 Λ̃w. (23)

In the above, subscripts “e” and “p” refer to attenuation functions associated with
evanescent and propagating waves, respectively. We remark that in the regular
domain, Λ̃e reduces to the identity tensor, whereas Λ̃p and Λ̃w vanish identically.
After substituting (23) into (22), using (2) and (8), multiplying both sides by iω ,
rearranging and grouping like-terms, there results

div
(

iωŜ T
Λ̃e + Ŝ T

Λ̃p +
1

iω
Ŝ T

Λ̃w

)
+ iωaf̂+bf̂+

c
iω

f̂+
d

(iω)2 f̂ =

ρ
[
(iω)3aû+(iω)2bû+ iωcû+dû

]
, (24)

where

a =
αrαzᾱr

r
, b =

αrαzβ̄r + ᾱrαrβz +αzᾱrβr

r
,

c =
αrβ̄rβz + ᾱrβzβr +αzβrβ̄r

r
, d =

βrβ̄rβz

r
. (25)

We note that, within the regular domain, a ≡ 1,b ≡ 0,c ≡ 0,d ≡ 0, and since the
body forces f are non-vanishing only within the regular domain (f vanishes within
the PML), (24) reduces further to:

div
(

iωŜ T
Λ̃e + Ŝ T

Λ̃p +
1

iω
Ŝ T

Λ̃w

)
+ iωaf̂ =

ρ
[
(iω)3aû+(iω)2bû+ iωcû+dû

]
, (26)
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Similarly, we apply complex coordinate-stretching to the kinematic equation (13),
while also implicitly defining a new stretching tensor Λ; there results

Ê =
1
2

(∇û)

 1
εr

0 0
0 r

r̃ 0
0 0 1

εz

+

 1
εr

0 0
0 r

r̃ 0
0 0 1

εz

(∇û)T

=
1
2
[
(∇û)Λ+Λ

T (∇û)T ] .
(27)

Next, we pre- and post-multiply (27) by iωΛ−T and Λ−1, respectively, to obtain

iωΛ
−T Ê Λ

−1 =
1
2

iω
[
Λ
−T (∇û)+(∇û)T

Λ
−1] , (28)

where

Λ
−1 =

εr 0 0
0 r̃

r 0
0 0 εz

=

αr 0 0
0 ᾱr

r 0
0 0 αz

+
1

iω

βr 0 0
0 β̄r

r 0
0 0 βz

= Λe +
1

iω
Λp. (29)

Substituting (29) into (28), rearranging and grouping like-terms, yields

iωΛ
T
e Ê Λe +Λ

T
e Ê Λp +Λ

T
p Ê Λe +

1
iω

Λ
T
p Ê Λp =

1
2
[
Λ

T
p (∇û)+(∇û)T

Λp
]
+

1
2

iω
[
Λ

T
e (∇û)+(∇û)T

Λe
]
. (30)

Equations (26), (16), and (30), constitute the stretched form of the governing frequen-
cy-domain equations.

3.2 Time-domain equations

By taking the inverse Fourier transform of (26), (16), and (30), there results

div
[
Ṡ T

Λ̃e +S T
Λ̃p +

(∫ t

0
S T dτ

)
Λ̃w

]
+aḟ = ρ

[
a

...
u +bü+ cu̇+du

]
, (31)

S = C : E , (32)

Λ
T
e Ė Λe +Λ

T
e E Λp +Λ

T
pE Λe +Λ

T
p

(∫ t

0
E dτ

)
Λp =

1
2
[
Λ

T
p (∇u)+(∇u)T

Λp
]
+

1
2
[
Λ

T
e (∇u̇)+(∇u̇)T

Λe
]
, (33)

where we used the following inverse Fourier transform property valid for any func-
tion g(t) satisfying the usual requirements:

F−1
[

ĝ(ω)
iω

]
=
∫ t

0
g(τ)dτ, (34)
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where F−1 denotes the inverse Fourier operator1.

Notice that the equilibrium equation (31) implicates a jerk term for the displace-
ments; to retain second-order derivatives as the highest derivatives in the formu-
lation, we express the displacements in terms of the velocities, by introducing v̄
as:

u(x, t) = v̄(x, t) =
∫ t

0
v(x,τ)dτ. (35)

Next, we define the following stress and strain memory (or history) tensor terms:

S(x, t) =
∫ t

0
S (x,τ)dτ, E(x, t) =

∫ t

0
E (x,τ)dτ, (36)

which are such that

Ṡ(x, t) = S (x, t), S̈(x, t) = Ṡ (x, t), Ė(x, t) = E (x, t), Ë(x, t) = Ė (x, t). (37)

Substitution of (35), (36) and (37) into (31-33) leads to the time-domain equations
of our axisymmetric unsplit-field PML formulation

div
(
S̈T

Λ̃e + ṠT
Λ̃p +ST

Λ̃w
)
+aḟ = ρ (av̈+bv̇+ cv+dv̄) , (38)

Ṡ = C : Ė, (39)

Λ
T
e ËΛe +Λ

T
e ĖΛp +Λ

T
p ĖΛe +Λ

T
p EΛp =

1
2
[
Λ

T
p (∇v̄)+(∇v̄)T

Λp
]
+

1
2
[
Λ

T
e (∇v)+(∇v)T

Λe
]
. (40)

4 Mixed finite element implementation

Owing to the complexity of (38-40), one could not conceivably reduce the set (38-
40) to a single unknown field, as it is routinely done in interior displacement-based
elastodynamics problems where there is no PML involved. Here, we propose a
mixed method approach, whereby we retain both displacements and stresses (or,
more appropriately, velocities and stress histories) as unknowns. To this end, we
introduce the constitutive law (39) into the kinematic condition (40), to arrive at

div
(
S̈T

Λ̃e + ṠT
Λ̃p +ST

Λ̃w
)
+aḟ = ρ (av̈+bv̇+ cv+dv̄) , (41)

Λ
T
e (D : S̈)Λe +Λ

T
e (D : Ṡ)Λp +Λ

T
p (D : Ṡ)Λe +Λ

T
p (D :S)Λp =

1
2
[
Λ

T
p (∇v̄)+(∇v̄)T

Λp
]
+

1
2
[
Λ

T
e (∇v)+(∇v)T

Λe
]
, (42)

1 In general, F−1
[

ĝ(ω)
iω

]
=
∫ t

0 g(τ)dτ−π ĝ(0)δ (ω), but, it can be shown that since, by construction,
the overall development excludes ω = 0, the inverse transform reduces to (34).
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Figure 2: A PML-truncated axisymmetric semi-infinite homogeneous elastic do-
main. (a) Three-dimensional model, (b) Computational model with the symmetry
conditions introduced on the left-boundary.

where D denotes the compliance tensor (E = D :S). Consider next the half-space
problem depicted in Figure 2. Let ΩRD ∪ΩPML = Ω ⊂ ℜ3 denote the region oc-
cupied by the elastic body (ΩRD)2, surrounded on its periphery and bottom by the
PML buffer zone (ΩPML). Ω is bounded by Γ = ΓD∪ΓN , where ΓD∩ΓN = /0, and
ΓD ≡ ΓPML

D , ΓN = ΓRD
N ∪ΓPML

N . Moreover, let J = (0,T ] denote the time interval
of interest. Then, we require that (41-42) hold in Ω× J, subject to the following
boundary and initial conditions:

v̄(x, t) = 0 on Γ
PML
D ×J, (43)(

S̈T
Λ̃e + ṠT

Λ̃p +ST
Λ̃w
)

n = 0 on Γ
PML
N ×J, (44)

Ṡ(x, t)T n = gn(x, t) on Γ
RD
N ×J, (45)

v̄(x,0) = 0, v(x,0) = 0, v̇(x,0) = 0, S(x,0) = 0, Ṡ(x,0) = 0 in Ω, (46)

where gn denotes prescribed tractions on ΓRD
N .

We seek next the weak form, in the Galerkin sense, corresponding to the strong
form (41-46). Since both displacements (or velocities) and stresses are retained
as independent unknowns, the resulting problem is mixed (Atluri, Gallagher, and
Zienkiewicz (1983)), as opposed to single-field problems. In a review of mixed
problems by Brezzi (1988), the author pointed out that there exist two possible
weak forms for treating a mixed problem, such as the one arising in elastodynamics;
the two forms result in decidedly different regularity requirements for the approxi-
mants. In the first form the regularity required for the stress approximants is higher
than that of the displacement approximants; this is the classic mixed method. This

2 RD stands for Regular Domain.
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form requires special finite elements, such as those first introduced by Raviart and
Thomas (1977) for second-order elliptic problems (RT elements). Later on, sev-
eral other special mixed finite elements were introduced: by Johnson and Mercier
(1978), by Brezzi, Douglas, and Marini (1985) (Brezzi-Douglas-Marini BDM), by
Arnold, Brezzi, and Fortin (1984) (MINI element), by Arnold, Brezzi, and Douglas
(1984) (PEERS, plane elasticity element with reduced symmetry), etc.

On the other hand, in the second form, which differs from the first simply by an
integration by parts, the regularity requirements are somewhat reversed: the reg-
ularity for the displacement approximants should be higher than that of the stress
approximants. The latter requirements are less onerous for implementation pur-
poses, and do not require any special element types, such as the RT, BDM, etc. In
this work, we favor this second, and largely unexplored, variational form. To this
end, we take inner products of the equilibrium equation (41), and the kinematic
equation (42) with arbitrary weight functions w(x) and T(x), respectively, residing
in appropriate admissible spaces, and then integrate over the entire computational
domain Ω. In the first weak form that leads to the classic mixed method, integra-
tion by parts is applied to the (weighted form of the) kinematic equation only. By
contrast, in the second weak form, which we adopt herein, integration by parts is
applied to the (weighted form of the) equilibrium equation only. There results∫

Ω

∇w :
(
S̈T

Λ̃e + ṠT
Λ̃p +ST

Λ̃w
)

dΩ+
∫

Ω

w ·ρ (av̈+bv̇+ cv+dv̄) dΩ =∫
ΓN

w ·
(
S̈T

Λ̃e + ṠT
Λ̃p +ST

Λ̃w
)

n dΓ+
∫

Ω

w ·aḟ dΩ, (47)∫
Ω

(
D : S̈

)
:ΛeTΛ

T
e dΩ+

∫
Ω

(
D : Ṡ

)
:
(
ΛeTΛ

T
p +ΛpTΛ

T
e
)

dΩ+∫
Ω

(D :S) :ΛpTΛ
T
p dΩ =

∫
Ω

∇v̄ :ΛpTsym dΩ+
∫

Ω

∇v :ΛeTsym dΩ, (48)

where Tsym is the symmetric part of tensor T. We seek v ∈ H1(Ω)× J satisfying
v̄|

ΓPML
D

= 0, and S ∈ L 2(Ω)× J such that equation (48) holds for all w ∈ H1(Ω)
satisfying w|ΓD = 0 and T ∈L 2(Ω). The functional spaces of relevance here are
defined, as usual, for scalar functions v, for vector functions v, and tensor functions
A , by

L2(Ω) =
{

v :
∫

Ω

|v|2dx < ∞

}
, L 2(Ω) =

{
A : A ∈ (L2(Ω))3×3} , (49)

H1(Ω) =
{

v :
∫

Ω

(
|v|2 + |∇v|2

)
dx < ∞

}
, H1(Ω) =

{
v : v ∈ (H1(Ω))2} . (50)

It is important to notice that the regularity required for the stresses is lower than
what is required of the displacements/velocities. Next, we seek approximate solu-



124 Copyright © 2010 Tech Science Press CMES, vol.64, no.2, pp.109-144, 2010

tions for v(x, t) and S(x, t); to this end, we introduce the finite-dimensional spaces
Ξ

h ⊂H1(Ω) and ϒ
h ⊂L 2(Ω). Let the basis functions in Ξ

h and ϒ
h be denoted by

Φ and Ψ, respectively. The trial functions vh ∈ Ξ
h×J and Sh ∈ ϒ

h×J are spatially
discretized as

v(x, t)∼= vh(x, t) =
[

Φ
T (x)vr(t)

Φ
T (x)vz(t)

]
,

S(x, t)∼= Sh(x, t) =

Ψ
T (x)Srr(t) 0 Ψ

T (x)Srz(t)
0 Ψ

T (x)Sθθ (t) 0
Ψ

T (x)Szr(t) 0 Ψ
T (x)Szz(t)

 . (51)

Similarly, the test functions w ∈ Ξ
h and T ∈ ϒ

h are expressed as

w(x)∼= wh(x) =
[

wT
r Φ(x)

wT
z Φ(x)

]
, T(x)∼= Th(x) =

TT
rrΨ(x) 0 TT

rzΨ(x)
0 TT

θθ
Ψ(x) 0

TT
zrΨ(x) 0 TT

zzΨ(x)

 .

(52)

By introducing the symmetry of the stress tensor (S T = S ), we obtain the semi-
discrete form

{M }d̈+{C }ḋ+{K }d+{G }d̄ = {R}, (53)
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where

d̄ = [v̄r v̄z S̄rr S̄θθ S̄zz S̄rz]T ,

M =



Ma 0 Ae1r Pe2 0 Ae3z

0 Ma 0 0 Ae3z Ae1r

0 0 Ne1e1 −Ze1e1 −Ze1e1 0
0 0 −Ze2e2 Ne2e2 −Ze2e2 0
0 0 −Ze3e3 −Ze3e3 Ne3e3 0
0 0 0 0 0 Ge1e3

 ,

C =



Mb 0 Ap1r Pp2 0 Ap3z

0 Mb 0 0 Ap3z Ap1r

0 0 2Ne1p1 −2Ze1p1 −2Ze1p1 0
0 0 −2Ze2p2 2Ne2p2 −2Ze2p2 0
0 0 −2Ze3p3 −2Ze3p3 2Ne3p3 0
0 0 0 0 0 (Ge1p3 +Gp1e3)

 ,

K =



Mc 0 Aw1r Pw2 0 Aw3z

0 Mc 0 0 Aw3z Aw1r

−Be1r 0 Np1p1 −Zp1p1 −Zp1p1 0
−Qe2 0 −Zp2p2 Np2p2 −Zp2p2 0

0 −Be3z −Zp3p3 −Zp3p3 Np3p3 0
−Be1z −Be3r 0 0 0 Gp1p3

 ,

G =



Md 0 0 0 0 0
0 Md 0 0 0 0

−Bp1r 0 0 0 0 0
−Qp2 0 0 0 0 0

0 −Bp3z 0 0 0 0
−Bp1z −Bp3r 0 0 0 0

 ,

R = [fe
r fe

z 0 0 0 0]T .

(54)

The various matrix and vector blocks are defined as

fe
r =

∫
ΓRD

N

Φ gr(x, t)dΓ+
∫

Ω

Φa ḟr dΩ, fe
z =

∫
ΓRD

N

Φ gz(x, t)dΓ+
∫

Ω

Φa ḟz dΩ, (55)
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and

Ai jk =
∫

Ω

Λ̃
j
i
∂Φ

∂k
Ψ

T dΩ, Ni jkl =
∫

Ω

Λ
j
i Λl

k
E

ΨΨ
T dΩ, Zi jkl =

∫
Ω

ν
Λ

j
i Λl

k
E

ΨΨ
T dΩ,

(56)

Bi jk =
∫

Ω

Λ
j
i Ψ

∂Φ
T

∂k
dΩ, Gi jkl =

∫
Ω

2(1+ν)
Λ

j
i Λl

k
E

ΨΨ
T dΩ, (57)

Pi j =
∫

Ω

1
r

Λ̃
j
i ΦΨ

T dΩ, Qi j =
∫

Ω

1
r

Λ
j
i ΨΦ

T dΩ, Mi =
∫

Ω

i ρΦΦ
T dΩ. (58)

Notice that Λn and Λ̃n denote the nth component of the diagonal matrices Λ and Λ̃,
respectively.

The lowest-order time derivatives implicated in the semi-discrete form (53) are as-
sociated with d̄, which, in turn, involve displacements, and time-integrals of the
stress history terms. Thus, clearly, the form (53) is unconventional and calls for a
specialized time-integration scheme. To this end, we develop an extension to the
classical Newmark-β scheme, by, first, making use of the following finite differ-
ence formulas describing the evolution of the corresponding quantities

d̄n+1 = d̄n +∆t dn +
∆t2

2
ḋn +

(
1
6
−α

)
∆t3d̈n +α ∆t3d̈n+1, (59)

dn+1 = dn +∆t ḋn +
(

1
2
−β

)
∆t2d̈n +β ∆t2d̈n+1, (60)

ḋn+1 = ḋn +(1− γ)∆t d̈n + γ ∆t d̈n+1, (61)

where ∆t denotes the time step, and subscripts (n) and (n + 1) denote current and
next time step, respectively (β , and γ are the usual Newmark-β parameters, and α

is a new Newmark-like parameter). For the linear acceleration method, (α,β ,γ)
reduce to ( 1

24 , 1
6 , 1

2), whereas in the case of the constant (average) acceleration
method, (α,β ,γ) reduce to ( 1

12 , 1
4 , 1

2). Next, after rewriting (53) for the (n + 1)-th
time step, and, subsequently, introducing (59-61), there result the following effec-
tive system matrix {Keff}, and effective load vector {Reff}n+1

{Keff} d̈n+1 = {Reff}n+1, (62)
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where

{Keff}= {M }+{C } γ∆t+{K } β∆t2 +{G } α∆t3, (63)

{Reff}n+1 = {R}n+1−{C }
[
ḋn +(1− γ)∆t d̈n

]
−{K }

[
dn +∆t ḋn +

(
1
2
−β

)
∆t2d̈n

]
−{G }

[
d̄n +∆t dn +

∆t2

2
ḋn +

(
1
6
−α

)
∆t3d̈n

]
. (64)

Equation (62) allows for the computation of the second-order terms at every (n+1)
time step; lower-order terms for the same time step are then recoverable via (59-61).
In the applications that follow we used the average acceleration scheme.

5 Numerical Results

To test the accuracy of our mixed unsplit-field PML formulation, we discuss next
two numerical experiments. The first pertains to a homogeneous half-space, where-
as the second focuses on the effects of heterogeneity and involves a horizontally-
layered system. For graphical presentation reasons, and without loss of generality,
we have used low wave velocities to allow for clear wave front separation. In both
simulations, we apply a distributed stress load on the surface, with a Ricker pulse
time signature. The pulse is defined as

Tp(t) =
(0.25u2−0.5)e−0.25u2−13e−13.5

0.5+13e−13.5 for u = ωrt−3
√

6, and 0≤ t ≤ 6
√

6
ωr

,

(65)

where ωr is the characteristic Ricker central circular frequency (= 2π fr) of the
pulse. Here, we used fr = 4 Hz, and an amplitude of 10 Pa as depicted in Figure 3.

Beyond comparisons of time histories at select target locations, as a measure of
PML performance, we provide plots of time-dependent error relative to a reference
solution. To reproduce the semi-infinite extent of the unbounded domain on a com-
putationally feasible scale, we compute (by using a displacement-based axisym-
metric formulation) the response in an enlarged domain ΩED with fixed boundaries
at a distance, such that the reflections from its fixed exterior boundaries do not
travel back to the computational domain of interest ΩRD within the specified time
interval. We compare the responses only within the regular domain ΩRD (⊂ΩED).
Introducing the time-dependent L2 norm of the displacement field over a domain Ω

as

D(t;Ω) =
[∫

Ω

v̄T (x, t) v̄(x, t)dΩ

] 1
2

, (66)
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Figure 3: Ricker pulse time history and its Fourier spectrum

we define a relative error metric in terms of L2 norms, normalized with respect to
the peak value of the displacement field norm at all times within the regular domain
region of the enlarged domain, as

e(t) =

{∫
ΩRD [v̄(x, t)− v̄ED(x, t)]T [v̄(x, t)− v̄ED(x, t)] dΩRD

} 1
2

maxD(t;ΩED)
×100. (67)

As an added metric of the PML’s performance, we use the decay of the total energy
within the regular domain, along lines similar to the ones discussed by Komatitsch
and Martin (2007). The energy, injected to the domain via the loading, is carried
by waves that are absorbed and attenuated within the PML, and, thus, decay should
be expected if the PML is working properly. The total energy of the system as a
function of time is expressed as

Et(t) =
1
2

∫
Ω

ρ(x, t)
[
vT (x, t)v(x, t)

]
dΩ+

1
2

∫
Ω

[
σ

T (x, t)ε(x, t)
]

dΩ, (68)

where v, σ , and ε denote velocity, stress, and strain vectors, respectively. Again,
the total energy is computed only within the regular domain ΩRD.

5.1 Homogeneous medium

We considered a homogeneous half-space with density ρ = 2200 kg/m3, shear
wave velocity3 cs ' 5.81 m/s, and Poisson ratio ν = 0.2. We truncated the semi-
infinite extent of the original domain arriving at a 10m × 10m two-dimensional
computational domain, through the introduction of a finite height (10m) cylindrical

3 The low velocity is by design to allow for the ready wave pattern identification in plots; realistic
velocities do not affect the quality of the results.
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Figure 4: A PML-truncated axisymmetric domain subjected to a stress disk load on
its surface over the region (0m ≤ r ≤ 1m)

surface of 10m radius. Surrounding the truncation surface is a 1m-thick PML,
as shown in Figure 4; the PML wraps around the cylindrical truncation surface
and extends also to the bottom of the computational domain. Symmetry boundary
conditions were imposed along the axis of symmetry. Both the PML and the regular
domain were discretized by quadratic quadrilateral elements with an element size
of 0.1m. The mesh in the vicinity of the loading was refined by using 0.025m
quadratic quadrilateral elements to properly resolve the local load effects. The
discretization resulted in a 10-cell-thick PML. The reflection coefficient R was set
to 10−8. We used a time step of 0.002 seconds, and let the simulation run for 5
seconds. The time histories of the displacements (ur,uz), and stresses (σrr, σθθ ,
σzz, σrz) are sampled at seven locations (spi, i = 1 . . .7), as shown in Figure 4.

The displacement time histories at the various sampling points were compared
against the response obtained using an enlarged domain with fixed boundaries in
lieu of the PMLs, and a classical displacement-based axisymmetric formulation.
The enlarged domain’s size (40m × 40m) was defined such that, during the speci-
fied time interval of interest (5 seconds), reflections from its fixed exterior bound-
aries do not travel back and interfere with the wave motion in the computational
domain of interest. Figure 5 depicts the comparison of the response time histories
for uz at various spi points. As it can be seen the agreement is excellent. More-
over, no numerical instabilities were observed during the total simulation time that
consisted of 2500 time steps.

Figure 6 depicts snapshots of uz taken at two different times (t = 1.35,1.65 sec) for
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Figure 5: Time histories of uz sampled within the regular domain and on the regular
domain-PML interface



Mixed Axisymmetric PML for Transient Elastodynamics 131

both the PML-truncated and the enlarged domain. The solid black lines in all the
figures on the left column delineate the regular domain-PML interface. The right
column figures depict snapshots taken of the enlarged domain simulations. Therein
the dashed lines denote where the PML interface would have been (there is no
PML in this case), in order to ease the comparison between the two sets of figures.
Notice the excellent agreement (in the visual norm) of the two snapshot sets. Notice
also the smoothness of the displacement contours along the regular domain-PML
interface, betraying reflection-less PML behavior. Within the domain notice also
the two distinct P- and S-wave trains: each wave train is marked by a tri-band,
corresponding to the maxima and minima of the Ricker pulse. Figure 7 depicts
snapshots (taken at two distinct times) of σzz for the PML-truncated domain; notice
that there are no reflections from the interface.

Figure 8 shows the response time histories of uz and σzz at a few sampling points.
It is apparent from the figure that causality holds (sometimes a concern with PML
implementations), and the response is free of spurious reflections. No numerical
instabilities are observed.

Next, we illustrate the performance of the PML via the error metrics defined ear-
lier. Figure 9 depicts the time-dependent displacement norm comparison and the
normalized time-dependent relative error e(t) in percent. The efficacy and quality
of the PML is nicely corroborated by Figure 9(b) with a relative error that stays
below 0.18% at all times.

To further test the quality of the obtained solutions, we record the energy within
the regular domain as a function of time for different values of the reflection coef-
ficient R, between R = 10−1 and 10−8. Figure 10 shows the energy decay plotted
in standard (left), and semi-log scale (right). Shown on the same figure is a refer-
ence energy decay corresponding to the enlarged domain (recall that this has been
obtained using an independent displacement-based formulation). There is a sharp
ascent of the energy until about 0.4s, which corresponds to the highest peak of the
Ricker pulse. By about t = 1.05s, the P-wave train has reached the bottom PML,
with the first peak arriving at about t = 1.25s, and the major P-wave peak at about
t = 1.35s. This is the point in time when the highest P-wave peaks reach the cylin-
drical truncation surface as well, and it is marked on the energy decay plot by the
beginning of a sharp decline in the energy, as one would expect since the strongest
wave motion has left the domain. By about t = 2.02s, the highest peak of the S-
wave train has also reached the side and bottom PMLs (but not yet the domain
corner), and also contributes to another sharp decline, as evidenced in the figure by
a change in the slope. At, approximately, t = 2.83s the last S-wave peak has left
the domain in the vicinity of the domain corner, and by about t = 3s all motion has
seized within the domain –all of which are evident in the energy decay plot.
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Figure 6: Comparison of uz snapshots between the PML-truncated (left column)
and enlarged (right column) domains - homogeneous medium

Notice further that for almost all R values (except for R = 10−1) the performance
of our new mixed PML formulation matches the enlarged domain’s quite satisfac-
torily. A closer look, using the semi-log scale, reveals that lower R values enforce
more rapid, and more accurate, decay, with R values less than about 10−6 driving
the residual domain energy to about 10−8 or more than 5 orders of magnitude less
than the peak domain energy.

Moreover, we let the simulation run for 40 seconds with a time step of 0.0002
seconds. As is evident from Figure 11, no numerical instabilities were observed
during the total simulation time that consisted of 200,000 time steps.
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Figure 7: Snapshots of σzz for the PML-truncated domain - homogeneous medium

5.2 Heterogeneous medium

To illustrate the performance of PML in heterogeneous media, we consider a lay-
ered profile. Using a time step of 0.002 sec, we let the simulations run for 8 sec-
onds. As shown in Figure 12, we considered a 5m × 5m layered medium, sur-
rounded by 1m-thick PML on its cylindrical surface and bottom. We define

cs(z) =
{
∼ 2.90 m/s, for −2m≤ z≤ 0m,
∼ 5.81 m/s, for −6m≤ z <−2m,

(69)

and the Poisson’s ratio is again ν = 0.2. The material interfaces were extended
horizontally into the PML, thereby avoiding sudden material changes at the inter-
face between the PML and the regular domain. The PML and the regular domain
were discretized by quadratic quadrilateral elements with an element size of 0.1m,
whereas in the vicinity of the surface load we used elements of size 0.025m. The
reflection coefficient R was set to 10−8, and we again simulated the wave motion
using the PML formulation, as well as a displacement-based formulation for an
enlarged domain with fixed exterior boundaries.

The displacement time histories at the various sampling points were compared
against the response obtained using an enlarged domain (40m × 40m). The en-
larged domain’s size was defined such that, during the specified time interval of
interest (8 seconds), reflections from its fixed exterior boundaries do not travel
back and interfere with the wave motion in the computational domain of interest.
Figure 13 depicts the comparison of the response time histories for uz at various spi

points. As it can be seen the agreement is impressive.
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Figure 12: A PML-truncated axisymmetric domain subjected to a stress disk load
on its surface over the region (0m ≤ r ≤ 0.5m)

Figure 14 shows the snapshots of displacement uz taken at two different times (t =
0.96s and 1.16s) for both the PML-truncated domain and the enlarged domain (40m
× 40m). As before, we mark the PML-interface with dashed lines in the case of the
enlarged domain to ease the visual comparison. The agreement is remarkable with
no signs of instability or artificial reflections from the interface between the PML
and regular domain. It is interesting to note that the waves are trapped inside the
top layer due to the high-contrast (1 :2) of the material properties of the two layers.
The effect of the layer interface is clearly visible in the snapshots at z =−2m .

Next, we quantify the performance of the PML via the error metrics defined ear-
lier. Figure 15 depicts the time-dependent displacement norm comparison and the
normalized time-dependent relative error e(t) in percent. The quality of the PML
manifests itself with a nicely decaying relative error shown in Figure 15(b).

Lastly, Figure 16 depicts the energy decay within the layered medium: in this case
the decay is considerably more gradual than in the homogeneous case, since there
are multiple reflections off of the layer interface that travel back to the free surface,
reflect at the free surface, travel downwards to the layer interface, partially reflect
there, travel back to the free surface, and so on and so forth. We explored four
different reflection coefficient values (R = 10−2,10−4,10−6 and R = 10−8). The
observed behavior is similar to the one discussed in the case of the homogeneous
host: overall, the PML performance is excellent, with no discernible reflections or
instabilities, even in the presence of heterogeneity.
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Figure 13: Time histories of uz sampled within the regular domain and on the
regular domain-PML interface
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Figure 14: Comparison of uz snapshots between the PML-truncated (left column)
and enlarged (right column) domains - heterogeneous medium

We note that the efficacy of the discussed PML formulation does not depend on
the complexity of the heterogeneity (e.g., multi-layered, non-horizontal layer inter-
faces, inclusions, etc). However, here we opted to report results for horizontally
layered media only, since these are the most physically meaningful when axisym-
metric geometries are considered.

Finally, we remark that growth of spurious reflections has been reported by others
when waves impinge at grazing incidence at the PML-regular domain interface. It
has also been often reported that the grazing incidence difficulty is associated with
the choice of the classical stretching function, which, by construction, is singular
at zero frequency (this has been our choice herein as well). To overcome the sin-
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Figure 15: Error metrics for the heterogeneous domain (Example 2)

gularity, and possibly the perceived difficulty with the grazing angle incidence that
has been attributed to the frequency singularity, modified stretching functions have
been proposed that are not singular at zero frequency (as discussed in the intro-
duction, the CPML is the most notable example of such a development: see, for
example, Martin, Komatitsch, and Gedney (2008)). The CPML has been reported
to alleviate, but not eliminate the growth of spurious reflections (see, for example,
the comparisons reported in Meza-Fajardo and Papageorgiou (2008)). To date, all
reported studies are purely numerical, and a theoretical proof of the origin of the
difficulty remains elusive. It is not clear whether indeed the origin of the spurious
growth at grazing incidence is due to the choice of the stretching function; more-
over, careful parameterization of the PML is also capable of alleviating the growth.
In this article, we too are not addressing the grazing angle incidence issue, pending
detailed studies that escape the scope of this communication.

6 Conclusions

We presented the development of a new mixed displacement-stress (or stress his-
tory) formulation for forward elastic wave simulations in PML-truncated axisym-
metric media. In particular, we used a regularly-stretched, unsplit-field PML, and
retained both displacements and stress terms as unknowns to arrive at the mixed
scheme. Upon the introduction of approximants, in the Galerkin sense, the re-
sulting semi-discrete form can be cast as either third-order in time, or in an integro-
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differential form that includes second-order derivatives and a time-integral or memo-
ry-like term. We opted for the latter form, which, physically, implicates jerk terms
for the displacements and stress-rate terms for the stresses, as the highest-order
derivatives present. We discussed an extended Newmark-β scheme for integrating
in time the semi-discrete forms.

Although the choice of a mixed method increases the number of unknowns, when
compared against a displacement-only formulation (which does not exist for the
problem at hand), it compares quite favorably against split-field mixed approaches.

We reported numerical experiments demonstrating excellent agreement against ref-
erence numerical solutions, as well as excellent PML absorption abilities. We have
observed no instabilities, or non-causal behavior. We remark that for stability, as
in all mixed problems, the choice of the approximants cannot be arbitrary (Xue,
Karlovitz, and Atluri (1985)), but must satisfy an inf-sup condition (also referred
to as Ladyzhenskaya-Babuška-Brezzi (LBB) condition). With respect to the ap-
proximants, we have found both bilinear-bilinear and biquadratic-biquadratic pairs
of approximants to be numerically stable (we reported simulations only with the
biquadratic pair).

As is known, the discretization of the PML introduces inevitably the mesh density
as a parameter. For the absorption to be effective, it is critical that the mesh density
within the PML adequately captures the imposed decay profile. A sharp decay ne-
cessitates more elements within the PML, and, in our experience, the PML’s mesh
density plays a critical role in the generation of spurious wave motion, especially
in the presence of waves impinging at grazing or near-grazing angle upon the PML
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interface. Although there exists an optimal set of PML parameters (amplitude and
power of decay polynomial) for a given mesh density4, we have found that, in gen-
eral, one could expect reasonable performance by using a quadratic profile and a
reference velocity equal to the average P-wave velocity of the computational do-
main.

The extension of the methodology reported herein to the three-dimensional case
is straightforward, and will be reported in future communications. While not ad-
dressed herein, the choice of the PML parameters (reference velocity, mesh density,
reflection coefficient, etc) is critical in presenting the wave motion with a smoothly-
varying decay profile within the PML. A relatively smooth profile is necessary for
avoiding spurious reflections that could pollute the solution in the interior. A thor-
ough parametric study escapes the scope of the present article, but is necessary for
providing guidance on the parameter choices, and, in turn, for quality solutions.
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