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Abstract: A three-dimensional buckling delamination problem for the sandwich
rectangular plate made from elastic and viscoelastic material is studied. It is sup-
posed that the plate contains interface rectangular cracks (Case 1) and interface
rectangular edge-cracks (Case 2) and edge-surfaces of these cracks have initial in-
finitesimal imperfections. The evolution of these initial imperfections with an ex-
ternal compressive loading acting along the cracks (for a case where the materials
of layers of the plate are elastic) or with duration of time (for a case where the ma-
terials of layers of the plate are viscoelastic) is investigated within the framework
of the piecewise homogeneous body model with the use of three-dimensional ge-
ometrically nonlinear field equations of the theory of the viscoelastic bodies. For
the determination of the values of the critical force or critical time as well as the
buckling delamination mode, the initial imperfection criterion is used. The corre-
sponding boundary-value problems are solved by employing boundary form pertur-
bation techniques, Laplace transform and FEM. The influence of the materials or
geometrical parameters of the plate on the critical values is discussed. In particular,
it is established that for the considered change range of the problem parameters the
buckling form depends not only on the infinitesimal initial imperfection mode of
the crack edges, but also on the parameters which characterize the geometry and
location of these cracks.
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1 Introduction

One of the most common failure mechanisms in laminated composite materials is a
local buckling around the delaminated zone, i.e. of the zone in which two adjacent
layers are partially debonded at their interface.

Note that this zone may be formed as a consequence of various impact events, poor
fabrication processes and fatigue. As is well known, the compressive strength of
the structures made from laminated composite materials may be reduced several
times by the presence of this delamination damage, which is modeled as a crack in
the related research. The region bounded by a crack and the laminate free surface is
liable to buckle locally under compressive loads, thereby creating conditions con-
ductive to delamination growth and consequent global failure of the structure. One
of the pioneer investigations related to the buckling-failure problem was made by
Kachanov (1976) and numerous studies have so far been carried out in this field. A
review of these investigations is given by Kardomateas, Pelgri and Malik (1995),
Nilsson, Thesken, Sindelar, Giannakopoulos and Storakers (1993), Chai, Babcock
and Knauss (1981), Wang, Cheng and Lin (1995) and others in which it is supposed
that there is a crack which is parallel to the free plane and to the direction of the
compressed external forces. In this case, the beginning of the delamination grow-
ing process is modeled as a buckling of the part of the material which occupies the
region between the crack and the free plane and solutions are found in the frame-
work of the approximate stability loss theories of plates or beams. It is evident that
the results of these investigations do not apply in the cases where the thickness of
this part is equal to or greater than the length of the crack. Moreover, there is a
series of works, such as Hwang and Mao (1999), Short, Guild and Pavier (2001),
Arman, Zor and Aksoy (2006), investigating the effects of the geometry of the de-
laminated portion on the buckling force of the laminate. At the same time, in these
works the investigations were carried out experimentally and numerically with the
use of the FEM modeling. For instance, in the paper by Hwang and Mao (1999),
the influence of the delaminated zone (crack) on the global buckling critical forces
of the plate-strip made from glass-fibre layers was studied. In the paper by Short,
Guild and Pavier (2001), the effect of delamination geometry (i.e. the sizes of the
rectangular interface crack) on the global buckling critical forces of the layered
rectangular plate was investigated experimentally and numerically by employing
3D modeling using the packet programme ABAQUS V.5.8 FEM code. The same
problem for the rectangular plate containing the circular cylindrical hole through
the thickness of the plate was investigated by Arman, Zor and Aksoy (2006). It was
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assumed that the circular delamination (crack) is around the circular hole and for
obtaining numerical results 3D FEM modeling of the packet programme ANSYS
6.1 was used.

The buckling driven delaminations of compressed films and coatings on substrates
were studied experimentally by Evans and Hutchinson (1995), Gioia and Ortiz
(1997), Hutchinson and Suo (1992), Hutchinson et al. (1992), Nilsson and Gi-
annakopoulos (1995), Thouless et al. (1994), Wang and Evans (1998), Moon et
al. (2002). In these and in the other investigations of these authors (see, as an
example, Moon et al (2004), Hutchinson et al. (2000)), the approximate mathemat-
ical modeling was also used for describing the experimentally studied problems.
It should be noted that in all the foregoing investigations the fundamental buck-
ling theories based on the three-dimensional nonlinear equations of the deformable
body mechanics have not been proposed and used. Such theories, i.e. the Three-
Dimensional Linearized Theory of Stability (TDLTS) of the deformable solid body
mechanics for the local buckling problems for the bodies containing cracks was
proposed and employed in the papers by Guz and Nazarenko (1985a, 1985b) and
others. Note that a detailed description of the field equations and relations of the
TDLTS are given in many references, for instance in the monograph by Guz (1999).
A detailed description of some early results was given in the monograph by Guz
(2008a, 2008b). The present level of these investigations is detailed in a paper of
Bogdanov, Guz and Nazarenko (2009).

In all the investigations reviewed above it was assumed that the materials of the
composites are time-independent. The development of the TDLTS based on the
initial imperfection stability loss criterion by Hoff (1954) for the time dependent
materials was proposed and employed in the works by Akbarov (1998, 2007), Ak-
barov, Sisman and Yahnioglu (1997), Akbarov and Yahnioglu (2001) and others.
The description of some related results was also given in the monograph by Ak-
barov and Guz (2000). The development and application of the above-noted version
of the TDLTS on the study of the buckling delamination problems of the elements
of constructions (such as plate-strip, circular plate) fabricated from viscoelastic
materials were made in the papers by Akbarov and Rzayev (2002a, 2002b, 2003),
Rzayev and Akbarov (2002) and others. The review of these studies was considered
in the paper by Akbarov (2007).

In these studies, the two-dimensional problems were analyzed for a plate-strip con-
taining a crack whose edges are parallel to the face planes of the plate and a circular
plate containing a penny-shaped crack the edge faces of which are also parallel to
the plate’s upper and lower face planes. Also, these investigations were carried out
by utilizing 2D FEM modeling. In the present paper, however, an attempt is made
to develop the approach proposed in the works by Akbarov and Rzayev (2002a,
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2002b), Rzayev and Akbarov (2002) for the three-dimensional buckling delami-
nation problems, namely, for the sandwich rectangular plate containing interface
rectangular cracks. Two cases are considered; Case 1: It is assumed that the plate
contains two interface embedded rectangular band cracks, Case 2: It is assumed that
the plate contains two interface rectangular edge-cracks. For the concrete numeri-
cal investigation made by utilizing 3D FEM modeling, the material of the layers of
the plates is modeled as homogeneous isotropic elastic and viscoelastic one.

2 Formulation of the problem

Consider a thick sandwich rectangular plate which contains two interface rect-
angular cracks. The Cartesian coordinate system Ox1x2x3 is associated with the
plate so as to give Lagrange coordinates of the points of the plate in the natural
state. Assume that the plate occupies the region V = V (r1) ∪V (r2) ∪V (r3) where
V (r1) = {0 < x1 < `1; 0 < x2 < hF ; 0 < x3 < `3},

V (r2) = {0 < x1 < `1; hF < x2 < hF +hC; 0 < x3 < `3} (1)

V (r3) = {0 < x1 < `1; hF +hC < x2 < h; 0 < x3 < `3}

We will consider two cases with respect to the location of the cracks in the plate.
In Case 1 we assume that the plate contains the two rectangular band-cracks (Fig.
1a), i.e. upper and lower interface band-cracks at

Ω1 = {(`1− `10)/2 < x1 < (`1 + `10)/2; x2 = hF ; 0 < x3 < `3}

and

Ω2 = {(`1− `10)/2 < x1 < (`1 + `10)/2;

x2 = hF +hC; 0 < x3 < `3} . (2)

But in Case 2 we assume that the plate contains two rectangular interface edge-
cracks i.e. upper and lower interface edge-cracks at

Ω
′
1 = {(`1− `10)/2 < x1 < (`1 + `10)/2; x2 = hF ; 0 < x3 < `30}

and

Ω
′
2 = {(`1− `10)/2 < x1 < (`1 + `10)/2; x2 = hF +hC; 0 < x3 < `30} . (3)

In equations (2) and (3) `10(`30) is the length of the cracks along the Ox1 (Ox3) axis.
In Fig. 1 the face layers are indicated by the letter F , but the core layer is indicated
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by the letter C. The meaning of the other notation used in Fig. 1 and in equations
(1), (2) and (3) is obvious. Note that in Fig. 1 for clarity of the illustration one half
(i.e. for 0≤ x1 ≤ `1) of the plate is shown and the symmetry of the plate structure
with respect to the plane x1 = `1/2 is taken into account.

We suppose that edge surfaces of the cracks have an initial infinitesimal imperfec-
tion and this imperfection is symmetric with respect to the x1 = `1/2 plane and
with respect to the planes x2 = hF (for the lower crack) and x2 = hF + hC(for the
upper crack). The equations of the edge-surfaces of upper and lower cracks can be
written as follows:

Case 1.

x±2 = hF + ε f±(x1) (for the lower crack) and
x±2 = hF +hC + ε f±(x1) (for the upper crack) for

(`1− `10)/2 < x1 < (`1 + `10)/2 and 0 < x3 < `3 (4)

and f (x1) satisfies the following relations,

f +(x1) =− f−(x1),

f± ((`1− `10)/2) = f± ((`1 + `10)/2) = 0,

d f± ((`1− `10)/2)
dx1

=
d f± ((`1 + `10)/2)

dx1
= 0 (5)

Case 2.

x±2 = hF + ε f±(x1,x3)(for the lower crack) and

x±2 = hF +hC + ε f±(x1,x3)(for the upper crack)

for

(`1− `10)/2 < x1 < (`1 + `10)/2 and 0≤ x3 ≤ `30 (6)

and the function f (x1,x3) satisfies the following relations.

f +(x1,x3) =− f−(x1,x3),

f± ((`1− `10)/2,x3)
∣∣
0≤x3≤`30

= f± ((`1 + `10)/2,x3)
∣∣
0≤x3≤`30

= 0

d f± ((`1− `10)/2,x3)
dx1

∣∣∣∣
0≤x3≤`30

= 0,

d f± ((`1 + `10)/2,x3)
dx1

∣∣∣∣
0≤x3≤`30

= 0
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 Figure 1: The geometry of the half part (for 0≤ x1 ≤ `1) of the considered plate a)
with band cracks (Case 1), b) with edge cracks (Case 2), c) the direction of initial
forces.

f± (x1, `30)
∣∣
(`1−`10)/2<x1<(`1+`10)/2 = 0,

d f± (x1, `30)
dx3

∣∣∣∣
(`1−`10)/2<x1<(`1+`10)/2

= 0. (7)

In (4) and (6), ε is a dimensionless small parameter (ε << 1) which characterizes
the degree of the initial imperfection of the crack edge-surfaces, hF (hC) is the thick-
ness of the face-layers (the core layer) and the upper index “+” (“−”) represents the
upper (lower) edge surface of the considered crack.

Thus, we investigate the evolution of the foregoing initial infinitesimal imperfec-
tions of the crack-edge surfaces under compression of the plate along the Ox1 axis
with uniformly distributed normal forces with intensity p (for the elastic plate)
and as time elapses at the fixed value of the external compression force (for the vis-
coelastic plate). This evolution will be investigated by utilizing the three-dimensional
geometrically nonlinear equations of the theory of viscoelasticity in the framework
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of the piecewise homogeneous body model.

Below, the values relating the core layer and the face layers will be denoted by
upper indeces (1) and (2) respectively. At the same time, we will use upper index
rk (k = 1,2,3) where r1 and r3 indicate the values related to lower and upper layers,
respectively, but r2 indicates the values related the core layer, so that r1 = r3 = 2,
r2 = 1. It is assumed that the face layers of the sandwich plate are made from the
same materials and the structure of the plate is symmetric with respect to the middle
plane of the core layer.

Within the framework of the three dimensional geometrically nonlinear equations
of the theory of elasticity the governing field equations are

Equilibrium equation

∂

∂x j

[
σ

(rk)
jn

(
δ

n
i +

∂u(rk)
i

∂xn

)]
= 0, i; j;n;k = 1,2,3,

r1 = r3 = 2, r2 = 1 (8)

Geometrical relation

ε
(rk)
i j =

1
2

(
∂u(rk)

i
∂x j

+
∂u(rk)

j

∂xi
+

∂u(rk)
n

∂xi

∂u(rk)
n

∂x j

)
, (9)

Constitutive relation

σ
(rk)
i j = λ

∗(rk)θ (rk)δ
j

i +2µ
∗(rk)ε

(rk)
i j ,

θ
(rk) = ε

(rk)
11 + ε

(rk)
22 + ε

(rk)
33 , (10)

where λ ∗(rk) and µ∗(rk) are the following operators

λ
∗(rk)φ(t) = λ

(rk)
0 φ(t)+

t∫
0

λ
(rk)(t− τ)φ(τ)dτ,

µ
∗(rk)φ(t) = µ

(rk)
0 φ(t)+

t∫
0

µ
(rk)(t− τ)φ(τ)dτ. (11)

In equations (8)-(12) the conventional notation is used. Consider the formulation
of the boundary and contact conditions for Case 1 and Case 2 separately.

Case 1.
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Boundary conditions at the ends of the plate:

u(rk)
2

∣∣∣
x1=0;`1

= 0, u(rk)
2

∣∣∣
x3=0;`3

= 0,

[
σ

(rk)
1n

(
δ

n
1 +

∂u(rk)
1

∂xn

)]∣∣∣∣∣
x1=0;`1

= p,

[
σ

(rk)
1n

(
δ

n
3 +

∂u(rk)
3

∂xn

)]∣∣∣∣∣
x1=0;`1

= 0,

[
σ

(rk)
3n

(
δ

n
1 +

∂u(rk)
1

∂xn

)]∣∣∣∣∣
x3=0;`3

= 0,

[
σ

(rk)
3n

(
δ

n
3 +

∂u(rk)
3

∂xn

)]∣∣∣∣∣
x3=0;`3

= 0 (12)

Boundary conditions on the free face planes of the plate:[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
x2=0

= 0,

[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
x2=h

= 0 (13)

Boundary conditions on the cracks’ edge surfaces[
σ

(r1)
jn

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
S−1

n−j = 0,

[
σ

(r2)
jn

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
S+

1

n+
j = 0,

[
σ

(r3)
jn

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
S+

2

n+
j = 0,

[
σ

(r2)
jn

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
S−2

n−j = 0,
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S±1 = {((`1− `10)/2 < x1 < (`1 + `10)/2) ,

x±2 = hF + ε f± (x1) ,0 < x3 < `3
}

,

S±2 = {((`1− `10)/2 < x1 < (`1 + `10)/2) ,

x±2 = hF +hC + ε f± (x1) ,0 < x3 < `3
}

(14)

Contact conditions between the layers of the plate:

u(r1)
i

∣∣∣
℘
−
1

= u(r2)
i

∣∣∣
℘

+
1

, u(r3)
i

∣∣∣
℘

+
2

= u(r2)
i

∣∣∣
℘
−
2

,

[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
℘
−
1

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘

+
1

,

[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
℘

+
2

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘
−
2

,

℘
±
1 = {x1 ∈ ((0,(`1− `10)/2)∪ ((`1 + `10)/2, `1)) ,

x2 = hF ±0,x3 ∈ (0, `3)} ,

℘
±
2 = {x1 ∈ ((0,(`1− `10)/2)∪ ((`1 + `10)/2, `1)) ,

x2 = hF +hC±0,x3 ∈ (0, `3)} . (15)

Case 2.

Boundary conditions at the ends of the plate:

u(rk)
2

∣∣∣
x1=0;`1

= 0, u(rk)
2

∣∣∣
x3=`3

= 0,

[
σ

(rk)
1n

(
δ

n
1 +

∂u(rk)
1

∂xn

)]∣∣∣∣∣
x1=0;`1

= p,

[
σ

(rk)
1n

(
δ

n
3 +

∂u(rk)
3

∂xn

)]∣∣∣∣∣
x1=0;`1

= 0,

[
σ

(rk)
3n

(
δ

n
1 +

∂u(rk)
1

∂xn

)]∣∣∣∣∣
x3=`3

= 0,

[
σ

(rk)
3n

(
δ

n
3 +

∂u(rk)
3

∂xn

)]∣∣∣∣∣
x3=`3

= 0,
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[
σ

(rk)
3n

(
δ

n
i +

∂u(rk)
i

∂xn

)]∣∣∣∣∣
x3=0

= 0 (16)

Boundary conditions on the free face planes of the plate:[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
x2=0

= 0,

[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
x2=h

= 0. (17)

Boundary conditions on the cracks’ edge surfaces:[
σ

(r1)
jn

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
S−3

n−j = 0,

[
σ

(r2)
jn

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
S+

3

n+
j = 0,

[
σ

(r3)
jn

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
S+

4

n+
j = 0,

[
σ

(r2)
jn

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
S−4

n−j = 0,

S±3 = {((`1− `10)/2 < x1 < (`1 + `10)/2) ,

x±2 = hF + ε f± (x1,x3) ,0 < x3 < `30
}

,

S±4 = {((`1− `10)/2 < x1 < (`1 + `10)/2) ,

x±2 = hF +hC + ε f± (x1,x3) ,0 < x3 < `30
}

. (18)

Contact conditions between the layers of the plate:

u(r1)
i

∣∣∣
℘
−
1

= u(r2)
i

∣∣∣
℘

+
1

u(r3)
i

∣∣∣
℘

+
2

= u(r2)
i

∣∣∣
℘
−
2

,

[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
℘
−
1

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘

+
1

,
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[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
℘

+
2

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘
−
2

,

u(r1)
i

∣∣∣
℘
−
3

= u(r2)
i

∣∣∣
℘

+
3

, u(r3)
i

∣∣∣
℘

+
4

= u(r2)
i

∣∣∣
℘
−
4

,[
σ

(r1)
2n

(
δ

n
i +

∂u(r1)
i

∂xn

)]∣∣∣∣∣
℘
−
3

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘

+
3

,

[
σ

(r3)
2n

(
δ

n
i +

∂u(r3)
i

∂xn

)]∣∣∣∣∣
℘

+
4

=

[
σ

(r2)
2n

(
δ

n
i +

∂u(r2)
i

∂xn

)]∣∣∣∣∣
℘
−
4

℘
±
3 = {(`1− `10)/2≤ x1 ≤ (`1 + `10)/2,

x2 = hF ±0, `30 < x3 < `3} ,

℘
±
4 = {(`1− `10)/2≤ x1 ≤ (`1 + `10)/2,

x2 = hF +hC±0, `30 < x3 < `3} , (19)

where n j (n±j ) in equations (15) and (19) is the orthonormal components of the unit
normal vector of the considered surfaces (i.e. acting on the cracks’ edge surfaces).
The other notation used in Eqs. (8)-(20) is conventional.

Having thus completed the formulation of the considered problem now we consider
the method of solution.

3 Solution procedure

To simplify the analysis we consider only the solution procedure for Case 2 from
which as a particular case, the solution procedure for Case 1 can be obtaied. First,
using the equations of the crack edge surfaces given in (6), the equation x±2 =
hF + ε f±(x1,x3) or x±2 = hF +hC + ε f±(x1,x3)
we derive the following expressions for n±j :

n±1 =
±ε

∂ f±(x1,x3)
∂x1√

1+ ε2
(

∂ f±(x1,x3)
∂x1

)2
+ ε2

(
∂ f±(x1,x3)

∂x3

)2
,

n±2 =
±1√

1+ ε2
(

∂ f±(x1,x3)
∂x1

)2
+ ε2

(
∂ f±(x1,x3)

∂x3

)2
,
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n±3 =
±ε

∂ f±(x1,x3)
∂x3√

1+ ε2
(

∂ f±(x1,x3)
∂x1

)2
+ ε2

(
∂ f±(x1,x3)

∂x3

)2
. (20)

Note that the expression (21) occurs for the surfaces S±3 and S±4 (19) simultaneously.

Assume that ε2
[(

∂ f±(x1,x3)
∂x1

)2
+
(

∂ f±(x1,x3)
∂x3

)2
]
≤ 1 according to which, the expres-

sion (21) can be represented in the series form in terms of the small parameter ε:

n±1 =
∞

∑
k=0

ε
2k+1n±1k(x1,x3), n±2 =±1+

∞

∑
k=1

ε
2kn±2k(x1,x3),

n±3 =
∞

∑
k=0

ε
2k+1n±3k(x1,x3). (21)

In equation (22), the explicit expressions of the coefficients n±1k(x1,x3), n±2k(x1,x3)
and n±3k(x1,x3) are too long so they are not given here. At the same time, these
expressions can be easily attained by employing the well known power series ex-
pansion of the expressions given in (21). Note that the equations (21) and (22)
are written for Case 2 and by substituting ∂ f /∂x3 = 0 we get the corresponding
expressions for Case 1. According to Akbarov (1998), Akbarov and Yahnioglu
(2001), Akbarov, Sisman and Yahnioglu (1997), Akbarov and Rzayev (2002a,
2002b, 2003), Rzayev and Akbarov (2002), the sought values are represented in
series form in terms of ε as follows,{

σ
(rk)
i j ;ε

(rk)
i j ;u(rk)

i

}
=

∞

∑
q=0

ε
q
{

σ
(rk),q
i j ;ε

(rk),q
i j ;u(rk),q

i

}
. (22)

After substituting equation (23) into equations (8), (9) and (10) and comparing
identical powers of ε , we obtain the corresponding closed system of equations and
boundary conditions to describe each approximation. Owing to the linearity of
mechanical relations in equation (10) and the end conditions for displacements in
equations (18) and (20), these relations and conditions will be satisfied for each ap-
proximation Eq. (23) separately. The remaining relations obtained from equations
(8), (9) and (10) for every q-th approximation contains the values of all the previ-
ous approximations. At the same time, under satisfying the boundary conditions
on the crack’ edge surfaces, i.e. the conditions in equation (19) we employ the
boundary form perturbation technique, according to which, the values of each ap-
proximation Eq. (23) related the core layer are expanded in series in the vicinity of
(x1,hF +0,x3) and (x1,hF +hC−0,x3), but the values of each approximation Eq.
(23) related the upper face (lower face) layer in the vicinity (x1,hF +hC +0,x3)
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(in the vicinity (x1,hF −0,x3)), and using the expression (22) the corresponding
conditions on the crack edge surfaces are also obtained for the first and subsequent
approximations.

It follows from the well-known mechanical considerations that for the compara-
tively rigid composites under determination of the zeroth approximation we can

use the relation δ n
i + ∂u(0)

i
∂xn
≈ δ n

i according to which the field equations and bound-
ary and contact conditions attained from Eqs. (8)-(20) for the zeroth approximation
coincide with the corresponding ones of the classical linear theory for viscoelastic
bodies. In this case for determination of the values related the zeroth approximation
we use the principle of correspondence by using the Laplace transform

ϕ̄(s) =
∞∫

0

ϕ(t)e−stdt (23)

with the parameter s > 0. So, replacing σ
(rk),1
i j , ε

(rk),1
i j , u(rk),1

i ,λ (rk)and µ(rk) in

the corresponding equations and relations by σ̄
(rk),1
i j , ε̄

(rk),1
i j , ū(rk),1

i , λ̄ (rk) and µ̄(rk)

respectively, we obtain the field equations, boundary and contact conditions for
the Laplace transform of the values of the zeroth approximation. It is evident
that, according to the nonhomogeneity of the plate material under the action of
the uniformly distributed normal forces with intensity p at the ends of the plate
the inhomogeneous distribution of the stresses and strains appliers in the layers.
But, these inhomogeneous distributions arise only in the very near vicinity of the
ends of the plate and does not influence the local buckling delamination of the
plate parts around the rectangular cracks. Therefore, we do not take the men-
tioned inhomogeneous distribution of the stresses and strains into account under
determination of the values of the zeroth approximation. Thus, using the rela-
tions 2hFσ

(2),0
11 (t)+ hCσ

(1),0
11 (t) = ph and σ

(2),0
11 (t)/E∗(2) =σ

(1),0
11 (t)/E∗(1) (where

E∗(k)φ(t) = E(k)
0 φ(t)+

t∫
0

E(k)(t− τ)φ(t)dτ , and E(k)
0 is an instantaneous value of a

modulus of elasticity of the (rk)-th material) we can write the following expressions
for the Laplace transform of the zeroth approximation

σ̄
(r1),0
11 = σ̄

(r3),0
11 = p

Ē∗(2) (2hF +hC)
s2Ē∗(1)hF + Ē∗(2)hC

,

σ̄
(r2),0
11 = σ̄

(r1),0
11

Ē∗(1)

Ē∗(2) , σ̄
(rk),0
i j = 0 for i j 6= 11. (24)

Selecting the suitable expression for the core function E(k)(t) of the integral op-
erator E∗(k) and employing some algorithm for calculation of the inverse Laplace
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transform we can determine the stresses

σ
(rk),0
11 = σ

(rk),0
11 (t) , σ

(rk),0
i j = 0 for i j 6= 11, (25)

related with the zeroth approximation.

Now we consider the determination of the values of the first approximation. Ac-
cording to the foregoing assumptions (25) and (26) we obtain the following equilib-
rium equations, mechanical and geometrical relations for the first approximation.

∂σ
(rk),1
ji

∂x j
+σ

(rk),0
11 (t)

∂ 2u(rk),1
i

∂x2
1

= 0,

σ
(rk),1
i j = λ

∗(rk)θ (rk),1δ
j

i +2µ
∗(rk)ε

(rk),1
i j ,

ε
(rk),1
i j =

1
2

(
∂u(rk),1

i
∂x j

+
∂u(rk),1

j

∂xi

)
. (26)

Consider the boundary and contact conditions attained for the first approximation
related Case 2.

Boundary conditions at the ends of the plate:

u(rk),1
2

∣∣∣
x1=0;`1

= 0, u(rk),1
2

∣∣∣
x3=`3

= 0,

[
σ

(rk),1
11 +σ

(rk),0
11 (t)

∂u(rk),1
1

∂xn

]∣∣∣∣∣
x1=0;`1

= 0,

σ
(rk),1
13

∣∣∣
x1=0;`1

= 0,

σ
(rk),1
31

∣∣∣
x3=`3

= σ
(rk),1
33

∣∣∣
x3=`3

= 0,

σ
(rk),1
31

∣∣∣
x3=0

= σ
(rk),1
32

∣∣∣
x3=0

= σ
(rk),1
33

∣∣∣
x3=0

= 0. (27)

Boundary conditions on the free face planes of the plate:

σ
(r1),1
21

∣∣∣
x2=0

= σ
(r1),1
22

∣∣∣
x2=0

= σ
(r1),1
23

∣∣∣
x2=0

= 0,

σ
(r3),1
21

∣∣∣
x2=h

= σ
(r3),1
22

∣∣∣
x2=h

= σ
(r3),1
23

∣∣∣
x2=h

= 0. (28)
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Boundary conditions on the cracks’ edge surfaces:

σ
(r1),1
21

∣∣∣
S̄−3

=−σ
(r1),0
11 (t)

∂ f−

∂x1
,

σ
(r1),1
22

∣∣∣
S̄−3

= σ
(r1),1
23

∣∣∣
S̄−3

= 0, σ
(r2),1
21

∣∣∣
S̄+

3

=−σ
(r2),0
11 (t)

∂ f +

∂x1
,

σ
(r2),1
22

∣∣∣
S̄+

3

= σ
(r2),1
23

∣∣∣
S̄+

3

= 0,

σ
(r2),1
21

∣∣∣
S̄−4

=−σ
(r2),0
11 (t)

∂ f−

∂x1
, σ

(r2),1
22

∣∣∣
S̄−4

= σ
(r2),1
23

∣∣∣
S̄−4

= 0,

σ
(r3),1
21

∣∣∣
S̄+

4

=−σ
(r3),0
11 (t)

∂ f +

∂x1
,

σ
(r3),1
22

∣∣∣
S̄+

4

= σ
(r3),1
23

∣∣∣
S̄+

4

= 0,

S̄±3 = {((`1− `10)/2 < x1 < (`1 + `10)/2) ,

x±2 = hF±,0 < x3 < `30
}

,

S̄±4 = {((`1− `10)/2 < x1 < (`1 + `10)/2) ,

x±2 = hF +hC±0,0 < x3 < `30
}

(29)

Contact conditions between the layers of the plate:

u(r1),1
i

∣∣∣
℘
−
1

= u(r2),1
i

∣∣∣
℘

+
1

, u(r3),1
i

∣∣∣
℘

+
2

= u(r2),1
i

∣∣∣
℘
−
2

,

[
σ

(r1),1
21 +σ

(r1),0
11 (t)

∂u(r1),1
i

∂x1

]∣∣∣∣∣
℘
−
1

=

[
σ

(r2),1
21 +σ

(r2),0
11 (t)

∂u(r2),1
i

∂x1

]∣∣∣∣∣
℘

+
1

,

σ
(r1),1
22

∣∣∣
℘
−
1

= σ
(r2),1
22

∣∣∣
℘

+
1

, σ
(r1),1
23

∣∣∣
℘
−
1

= σ
(r2),1
23

∣∣∣
℘

+
1

,[
σ

(r3),1
21 +σ

(r3),0
11 (t)

∂u(r3),1
i

∂x1

]∣∣∣∣∣
℘

+
2

=

[
σ

(r2),1
21 +σ

(r2),0
11 (t)

∂u(r2),1
i

∂x1

]∣∣∣∣∣
℘
−
2

,

σ
(r3),1
22

∣∣∣
℘

+
2

= σ
(r2),1
22

∣∣∣
℘
−
2

, σ
(r3),1
23

∣∣∣
℘

+
2

= σ
(r2),1
23

∣∣∣
℘
−
2

,

u(r1),1
i

∣∣∣
℘
−
3

= u(r2),1
i

∣∣∣
℘

+
3

, u(r3),1
i

∣∣∣
℘

+
4

= u(r2),1
i

∣∣∣
℘
−
4

,
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[
σ

(r1),1
21 +σ

(r1),0
11 (t)

∂u(r1),1
i

∂x1

]∣∣∣∣∣
℘
−
3

=

[
σ

(r2),1
21 +σ

(r2),0
11 (t)

∂u(r2),1
i

∂x1

]∣∣∣∣∣
℘

+
3

,

σ
(r1),1
22

∣∣∣
℘
−
3

= σ
(r2),1
22

∣∣∣
℘

+
3

, σ
(r1),1
23

∣∣∣
℘
−
3

= σ
(r2),1
23

∣∣∣
℘

+
3

,[
σ

(r3),1
21 +σ

(r3),0
11 (t)

∂u(r3),1
i

∂x1

]∣∣∣∣∣
℘

+
4

=

[
σ

(r2),1
21 +σ

(r2),0
11 (t)

∂u(r2),1
i

∂x1

]∣∣∣∣∣
℘
−
4

,

σ
(r3),1
22

∣∣∣
℘

+
4

= σ
(r2),1
22

∣∣∣
℘
−
4

, σ
(r3),1
23

∣∣∣
℘

+
4

= σ
(r2),1
23

∣∣∣
℘
−
4

. (30)

This completes the formulation of the boundary value problem corresponding to
the first approximation.

In a likewise manner the corresponding equations and boundary conditions for the
second and subsequent approximations can also be obtained. Thus, the investi-
gation of buckling delamination around an interface rectangular crack contained
within a sandwich rectangular plate is reduced to the solutions to series-boundary
value problems such as (27)-(31). As in papers by Akbarov and Rzayev (2002a,
2002b, 2003) and others, by direct verification it is proven that the linear equations
in (27)-(31) coincide with the corresponding equations for TDLTS presented by
Guz (1999).

After the determination of the stress-deformation state in the considered plate (us-
ing the solution procedure described above) it is necessary to select the stability
loss criteria. According to Hoff (1954), for the stability loss criterion we will as-
sume that the case where the size of the initial imperfection starts to increase and
grows indefinitely with the external compressive forces (for the elastic plate) or
with duration of time (for the viscoelastic plate) under considerable fixed finite val-
ues of these forces. From this criterion the critical force or the critical time will be
determined.

The investigations which are not detailed here indicate that the values of the critical
force or of the critical time can be determined only within the framework of the
zeroth and the first approximations. The second and the subsequent approxima-
tions do not change the values of the critical parameters. Taking these subsequent
approximations into account improves only the accuracy of the stress distributions
in the plate. Since our aim is to investigate the stability loss (i.e. to determine the
values of the critical parameters), we restrict ourselves with the consideration of
the zeroth and the first approximations.

According to the foregoing considerations, the stresses in the zeroth approximation
have already been determined by the expressions (25) and (26). Now we consider



3D FEM Analyses of the Buckling Delamination 163

the determination of the values of the first approximation for which it is neces-
sary to solve the problem (27)-(31). For this purpose, as under the determination
of the zeroth approximation, we attempt to use the principle of correspondence
by using the Laplace transform (24). It should be noted that under this proce-
dure the following difficulty arises. In the equation (27) and in the conditions
(28) and (31) σ

(rk),0
11 (t), as it has been noted above, depends on time and therefore

the Laplace transform of the term σ
(rk),0
11 (t)∂ 2u(rk),1

i /∂x2
1 in equation (27) and the

Laplace transform of the term σ
(rk),0
11 (t)∂u(rk),1

i /∂x1 in the conditions (28) and (31)
can not be written as σ̄

(rk),0
11 ∂ 2ū(rk),1

i /∂x2
1 and as σ̄

(rk),0
11 ∂ ū(rk),1

i /∂x1, respectively. To
overcome this difficulty we assume that σ

(rk),0
11 (t) varies slowly in time and takes

value of σ
(rk),0
11 (t)at some fixed moment t = t1 and consequently, instead of Laplace

transform of the terms σ
(rk),0
11 (t)∂ 2u(rk),1

i /∂x2
1 and σ

(rk),0
11 (t)∂u(rk),1

i /∂x1 to write
σ

(rk),0
11 (t1)∂ 2ū(rk),1

i /∂x2
1 and σ

(rk),0
11 (t1)∂ ū(rk),1

i /∂x1, respectively. This assumption,
also used in the papers by Rzayev (2002), Rzayev and Akbarov (2002), Akbarov
and Yahnioglu (2001), allows us to obtain accurate results if the variation of σ

(rk),0
11

with respect to time is insignificant. Thus, taking the foregoing discussions into
account and replacing σ

(k),1
i j , ε

(k),1
i j , u(k),1

i , σ
(rk),0
11 (t), λ (k) and µ(k) in (27)-(31) by

σ̄
(k),1
i j , ε̄

(k),1
i j , ū(k),1

i , σ
(rk),0
11 (t1), λ̄ ∗(k) and µ̄∗(k) respectively, we obtain the corre-

sponding equations and boundary conditions with respect to the Laplace transform
of values for the first approximation. For the solution to the problems correspond-
ing to the Laplace transforms of the sought values we employ the Finite Element
Method (FEM).

.

4 FEM modeling of the considered problems

FEM analysis is widely used for the solution to various problems in branches of
engineering and sciences. The present level of FEM modeling was presented and
analyzed by Atluri (2005), Alaimo, Milazzo and Orlando (2008), Attaporn and
Koguchi (2009) and many others. As it follows from the listed references that
for FEM modeling by employing the Ritz method it is necessary to construct the
functional, the Euler equation of which are the equations (27)-(31) rewritten for
the Laplace transform of the corresponding sought functions. For the realization of
this construction the equations (27)-(31) must be self-adjoint ones. In monograph
by Guz (1999) it is proven that the equations of the TDLTS are the self-adjoint.
According to this statement, we construct the following functional for the problems
under consideration.

In Case 2 the equations (27)-(31) for the Laplace transform of the sought functions
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are the Euler equations of the following functional.

Π

(
ū(rk),1

1 , ū(rk),1
2 , ū(rk),1

3

)
=

3

∑
k=1

1
2

∫ ∫ ∫
V (rk)

[(
σ̄

(rk),1
11 +σ

(rk),0
11 (t1)

∂ ū(rk),1
1

∂x1

)
∂ ū(rk),1

1
∂x1

+

σ̄
(rk),1
12

∂ ū(rk),1
1

∂x2
+ σ̄

(rk),1
13

∂ ū(rk),1
1

∂x3
+(

σ̄
(rk),1
21 +σ

(rk),0
11 (t1)

∂ ū(rk),1
2

∂x1

)
∂ ū(rk),1

2
∂x1

+

σ̄
(rk),1
22

∂ ū(rk),1
2

∂x2
+ σ̄

(rk),1
13

∂ ū(rk),1
1

∂x3
+(

σ̄
(rk),1
31 +σ

(rk),0
11 (t1)

∂ ū(rk),1
3

∂x1

)
∂ ū(rk),1

3
∂x1

+ σ̄
(rk),1
32

∂ ū(rk),1
3

∂x2
+

σ̄
(rk),1
23

∂ ū(rk),1
2

∂x3
+ σ̄

(rk),1
33

∂ ū(rk),1
3

∂x3

]
dx1dx2dx3

]
−

`30∫
0

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r1),0
11 (t1)

∂ f−

∂x1
ū(r1),1

1

∣∣∣∣
x2=h−F 0

dx1dx3−

`30∫
0

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r2),0
11 (t1)

∂ f +

∂x1
ū(r2),1

1

∣∣∣∣
x2=h+

F 0
dx1dx3−

`30∫
0

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r2),0
11 (t1)

∂ f−

∂x1
ū(r2),1

1

∣∣∣∣
x2=(h+

F hC)−0
dx1dx3−

`30∫
0

(`1+`10)/2∫
(`1−`10)/2

1
s

σ
(r3),0
11 (t1)

∂ f +

∂x1
ū(r3),1

1

∣∣∣∣
x2=(h+

F hC)+0
dx1dx3. (31)

By applying the standard procedure we obtain the equilibrium equation in (27) and
all boundary and contact conditions (28) – (30) written for stresses from the relation

δΠ =
3

∑
k=1

[
∂Π

∂ ū(rk)
1

δ ū(rk)
1 +

∂Π

∂ ū(rk)
2

δ ū(rk)
2 +

∂Π

∂ ū(rk)
3

δ ū(rk)
3

]
= 0 (32)
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As has been noted above the functional (32) is written for Case 2. By changing
the integrating interval [0, `30] in the last four integrals in equation (32) with the
interval [0, `3] we obtain the corresponding functional for Case 1.

Thus, after establishing the foregoing functional by usual procedure the FEM tech-
nique is applied for obtaining the numerical results. In this case the domain V

(
= V (r1)∪

V (r2)∪ V (r3)
)

is divided into a finite number of finite elements in the form as rect-
angular prism (brick) elements with eight nodes. The number of finite elements is
determined from the convergence requirement of the numerical results. We should
note that all computer programmes used in the numerical investigations carried out
have been composed by the authors in the package FTN77.

In the paper by Akbarov, Yahnioglu and Rzayev (2007) it is established that under
investigation of the buckling delamination around the cracks contained in a plate,
the numerical results on the critical parameter attained by the use of the singular
type finite elements in the vicinity of the crack tips coincide (with very high ac-
curacy) with those attained by the use of the ordinary type finite elements in the
vicinity of the crack tips. According to this statement, in the present investigation
the finite elements containing the crack tips (fronts) are also ordinary brick ele-
ments. In this way, we simply establish the FEM modeling of the problems under
consideration.

Thus, by employing the FEM algorithm detailed above we calculate the values of
the Laplace transform of the sought values. The values of the original of the sought
functions are determined by the use of the method by Schapery (1966).

5 Numerical Results and Discussion

The material of the face layers is supposed to be linearly viscoelastic with the op-
erators

E∗(2) = E(2)
0 [1−ω0R∗α (−ω0−ω∞)] ,

ν
∗(2) = ν

(2)
0

[
1+

1−2ν
(2)
0

2ν
(2)
0

ω0R∗α (−ω0−ω∞)

]
(33)

where E(2)
0 and ν

(2)
0 are the instantaneous values of Young’s modulus and of Pois-

son coefficient, respectively; α, ω0 and ω∞ are the rheological parameters of the
covering layers’ materials, R∗α is the fractional-exponential operator of Rabotnov
(1977) and this operator is determined as

R∗αϕ(t) =
t∫

0

Rα (β , t− τ)ϕ(τ)dτ (34)
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where

Rα (β , t) = tα
∞

∑
n=0

β ntn(1+α)

Γ((1+n)(1+α))
, −1 < α ≤ 0. (35)

In equation (36), Γ(x) is the Gamma function.

The material of the core layer is supposed to be pure elastic with mechanical char-
acteristics E(1) (Young’s modulus) and ν(1) (Poisson coefficient).

We introduce the dimensionless rheological parameter ω = ω∞/ω0 and the dimen-
sionless time t ′ = ω

1/(1+α)
0 t. For concrete numerical investigations the suitable

initial imperfection modes of the crack edge surfaces can be selected as follows.

For Case 1:

f±(x1) =±`10 sin2
(

π

(
x1−

`1− `10

2

)/
`10

)
, (36)

For Case 2:

f±(x1,x3) =±`10 sin2
(

π

(
x1−

`1− `10

2

)
/`10

)
sin2

(
π

2`30
(`30− x3)

)
(37)

Thus, we turn to the analysis of the numerical results and first, we consider pure
elastic stability loss buckling delamination which takes place at t ′ = 0 and t ′ = ∞.
In these cases the critical values of the averaged strain δ = ph/(2E(2)

0 hF +hCE(1))
are calculated. The critical values for δ attained at t ′ = 0 and at t ′ = ∞ are denoted
through δcr.0

(
= pcr.0h/(2E(2)

0 hF +hCE(1))
)

and δcr.∞

(
= pcr.∞h/(2E(2)

0 hF +hCE(1))
)

respectively. We consider separately the numerical results obtained in Case 1 and in
Case 2 and assume that h

/
`1 = 0.15, ν

(1)
0 = ν(2) = 0.3. At the same time, introduce

the parameter γ = `3/`1.

5.1 Numerical results attained in Case 1.

First we analyze the numerical results regarding the pure elastic buckling delam-
ination which takes place at t ′ = 0 and t ′ = ∞. Table 1 shows the values of δcr.0

calculated for various E(2)
0 /E(1), hF/`1 and γ under `10/`1 = 0.5.

According to the well known mechanical consideration, the numerical results at-
tained in the case under consideration must approach the certain asymptote with
γ .

This prediction is proven with the data given in Table 1. Moreover, the results
obtained in the case under consideration must approach the corresponding results
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Table 2: The values of δcr.0 (present work Rzayev(2002)) attained under `10/`1 =
0.5, h/`1 = 0.15 and γ = 8 for various values of hF/`1 and E(2)

0 /E(1) (Case 1).

hF/`1
E(2)

0 /E(1)

1 5 10 20

0.0250
0.0108
0.0081

0.0235
0.0269

0.0382
0.0456

0.0656
0.0722

0.0375
0.0192
0.0165

0.0525
0.0471

0.0903
0.0796

0.1581
0.1304

attained in a paper by Rzayev (2002) with γ , because in the mentioned paper the
plane-strain state (i.e. the case γ = ∞) is considered.

Table 2 shows simultaneously the values of δcr.0 obtained in the present investi-
gation (upper number) under γ = 8 and the results attained in the paper by Rza-
yev (2002) (lower number). The comparison shows that the results attained in the
present investigation agree quite well with the corresponding results obtained by
Rzayev (2002). This statement validates also the reliability of the algorithm and
packed programmes used in the present investigation.

These packed programmes have been composed by the authors. Moreover, it fol-
lows from Tables 1 and 2 that the values of δcr.0 decrease with γ , but increase with
E(2)

0 /E(1) and hF/`1. A more detailed illustration of the influence of the parame-
ters E(2)

0 /E(1) and hF/`1on the values of the δcr.0 (upper number) and δcr.∞ (lower
number) is given in Tables 3 and 4 in the case where `10/`1 = 0.5. Note that under
calculation of the values of the δcr.∞ it is assumed that ω = 2.

Fig 2 shows the graphs of the dependencies among δcr.0, δcr.∞ and `10/`1. Note
that these graphs are constructed for various E(2)

0 /E(1) under γ = 1, ω = 2. It fol-
lows from Fig. 2 that, as it can be predicted, the values of δcr.0 and δcr.∞ increase
monotonically with a decrease in the values of `10/`1. Fig. 3 shows schematically
the distribution of u(2)

2 E(2)
0 /(`1 p) with respect to x (= x1) and z (= `3− x3) under

x2 = hF −0, `3/2≤ x3 ≤ `3 , 0≤ x1 ≤ `1/2, in other words Fig. 3 shows the buck-
ling mode of the crack’s lower edge for the compressive force which is very near
the critical force, i.e. for the values of the parameter δ for which the • •relation
|δ −δcr.0| < 10−3 is satisfied. Under construction of this buckling mode the prob-
lem symmetry with respect to x1 = `1/2 and x3 = `3/2 is taken into account and
it is assumed γ = 1, hF/`1 = 0.0375, `10/`1 = 0.5 and E(2)

0 /E(1) = 10. It should
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Table 3: The values of δcr.0 (upper number) and δcr.∞ (lower number) obtained
under γ = 1, `10/`1 = 0.5 and hF/`1 = 0.0375 for various values of E(2)

0 /E(1) (Case
1).

E(2)
0 /E(1) δcr.0/δcr.∞

0.3 0.0145
0.0101

0.5 0.0166
0.0115

1 0.0217
0.0153

2 0.0317
0.0224

5 0.0601
0.0429

10 0.1044
0.0749

20 0.1845
0.1342

be noted that, the buckling delamination mode constructed for other values of the
problem parameters remain similar to that shown in given in Fig. 3

Now we assume that the material of the face layers of the sandwich plate is vis-
coelastic with the rheological parameters α = −0.5 and ω = 2.0. Consider the
numerical results attained for the critical time t ′cr.. These results are given in Table
5 for various E(2)

0 /E(1), hF/`1 and δ for the case where γ = 1.0 and `10/`1 = 0.5.

Note that the external compressive force, i.e. the values of the parameter δ must
satisfy the following relation so that the viscoelastic buckling delamination of the
plate considered will occur.

Therefore, under obtaining the results illustrated in Table 5 the values of δ are
selected according to the relation (38). It follows from Table 5 that the values of t ′cr.
decrease with an increase in the values of δ .

Table 6 shows the influence of the rheological parameters ω and α on the values
of t ′cr. for various values of E(2)

0 /E(1) in the case where δ = 0.036, γ = 1, hF/`1 =
0.0250 and `10/`1 = 0.5. It follows from Table 6 that the values of t ′cr. increase
with ω and with a decrease in the absolute values of the parameter α . Note that
this result occurs (in the quantitative sense) for the other values of the problem
parameters δ , γ and hF/`1. Moreover, note that this result agrees with the known



170 Copyright © 2010 Tech Science Press CMES, vol.64, no.2, pp.147-185, 2010

Table 4: The values of δcr.0 (upper number) and δcr.∞ (lower number) obtained
under γ = 1 and `10/`1 = 0.5 for various values of E(2)

0 /E(1) and hF/`1 (Case 1).

hF/`1
E(2)

0 /E(1)

1 2 5 10
0.01250 0.0055

0.0038
0.0063
0.0043

0.0088
0.0061

0.0128
0.0090

0.01875 0.0083
0.0058

0.0101
0.0071

0.0158
0.0110

0.0247
0.0174

0.02500 0.0120
0.0084

0.0157
0.0110

0.0263
0.0186

0.0432
0.0308

0.03125 0.0166
0.0116

0.0228
0.0161

0.0410
0.0291

0.0694
0.0497

0.03750 0.0217
0.0153

0.0317
0.0224

0.0601
0.0429

0.1044
0.0749

0.04375 0.0275
0.0193

0.0421
0.0298

0.0841
0.0599

0.1490
0.1070

0.05000 0.0336
0.0236

0.0543
0.0384

0.1131
0.0805

0.2045
0.1465

0.05625 0.0400
0.0281

0.0679
0.0479

0.1477
0.1048

0.2725
0.1946

mechanical consideration, so that the viscoelastic material of the face layers of the
plate becomes more stiff one with ω , but an increase in the absolute values of the
parameter α corresponds to the decreasing of the stiff of the face layer’s material.

5.2 Numerical results attained in Case 2

Within the foregoing assumptions and notation we analyze the numerical results
obtained in Case 2. As in the previous case, first we consider the pure elastic buck-
ling delamination of the rectangular sandwich plate containing a rectangular surface
edge-crack the edge surfaces of which have the initial imperfection described by the
equation (37). Note that in Case 2 the crack geometry is characterized not only by
the initial imperfection mode and the parameters hF/`1 and `10/`1 but also with the
parameter `30/`1 through which the crack depth along the Ox3 axis is estimated.

Thus we consider the results given in Table 7 which shows the values of δcr.0 (upper
number) and δcr.∞ (lower number) for various E(2)

0 /E(1) under γ = 1, `10/`1 = 0.5,
`30/`1 = 0.3 and hF/`1 = 0.0375. Moreover, for the same values of the parameters
γ , `10/`1 and `30/`1 Table 8 shows the influence of the thickness of the face layer,
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Figure 2: The graphs of the dependence among δcr.0 , δcr.∞ and `10/`1 constructed
for various values of E(2)

0 /E(1) (Case 1).

 

 

  
 

Fig. 3. The buckling delamination mode for the case where 1 0.0375Fh =l , 10 1 0.5=l l , 
(2) (1)
0 10E E =  (Case 1). 

 

Figure 3: The buckling delamination mode for the case where hF/`1 = 0.0375,
`10/`1 = 0.5, E(2)

0 /E(1) = 10 (Case 1).

i.e. of the values of hF/`1 on the values of δcr.0 (upper number) and δcr.∞ (lower
number) for various E(2)

0 /E(1).

The comparison of the results given Table 7 and 8 with the corresponding results
given in Tables 3 and 4 respectively show that for the concrete selected values of
the problem parameters. The values of δcr.0 and δcr.∞ obtained in Case 2 are grater
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Table 5: The values of tcr. obtained under γ = 1, `10/`1 = 0.5, ω = 2 and α =−0.5
for various values of E(2)

0 /E(1), hF/`1 and δ (Case 1).

E(2)
0 /E(1)

hF/`1
0.0375 0.0250 0.0125

δ tcr. δ tcr. δ tcr.

1
0.0210 0.001 0.0110 0.010 0.0052 0.003
0.0200 0.008 0.0100 0.104 0.0050 0.010
0.0190 0.034 0.0900 1.885 0.0048 0.029

2
0.0300 0.003 0.0146 0.005 0.0058 0.007
0.0292 0.008 0.0140 0.020 0.0052 0.093
0.0285 0.017 0.0133 0.066 0.0046 2.261

5
0.0576 0.001 0.0238 0.015 0.0083 0.003
0.0570 0.003 0.0233 0.025 0.0079 0.011
0.0564 0.004 0.0228 0.041 0.0076 0.033

10
0.0990 0.003 0.0400 0.007 0.0120 0.004
0.0935 0.021 0.0360 0.113 0.0115 0.016
0.0880 0.096 0.0320 5.171 0.0110 0.048

than corresponding ones obtained in Case 1. Moreover, it follows from the results
given in Tables 7 and 8 that in Case 2, as in Case 1, the values of δcr.0 and δcr.∞

increase monotonically with E(2)
0 /E(1) and hF/`1.

Fig. 4 shows the graphs of the dependence among δcr.0, δcr.∞ and `10/`1 for various
E(2)

0 /E(1) under γ = 1, hF/`1 = 0.0375, `30/`1 = 0.3 and ω = 2.0. It follows from
these results that the values of the critical strains decrease with the length of the
edge crack in the direction of the Ox1 exis. Although this conclusion is illustrated
for the selected values of the problem parameters hF/`1 and `30/`1, but that holds
also for the other possible values of these parameters.

Consider the influence of the depth of the edge-crack in the direction of the Ox3
axis on the values of the δcr.0 and δcr.∞. Fig. 5 illustrates this influence for various
valus of E(2)

0 /E(1) in the case where `10/`1 = 0.5, hF/`1 = 0.0375 and γ = 1.
Note that in these figures the values δcr.0 and δcr.∞ attained • • for the band crack
are also indicated. Accourding to the mechanical consideration, there must exist
such values of `30/`1 (denoted by (`30/`1)

∗) before (after) which, i.e. in the cases
where `30/`1 < (`30/`1)

∗ (`30/`1 > (`30/`1)
∗) the values of δcr.0 and δcr.∞ attained

in Case 2 are greater (less) than the corresponding values of those attained in Case
1. Because, according to the problem formulation, in Case 1 the plate ends at x3 = 0
and x3 = `3 are simply supported; but in Case 2 the plate end at x3 = `3 is simply
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Figure 4: The graphs of the dependence among δcr.0 , δcr.∞ and `10/`1 constructed
for various values of E(2)

0 /E(1) (Case 2).

 

Figure 5: The buckling delamination mode for the case where hF/`1 = 0.0375,
`10/`1 = 0.5, E(2)

0 /E(1) = 10 (Case 2).
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Table 6: The values of tcr.obtained under γ = 1, `10/`1 = 0.5,hF/`1 = 0.0250 and
δ = 0.0360 for various values of ω and α (Case 1).

E(2)
0 /E(1) δ ω α tcr.

2 0.0140

1
-0.5

0.014
2 0.020
3 0.032

2
-0.3 0.051
-0.5 0.020
-0.7 0.002

5 0.0233

1
-0.5

0.016
2 0.025
3 0.042

2
-0.3 0.059
-0.5 0.025
-0.7 0.003

10 0.0360

1
-0.5

0.052
2 0.113
3 0.414

2
-0.3 0.173
-0.5 0.113
-0.7 0.042

supported, but the plate end at x3 = 0 is free.

 
 

 
Fig. 6. The buckling delamination mode obtained for the case 

 where 30 1 0.3=l l , (2) (1)
0 10E E =  (Case 2). 

 

Figure 6: The buckling delamination mode obtained for the case
where `30/`1 = 0.3, E(2)

0 /E(1) = 10 (Case 2).

Now we handle the question of how the buckling delamination mode depends on
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Table 7: The values of δcr.0 (upper number) and δcr.∞ (lower number) obtained
under γ = 1, `10/`1 = 0.5, `30/`1 = 0.3 and hF/`1 = 0.0375 for various values of
E(2)

0 /E(1) (Case 2).

E(2)
0 /E(1) δcr.0/δcr.∞

0.3 0.0199
0.0134

0.5 0.0229
0.0154

1 0.0300
0.0204

2 0.0437
0.0299

5 0.0827
0.0570

10 0.1428
0.0992

20 0.2496
0.1768

the crack depth, i.e. on the parameter `30/`1. Fig. 6 shows schematically the distri-
bution of u(2)

2 E(2)
0 /(`1 p) with respect to x (= x1) and z (= `3−x3) under x2 = hF−0,

in other words Fig. 6 shows the buckling mode corresponding to the compressive
force which is very near the critical force, i.e. for the values of the parameter
δ for which the relation |δ −δcr.0| < 10−3 is satisfied. Although the illustrated
distributions are constructed for the case where E(2)

0 /E(1) = 10, hF/`1 = 0.0375,
γ = 1 and `30/`1 = 0.3 (Fig. 6), they hold (in a qualitative sense) in the cases where
`30/`1 > 0.3 for the selected values of the problem parameters E(2)

0 /E(1) and hF/`1.
But, in the cases where `30/`10 < χ < 0.6 is satisfied the buckling of the edge
crack’s surface has a complicated mode. Note that the values of the χ depend on
the problem parameters hF/`1, `10/`1 and E(2)

0 /E(1). As an example, we consider
the distribution of u(2)

2 E(2)
0 /(`1 p) with respect to x(= x1) and z(= x3) for the same

values of the problem parameters under `30/`1 = 0.2, i.e. under `30/`10 = 0.5.
Fig. 7 shows the graphs of this distribution for the cases where δ = 0.165 (Fig.
7a), 0.2145 (Fig. 7b), 0.2150 (Fig. 7c) and 0.2151 (Fig. 7d). Consequently, Fig.
7 shows simultaneously the evolution of the initial imperfection mode before the
buckling mode. Analyses of the results given in Figs. 6 and 7, and other results
which are not given here show that the buckling mode of the edge rectangular crack
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Table 8: The values of δcr.0 (upper number) and δcr.∞ (lower number) attained under
γ = 1, `10/`1 = 0.5 and `30/`1 = 0.3 for various values of E(2)

0 /E(1) and hF/`1
(Case 2).

hF/`1
E(2)

0 /E(1)

1 2 5 10
0.01250 0.0083

0.0055
0.0095
0.0064

0.0133
0.0089

0.0194
0.0131

0.01875 0.0121
0.0081

0.0148
0.0100

0.0230
0.0156

0.0358
0.0245

0.02500 0.0171
0.0116

0.0224
0.0152

0.0374
0.0256

0.0611
0.0422

0.03125 0.0232
0.0157

0.0320
0.0218

0.0572
0.0393

0.0964
0.0668

0.03750 0.0300
0.0204

0.0437
0.0299

0.0827
0.0570

0.1428
0.0992

0.04375 0.0375
0.0255

0.0575
0.0393

0.1142
0.0788

0.2015
0.1400

0.05000 0.0454
0.0309

0.0733
0.0500

0.1523
0.1047

0.2739
0.1899

0.05625 0.0536
0.0364

0.0910
0.0620

0.1973
0.1352

0.3623
0.2500

depends significantly on the values of the ratio `30/`10. So that, there exists such a
value of the ratio `30/`10 = χ after which, i.e. for the case where (`30/`10) > χ the
buckling mode is similar to the initial imperfection mode, but in the cases where
(`30/`10) < χ the buckling mode has a complicated character, such as shown in Fig.
7. As noted above, the values of χ depend on the values of the problem parameters,
especially, on the values of hF/`1. The graphs given in Fig. 8 illustrate schemat-
ically this dependence in the cases where E(2)

0 /E(1) = 10 under `30/`1 = 0.2 and
`10/`1 = 0.3. In Fig.8 the vertical axis shows the values of

v = 2u(2)
2

(∣∣∣∣ max
0≤x1/`1≤0.5

u(2)
2 − min

0≤x1/`1≤0.5
u(2)

2

∣∣∣∣)−1

at x2 = hF −0, x3 = 0.

It follows from the results given in Fig. 8 that the appearance of the complicated
buckling delamination modes becomes more suitable with decreasing of the param-
eter hF/`1. Moreover, Fig. 9 shows the graphs of the dependence between v and
x1/`1 for various values of `30/`10 under

E(2)
0 /E(1) = 10, hF/`1 = 0.0375, `30/`1 = 0.2.
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(d) 

Fig. 7. The evolution of the buckling delamination mode with δ :  a) 0.1650δ = ,  b) 0.2145δ = ,  c) 
0.2150δ = , d) 0.2151δ =  under 30 1 0.2=l l , (2) (1)

0 10E E =  
 

Figure 7: The evolution of the buckling delamination mode with δ : a) δ = 0.1650,
b) δ = 0.2145, c) δ = 0.2150, d) δ = 0.2151 under `30/`1 = 0.2, E(2)

0 /E(1) = 10
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It follows from these graphs that, for the considered values of the problem parame-
ters in the case where `30/`10 = 0.7272 the buckling delamination mode is similar
to the initial imperfection mode. But for the cases where (`30/`10) < χ = 0.7272
the buckling delamination mode becomes complicated in the sense shown in Figs.
7, 8 and 9. It follows from these results that the complicated buckling modes
observed in the experimental investigations carried out by Evans and Hutchin-
son (1995), Gioia and Ortiz (1997), Hutchinson and Suo (1992), Hutchinson et
al. (1992), Nilson and Giannakopoulos (1995), Thouless et al. (1994), Wang and
Evans (1998) and Moon et. al. (2002) can be described within the scope of the
approach proposed and developed in the present paper.

 
Figure 8: The influence of the hF/`1 on the distribution of the vertical displacement
of the crack’s edge at x3 = 0 with recpect to x1/`1.

The violation of the initial imperfection mode of the crack’s edges under its evo-
lution with external compressive forces can be explained as follows. In the case
considered, the investigation on the evolution of the crack edge-surfaces can be con-
sidered approximately as the investigation of the buckling of “rectangular plate”,
whose edges are supported elastically. Namely, the “rectangular plate” mentioned
above is formed from the part of the plate occupying the region consisting of the
part of the face layer which is between the crack’s edge surface and free face of this
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layer. During the evolution of the initial imperfection in the ends of this “rectan-
gular plate” various types of stresses and displacements arise. These distributions
depend significantly on the ratios `30/`10, hF/`1 and determine the buckling mode.
Moreover, for the clarity of the foregoing discussion the following known fact in
the theory of stability of the rectangular plates should be remembered.

 
Figure 9: The influence of the `30/`10 on the distribution of the vertical displace-
ment of the crack’s edge at x3 = 0 with recpect to x1/`1.

Suppose that the stability loss of the rectangular plate without any initial imperfec-
tion with the length of `10 and the width `30 is considered within the scope of the
Euler (bifurcation) approach. Furthermore, assume that at the ends of this plate act
the normal and tangential forces. As it follows from the corresponding theoretical
and experimental investigations (see, for example, a monograph by Volmir (1967)),
in such cases the stability loss modes of the rectangular plates depend on the ratio
of the length to the width of that.

The large number of numerical results which are not given here show that under
the buckling delamination the displacement u(1)

2 at x2 = hF +0, for −`10/2 < x1 <
`10/2, 0 < x3 < `30, i.e. the vertical displacement of the upper edge surface of the
edge crack is significantly less and can be neglected with respect to that considered
above, i.e. with respect to the vertical displacement of the lower edge surface of
this crack. Therefore, in the cases where (`30/`10) < χ , i.e. in the cases where
the complicated buckling delamination modes appear, the contact of the crack’s
edges may arise in the certain stage of the evolution of the initial imperfection of
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these edges. It should be noted that this statement is not taken into account in the
present investigation. Nevertheless, the results discussed above and relating the
cases where (`30/`10) < χ give the important information on the evolution stages
of the interface crack’s edges.

Now, we consider the numerical results attained for the critical time, i.e. for the t ′cr..
As in Case 1, under obtaining these results we assume that the values of the strain
caused by the external compressive force satisfy the inequality-relation (38).

Table 9: The values of tcr. attained under γ = 1, `10/`1 = 0.5, `30/`1 = 0.3, ω = 2
and α =−0.5 for various values of E(2)

0 /E(1), hF/`1 and δ (Case 2).

E(2)
0 /E(1)

hF/`1
0.0375 0.0250 0.0125

δ tcr. δ tcr. δ tcr.

1
0.0280 0.004 0.0160 0.004 0.0080 0.001
0.0270 0.012 0.0150 0.023 0.0070 0.046
0.0260 0.029 0.0140 0.100 0.0060 1.591

2
0.0420 0.001 0.0206 0.005 0.0087 0.007
0.0412 0.002 0.0200 0.014 0.0081 0.036
0.0405 0.005 0.0193 0.030 0.0075 0.163

5
0.0780 0.002 0.0340 0.009 0.0126 0.001
0.0720 0.029 0.0336 0.013 0.0123 0.004
0.0660 0.197 0.0331 0.018 0.0119 0.010

10
0.1375 0.001 0.0560 0.007 0.0175 0.010
0.1320 0.006 0.0520 0.049 0.0162 0.055
0.1265 0.020 0.0480 0.293 0.0150 0.302

Table 9 shows the values of t ′cr. attained for various hF/`1,δ and E(2)
0 /E(1) under

ω = 2, α =−0.5, γ = 1, `10/`1 = 0.5 and `30/`1 = 0.3 . In the quantitative sense
these results agree with the corresponding results obtained in Case 1. The results
given in Table 10 illustrate the influence of the rheological parameter ω and α

on the values of t ′cr.. It follows from these results that the values of t ′cr. increase
(decrease) with ω (with absolute values of α).

6 Conclusion

In the present paper the approach was developed and employed for the study of the
buckling delamination of the elastic and viscoelastic sandwich rectangular plates
containing interface rectangular cracks. The investigation was made within the
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Table 10: The values of tcr.obtained under γ = 1, `10/`1 = 0.5, `30/`1 = 0.3 and
hF/`1 = 0.0250 for various values of ω, α and E(2)

0 /E(1) (Case 2).

E(2)
0 /E(1) δ ω α tcr.

2 0.0200

1
-0.5

0.010
2 0.014
3 0.020

2
-0.3 0.038
-0.5 0.014
-0.7 0.001

5 0.0354

1
-0.5

0.009
2 0.013
3 0.018

2
-0.3 0.037
-0.5 0.013
-0.7 0.001

10 0.0520

1
-0.5

0.028
2 0.049
3 0.105

2
-0.3 0.096
-0.5 0.049
-0.7 0.010

scope of the piecewise homogeneous body model. It was assumed that the edge
surfaces of the cracks have initial infinitesimal imperfections and the proposed ap-
proach was based on the study of the evolution of this initial imperfections with
external compressive forces (with duration of time) for pure elastic (viscoelastic)
one. The noted evolution was determined within the scope of the exact 3D geomet-
rically nonlinear field equations of the theory of elasticity and viscoelasticity. For
the solution to the corresponding boundary-value problems, the boundary form per-
turbation techniques, Laplace transform and 3D FEM were employed. The initial
imperfection criterion was used as a delamination buckling (stability loss) crite-
rion. For the concrete numerical investigations, two cases were selected. In Case 1
(Case 2) it was assumed that the interface cracks contained by the sandwich plate
are rectangular band-cracks (rectangular edge-cracks). The numerical results on the
influence of the problem parameter on the values of the critical strain and critical
time as well as on the buckling delamination mode were presented and analyzed.
According to these analyses, the following main conclusions can be drawn:
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• In Case 1 the mode of buckling delamination around the interface rectangular
band-cracks is similar to the initial imperfection mode of these cracks which
is symmetric with respect to the interface plane;

• In Case 2, the mode of buckling delamination around the interface rectangu-
lar edge-cracks depends on the thickness of the face layers of the plate and
on values of the ratio `30/`10, where `30(`10) is a depth (length) of the crack;

• The values of the critical strain as well as the values of the critical time de-
crease with the length and width of the cracks;

• There exists a length of the edge cracks after which the critical values of the
strain attained in Case 2 become less than corresponding ones attained in
Case 1;

• With the length of the rectangular band-crack along the Ox3 axis the results
attained for the critical strains approach the results attained in the paper by
Rzayev (2002);

• The values of the critical strain and time increase with the stiffness of the
material of the face layers;

• The numerical results attained and analyzed in the present paper can be taken
as standard ones for the estimation of the accuracy (in the qualitative and
quantitative senses) of the corresponding numerical results attained within
the scope of the approximate plate and bar theories;

• The developed approach gives possibility for mathematical modeling and de-
scribing the complicated buckling delamination modes of the stratified layers
observed in the corresponding experimental studies.
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