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Numerical Solution of Non-Isothermal Fluid Flows Using
Local Radial Basis Functions (LRBF) Interpolation and a

Velocity-Correction Method
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Abstract: Meshfree point collocation method (MPCM) is developed, solving the
velocity-vorticity formulation of Navier-Stokes equations, for two-dimensional,
steady state incompressible viscous flow problems in the presence of heat transfer.
Particular emphasis is placed on the application of the velocity-correction method,
ensuring the continuity equation. The Gaussian Radial Basis Functions (GRBF)
interpolation is employed to construct the shape functions in conjunction with the
framework of the point collocation method. The cases of forced, natural and mixed
convection in a 2D rectangular enclosure are examined. The accuracy and the sta-
bility of the proposed scheme are demonstrated through three representative, well
known and established benchmark problems. Results are presented for high values
of the characteristics non-dimensional numbers of the flow, that is, the Reynolds,
the Rayleigh and the Richardson number.

Keywords: Meshfree point collocation method, LRBF, Velocity-vorticity formu-
lation, 2D incompressible Navier-Stokes equations, Velocity-correction method.

1 Introduction

Many physical problems are modeled with partial differential equations (PDEs).
Moreover, a high number of numerical methods and techniques have been devel-
oped for the solution of the PDEs and, they are focused mainly on the improvement
of accuracy and efficiency of them. In recent years attention has turned on the de-
velopment of meshless/meshfree methods, especially for the numerical solution of
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partial differential equations. Their key advantage over the traditional mesh/grid
based numerical methods, such as Finite Element Method (FEM), Finite Volume
Method (FVM) and Finite Difference Method (FDM), is that the computational
domain used rely on a particle (either Lagrangian or Eulerian) view of the field
problem, eliminating the use of a computational mesh/grid [Liu (2002), Atluri and
Shen (2002)]. Thus, functional interpolation or approximation is constructed en-
tirely from the information given by a set of scattered nodes or particles, among
which there is no pre-specified connectivity or relationships.

Several meshfree methods have been proposed since the prototype of the mesh-
free methods, the Smoothed Particle Hydrodynamics (SPH), was born [Belytschko,
Krongauz, Organ, Fleming and Krysl (1996)]. Regarding of the meshless meth-
ods, according to the formulation procedures they can be classified into two major
categories, namely the collocation-based and the Galerkin-based methods, solv-
ing the strong- and weak-forms of the problems considered, respectively. Both
formulations pose advantages and limitations [Liu (2005)]. Galerkin are difficult
to implement, since they rely on a background mesh for the integral evaluation,
but stable, while collocation based method are easy to implement, truly meshless,
although having less stability. Furthermore, according to the function approxi-
mation/interpolation schemes, MFree methods are based on moving least squares
(MLS) approximation, on the integral representation method and finally, on the
point interpolation method (PIM). Especially for the PIM methods, two different
types of formulation have been developed, the first uses the polynomial basis while
the second the radial basis functions (RBF).

In the last decade, meshfree methods utilizing radial basis functions have been ex-
tensively used. In 1990, Kansa [Kansa (1990)] introduced a technique for solving
numerically partial differential equations by collocation method using radial ba-
sis functions. In Kansa’s approach, the solution is approximated by radial basis
functions, and the collocation method is used to compute the unknown coefficients.
Thereafter, several radial basis functions were introduced, using different forms of
radial functions. Kansa’s method has been further upgraded to symmetric colloca-
tion [Fasshauer (1997), Power and Barraco (2002)], to modified collocation [Chen
(2002)], and to indirect collocation [Mai-Duy and Tran-Cong (2003)]. Unfortu-
nately, all of the above listed methods usually fail to perform on large problems,
since they produce fully populated matrices, which are sensitive to the choice of
the free parameters in RBFs. Thus, these methods are impractical for real problems
arising in science and engineering.

In order to overcome that limitation, sparse matrices can be generated by the in-
troduction of the compactly supported RBFs. Furthermore, the accuracy of such
an approach can be improved further by the multilevel technique [Chen, Ganesh,
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Golberg and Cheng (2002)]. One of the possibilities for mitigating the large fully-
populated matrix problem is to employ domain decomposition procedures [Mai-
Duy and Tran-Cong (2002)]. However, the domain decomposition reintroduces
some sort of meshing, which is not generally attractive. Thus, the concept of local
collocation in the context of an RBF-based solution has been introduced. By using
the local RBFs the only geometrical data needed for the construction of the matrices
are for those nodes that fall into the influence domain of each node. Moreover, the
properties of the constructed shape functions are the same with those for the global
RBF, and the approximation method is stable and insensitive to the free parame-
ter needed for the formulation. Additionally, the computational cost is decreasing
since the matrix operations require the inversion of matrices of small size, equal
to the number of nodes in the support domain [Lee, Liu and Fan (2003)]. It can
be seen that the local RBF collocation approach differs of the classical global RBF
collocation approach in the way that a radial basis function (RBF) interpolation
function is defined. The former chooses to represent the meshless approximation
by an expansion around a few supporting points (it constitutes a computational
molecule). Any Lagrangian or Hermitian RBF Hardy’s interpolation can be used
to construct the meshless locally-supported shape functions, which can reconstruct
the field variable in each point into the molecule. In this way, several strategies
have been proposed to possibly improve the imposing of the derivative boundary
conditions in a strong-form approach.

The subject of heat transfer is of fundamental importance in many branches of en-
gineering. Knowing the mechanism of heat transfer involved in the operation of
equipments such as boilers, condensers, air pre-heaters, economizers, semiconduc-
tor devices, electric motors, electric generators and others, engineers can improve
their performance. Due to its importance, numerous works are dealing with the
physical problem mentioned above, using a variety of meshless schemes. More pre-
cisely, in [Mai-Duy and Tran-Cong (2001)] authors used the Indirect Radial Basis
Function Networks (IRBFN) along with the point collocation method and solved
the laminar, incompressible Navier-Stokes equations in streamfunction–vorticity
formulation for the lid-driven cavity with natural convection benchmark problem
up to Rayleigh number Ra = 106, using a relatively coarse grid of 61×61 regular
distributed nodes. In [Wu and Liu (2003)] a square enclosure, along with a concen-
tric annulus, two-dimensional natural convection problems were investigated. The
Local Radial Interpolation Method (LRPIM) was adopted in order to simulate the
fluid flow problem. The vorticity-stream function form of Navier-Stokes equations
was taken as the governing equation. The Rayleigh numbers used were in the range
of 103 ≤ Ra≤ 105. Conjugate heat transfer problems modeled by convecting fully
viscous incompressible fluid interacting with conducting solids were considered in
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[Divo and Kassab (2006)]. Therein, the meshless formulation for fluid flow mod-
eling is based on a radial basis function interpolation using inverse Multiquadrics
and a time-progression decoupling of the equations using a Helmholtz potential.
For the lid-driven cavity Reynolds number Re = 400 was used for. The same au-
thors [Divo and Kassab (2007), Divo and Kassab (2008)] developed the RBF-based
localized collocation meshless method (LCMM) where the fully coupled incom-
pressible Navier–Stokes equations are solved in strong form. Furthermore, a local
radial basic function based gridfree scheme has been developed to solve the un-
steady, incompressible heat transfer and fluid flow problems [Sarler (2005)]. In
continuation, specifics of a primitive variable solution procedure for the coupled
mass, momentum, and energy transport representing the natural convection in an
incompressible Newtonian Bussinesq fluid are elaborated. Collocation strategy is
performed with Prandtl number Pr = 0.71 and Rayleigh numbers Ra = 103−106.
Authors in [Kosec and Sarler (2008)] solved the pressure-velocity formulation of
the Navier-Stokes and thermal equations for natural convection flow. Using mul-
tiquadric radial basis functions obtained numerical results for Rayleigh number up
to 108. Therein, authors used a pressure-correction technique and they proposed
a much simplified local pressure-velocity coupling (LPCV) algorithm , instead of
solving the pressure Poisson equation. Furthermore, authors in [Sarler, Perko and
Chen (2004), Sarler and Vertnik (2006)] developed the RBF collocation method
for the Darcy flow in porous media as well as natural convection problems by
solving the governing equations in strong form over localized data center sten-
cils. The Meshless Local Petrov-Galerkin method (MLPG) was utilized for solving
non-isothermal fluid flow problems [Arefmanesh, Najafi and Abdi (2008)]. The
Navier-Stokes equations in terms of the stream function and vorticity formulation,
together with the energy equation were solved, considering a non-isothermal lid-
driven cavity flow, a lid-driven cavity flow with an inlet and outlet, and also a non-
isothermal flow over an obstacle. Results were obtained for Reynolds number up to
Re = 400. Authors in [Ho-Minh, Mai-Duy and Tran-Cong (2009)] reported a new
discretization technique for the streamfunction-vorticity-temperature (ψ−ω−T )
formulation governing natural convection defined in 2D enclosured domain. Two
benchmark test problems, namely free convection in a square slot and a concentric
annulus, were considered. A convergent solution for the former was achieved up
to the Rayleigh number of Ra = 108 with a relatively coarse grid of 51×51 nodal
distribution. Numerical results of natural convection flows in two-dimensional cav-
ities, filled with air, are presented to study the effects on the characteristics of the
flows as some parameters vary namely, the Rayleigh number Ra and the aspect ra-
tio A of the cavity. The steady state problem was considered for 105 ≤ Ra ≤ 107

and 1
4 ≤ A≤ 4.
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Herein, we utilize the velocity-vorticity formulation of Navier-Stokes equations
along with the velocity-correction scheme in order to solve forced, natural and
mixed convection flow in a rectangular enclosure. The application of velocity-
correction method, ensuring the continuity equation permits us to attain solutions
for high values of characteristic non-dimensional numbers of the flow. The paper
is presented as follows. In Section 2, the Local Radial Basis Functions (LRBFs)
interpolation is briefly introduced. The velocity-vorticity formulation based on the
meshfree point collocation method is next briefly developed in Section 3 where the
implementations of the vorticity boundary conditions are emphasized. In Section 4,
several numerical examples of steady-state flow are presented, which demonstrate
the performance of the method. Finally, conclusion and discussion complete the
paper.

2 Basic Concepts of Meshfree Techniques

In the localized collocation meshless methods (LCMM), spatial discretization is
performed over uniformly or non-uniformly distributed points, called nodes. Each
node is influenced by a set of neighboring points, defining a local topology of sur-
rounding nodes, namely the support domain. The LCMM can handle both the ra-
dial basis function collocation and the polynomial expansion with MLS treatment.
Herein, attention will be focused on the local radial basis function formulation.

2.1 Defining the support domain

Each point at the interior domain and on the boundaries of the discretized geometry
is identified as a data center that uses a set of neighboring influence points to define
a localized interpolation topology. At this new defined topology of points the field
variable or variables are estimated using the proper functions. For the LCMM con-
sidered in this paper, those functions consist of Radial Basis Functions. The total
number of points in the support domain, including the data center and the neigh-
boring influence points, is denoted by NF . The definition of the support domain
is accomplished by defining a constant number of local neighbors for each data
center. The current local topology structure is fixed, that is the number of nodes in
the support domains retains constant, however, this structure can be set to change
based on the progress of the numerical solution. For example, a modification of
the topology size and structure can take place, as long as the numerical solution
process is running in order to maintain stability for the solution.
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2.2 Local Radial Basis Functions

Consider a function u(x) defined in the spatial domain Ω. The domain is repre-
sented by a set of nodes scattered (in a uniform or in a non-uniform manner) in the
problem domain and on the boundary ∂Ω. The function u(x) is then interpolated
using the nodal values at the nodes of the support domain of a point of interest
at xQ. The approximation uh (x) of a function u(x) at an arbitrary point x can be
written, using the following finite series representation, as:

u(x)≈ uh (x,xQ) =
n

∑
i=1

Φi(x)ai (xQ) , (1)

where Φi(x) are the basis functions defined in the Cartesian coordinate space xT =
[x,y,z], n is the number of nodes in the support domain of point xQ and, ai (xQ) is
the coefficient for the basis function Φi(x) corresponding to the given point xQ.

We choose radial functions as the basis in Eq. 2, thus

uh (x,xQ) =
n

∑
i=1

Ri(x)ai (xQ) = RT (x)a(x), (2)

where vector a is defined as aT (xQ) = {a1,a2,a3, ...,an} and Ri is a radial basis
function with r the distance between point x and xi. For a 2D problem, r is defined

as r =
√

(x− xi)
2 +(y− yi)

2. The vector R has the form

RT (x) = [R1(x),R2(x), ....,Rn(x)] . (3)

There are a number of forms of radial basis functions used by the mathematics
community. Table 1 lists the four most often used forms of radial functions with
some shape parameters that can be tuned for better performance.

Enforcing u(x) approximated by Eq. 2 to pass through each scattered node in the
support domain that is formed for the point of interest x, we have the moment
matrix of RBF:

RQ =


R1 (r1) R2 (r1) ... Rn (r1)
R1 (r2) R2 (r2) ... Rn (r2)

... ... ... ...
R1 (rn) R2 (rn) Rn (rn)

 , (4)

where

rk =
√

(xk− xi)
2 +(yk− yi)

2, k = 1,2, ...,n. (5)
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Since distance is directionless, we should have

Ri (r j) = R j (ri) . (6)

therefore, the moment matrix RQ is symmetric.

The vectors of coefficients a in Eq. 2 are determined by enforcing that the interpo-
lation passes through all the n nodes within the support domain. The interpolation
at the kth point has the form:

uh
k = uh (xk,yk) =

n

∑
i=1

aiRi (xk,yk), k = 1,2, ...,n, (7)

or in matrix form:

Us = RQa, (8)

where Us is the vector that collects all the field nodal variables at the n nodes in the
support domain. A unique solution for vectors of coefficients a is obtained if the
inverse of RQ exists:

a = R−1
Q Us. (9)

Substituting the foregoing equation into Eq. 2 leads to

uh(x) = RT (x)R−1
Q Us = Φ(x)Us, (10)

where the matrix of shape functions ΦΦΦ(x) with n shape functions is:

If we define

ΦΦΦ(x) = [R1(x),R2(x), ...,Rk(x), ...,Rn(x)]R−1
Q =

= [φ1(x),φ2(x), ...,φk(x), ...,φn(x)]
(11)

in which φk(x) is the shape function for the kth node given by

φk(x) =
n

∑
i=1

Ri(x)Sa
ik, (12)

where Sa
ik is the (i,k) element of matrix R−1

Q , which is a constant matrix for given
locations of the n nodes in the support domain.

The derivatives of shape functions can be easily obtained as

∂ mφk

∂xm =
n

∑
i=1

∂ mRi

∂xm Sa
ik, (13)
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∂ mφk

∂ym =
n

∑
i=1

∂ mRi

∂ym Sa
ik, (14)

where m is the derivative order, which in our case is m = 1,2.

The Gaussian and the inverse multiquadric, i.e. q < 0 in the multiquadric function,
are positive definite functions, while the thin-plate splines and the multiquadric, i.e.
q > 0 in the multiquadric function, are conditionally positive definite functions of
order q, which require the addition of a polynomial term P of order q−1 together
with some homogeneous constraint conditions in order to obtain an invertible inter-
polation matrix RQ [Fasshauer (2007), Power and Barraco (2002)]. Since, we have
not used that polynomial term, all the computations obtained, took place using the
Gaussian form of radial basis functions.

3 Governing equations and solution procedure

3.1 Governing equations

The flow and heat transfer phenomena considered herein are described by the com-
plete Navier-Stokes and energy equations for two dimensional laminar incompress-
ible flows. Within the framework of the Cartesian coordinate system, the steady
Navier-Stokes equations are expressed in dimensional form as:

Continuity equation

∇ ·u∗ = 0. (15)

Momentum equation

(u∗ ·∇)u∗ = g− 1
ρ f

∇p∗+
µ f

ρ f
∇

2u∗+F. (16)

Energy equation

(u∗ ·∇)T ∗ = α f ∇
2T ∗. (17)

where u∗ is the dimensional velocity, p is the pressure, g is the gravitational ac-
celeration, T is the temperature, α f is the thermal diffusivity, F are the external
forces applied, ρ f and µ f is the density and the viscosity of the fluid, respectively.
In order to obtain a set of non-dimensional equations, we consider three different
cases of convective heat transfer. Initially, we study the forced convection prob-
lem, followed by the natural and the mixed convection problems and, we obtain the
non-dimensional form of the equations for each case.

Forced convection
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In forced convection problems the following non-dimensional scales are usually
employed:

x =
x∗

L
, y =

y∗

L
, u =

u∗

U
, v =

v∗

U
,

p =
p∗

ρU2 , T =
T ∗−Ta

TH −Ta
, (18)

where L is a characteristic dimension, the subscript α indicates a constant reference
value of temperature and TH is a constant reference temperature. Substituting of the
above form into the dimensional formulation and taking the curl of the equation, we
obtain the non-dimensional form of the equations in velocity-vorticity formulation:

∇
2u =−∂ω

∂y
, (19)

∇
2v =

∂ω

∂x
, (20)

u
∂ω

∂x
+ v

∂ω

∂y
=

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
, (21)

u
∂T
∂x

+ v
∂T
∂y

=
1

RePr

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
, (22)

where Re = ρ f UL
µ f

and Pr = µ f
α f ρ f

are the Reynolds and the Prandtl numbers, respec-
tively, while U and L are the maximum velocity and the characteristic length.

3.1.1 Natural or Buoyancy-driven convection

Natural convection is generated by the density difference induced by the temper-
ature differences within the fluid. In most buoyancy-driven convection problems,
flow is generated by either a temperature variation or a concentration variation in
the fluid, which leads to local density differences. For temperature-driven flows
and using the Boussinesq approximation, we can write

g(ρ−ρa) = gβ (T −Ta) ,

where g is the acceleration due to gravity and β is the coefficient of thermal ex-
pansion. Using the following non-dimensional scales (e.g. Eq. 23) for natural
convection, in the absence of a reference velocity value,

x =
x∗

D
, y =

y∗

D
, u =

u∗D
α f

,
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v =
v∗D
α f

, p =
p∗D2

ρα2
f

, T =
T ∗−T ∗wc

T ∗wh−T ∗wc
(23)

we get the equations in velocity-vorticity formulation:

∇
2u =−∂ω

∂y
, (24)

∇
2v =

∂ω

∂x
, (25)

u
∂ω

∂x
+ v

∂ω

∂y
= Pr

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
+RaPr

∂T
∂x

, (26)

u
∂T
∂x

+ v
∂T
∂y

=
∂ 2T
∂x2 +

∂ 2T
∂y2 , (27)

where Ra = gρ f β∆T D3

µ f a f
is the Rayleigh number and ∆T = T ∗−T ∗wc.

3.1.2 Mixed convection

Mixed convection involves both forced and natural flow conditions. The buoy-
ancy effects become comparable to the forced flow effects at small and moderate
Reynolds numbers. Thus, in mixed convection problems, the buoyancy term needs
to be added to the appropriate component of the momentum equation. In mixed
convection problems the following non-dimensional scales are usually employed:

x =
x∗

L
, y =

y∗

L
, u =

u∗

U
, v =

v∗

U
,

p =
p∗

ρU2 , T =
T ∗−Tα

(TH −Tα)
. (28)

Finally, we get:

∇
2u =−∂ω

∂y
, (29)

∇
2v =

∂ω

∂x
, (30)

u
∂ω

∂x
+ v

∂ω

∂y
=

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
+Ri

∂T
∂x

, (31)

u
∂T
∂x

+ v
∂T
∂y

=
1

RePr

(
∂ 2T
∂x2 +

∂ 2T
∂y2

)
, (32)

where Ri is the Richardson number defined as Ri = Gr
Re2 .
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3.2 Solution Procedure

An iterative scheme is utilized for the solution of the velocity-vorticity formulation
of the Navier-Stokes equations. In the majority of the incompressible flow prob-
lems modeled with Navier-Stokes equations the most natural boundary conditions
arises when the velocity is prescribed all over the boundaries of the problem. The
vorticity boundary conditions are determined iteratively from computations. The it-
erative solution algorithm used for the discretized fluid flow equations, must ensure
coupled satisfaction of all the equations at convergence. We follow the approach
of the so-called MAC algorithm proposed in [Harlow and Welch (1965)] and used
in [Bourantas, Skouras, Loukopoulos and Nikiforidis (2010)]. More precisely, the
process initiates from an initial velocity condition u(0) that satisfies the continuity
equation within the entire problem domain Ω(x,y), that is, ∇ ·u(0) = 0. Follow-
ing, the velocity-Poisson equation is solved using the point collocation method by
taking known vorticity components. A new velocity field u(∗) may be estimated
from the velocity-Poisson equations. Finally, a simple point collocation procedure
is applied. Collocation method is a special case of the weighted residual method,
where the test function used is the Dirac delta function.

4 Numerical results

4.1 Forced convection in a square cavity

Forced convection problem in the square cavity (Fig. 1) was solved initially. By
this, the energy equation is decoupled from the vorticity transport and velocity
equations. The term conjugate heat transfer (CHT) is often associated with such a
problem. In this case the driving force of the fluid motion is the top wall that slides
with constant velocity. For the forced convection in the square cavity, results were
obtained for the Reynolds number ranging from Re = 400 to Re = 10000. Constant
fluid properties with the Prandtl number value of Pr = 0.71 were used for all cases.
A 81×81 uniform mesh was employed for the Reynolds numbers Re up to 400 and
the number of the grid points increased up to 161×161 for Re beyond that value in
order to obtain grid independent results with the uniform mesh system.

Figure 2 shows the u velocity distributions at the cavity vertical mid-plane (x = 0.5)
and v profiles at the horizontal mid-plane (y = 0.5) for Reynolds Re = 400, 1000,
5000 and 10000. This so-called lid-driven cavity flow is a well established bench-
mark problem and, the results were compared with those obtained in [Ghia, Ghia
and Shin (1982):] and [Bourantas, Skouras, Loukopoulos and Nikiforidis (2010)].
In Fig. 3 the streamfunction and the temperature contours for Reynolds numbers
from Re = 400 up to Re = 10000 are shown.
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Figure 1: Geometry and the given boundary conditions for a square cavity.

4.2 Natural convection in a square cavity

Flow in a square cavity is a well established and popular benchmark problem for
testing a numerical scheme. The disadvantage of the driven cavity problem is that
the moving lid introduces singularities at two of the corners. Thus, a more realis-
tic benchmark problem was devised and introduced in [Davis, Jones and Roache
(1979)], where the natural convection of a Boussinesq material in an enclosed cav-
ity is induced by an imposed wall temperature difference. In this problem, the
geometric simplicity of the driven cavity is maintained while the singularities are
removed. Fluid flow is considered in a square cavity with insulated top and bottom
walls and the side walls maintained at constant but different temperature (see Fig.
4).

A benchmark solution for this problem has been published [Davis, Jones and Roache
(1979)]. The authors used a streamfunction-vorticity Finite Difference (FD) method
with grids up to 81 x 81 points, and employed Richardson extrapolation to obtain
more accurate benchmark solutions for Rayleigh numbers (Ra) up to 106. The
top wall was considered to be stationary and the fluid motion is caused solely by
the buoyancy effects. Applying the meshless point collocation scheme with LRBF
interpolation the Rayleigh number Ra = GrPr was varied from 102 to 106 and a
constant Prandtl number of 0.72 was used. A 81×81 uniform mesh was employed
for the Reynolds numbers Re up to 400 and the number of the grid points increased
up to 121×121 for Re beyond that value in order to obtain grid independent results
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Figure 2: The u-velocity on the vertical section x = 0.5 and the v-velocity on the
horizontal section y = 0.5 of the square lid-driven cavity problem for (a) Re = 400
(b) Re = 1000 (c) Re = 5000 and (d) Re = 10000. Results of [Ghia et. a.l., 1982]
are compared with the current numerical solutions.
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Figure 3: The streamfunction and the isotherms contour plots of the square lid-
driven cavity problem for (a) Re = 400 (b) Re = 1000 (c) Re = 5000 and (d) Re =
10000. Results of [Ghia et. a.l., 1982] are compared with the current numerical
solutions.
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with the uniform mesh system. In general, the agreements of the present solution
obtained by the velocity-vorticity formulation with those given in [Davis, Jones and
Roache (1979)] are excellent.
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Figure 4: Configuration of natural convection in a square cavity.

In the present problem the convergence criterion is set at 10−6. In order to chech
the performance of local type meshless point collocation with LRBF interpolation,
the following quantities were computed as in [Shu, Ding and Yeo (2003)]:

|ψmid | the stream function at the mid-point of the cavity,

|ψmax| the maximum absolute value of the stream function,

umax the maximum horizontal velocity on the vertical mid-plane of the cavity,

vmax the maximum vertical velocity on the horizontal mid-plane of the cavity,

Nu0 the average Nusselt number on the vertical boundary of the cavity at x = 0
defined by

Nu0 = Nu|x=0 where Nu1(x) =
1∫
0

(u1T −T,1)dy,

Numax the maximum value of the local Nusselt number on the boundary at x = 0,

Numin the minimum value of the local Nusselt number on the boundary at x = 0.

The numerical results obtained here are compared with the benchmark Finite Dif-
ference numerical solution [Davis (1979)] and the Indirect Radial Basis Functions
Networks (IRBFN) [Dui and Tran-Kong (2001)]. Tables 2-5 list the numerical



Numerical Solution of Non-Isothermal Fluid Flows 203

results achieved by different numerical methods for Rayleigh numbers of 103,
104, 105 and 106, respectively. The isotherms and streamlines of Ra = 103 up to
Ra = 106, are shown in Fig. 5. It can be observed that for all the Rayleigh numbers,
the numerical results of the meshless point collocation method agree very well with
the benchmark solution.

Figure 5 demonstrates that a single circulation cell is formed in the clockwise di-
rection for all values of Rayleigh numbers. As the Rayleigh number increases, the
length cell increases and egg shaped cell is observed as shown in Figure 5b. With
even more increasing of the value of Rayleigh number the flow strength increases
and the boundary layers become more distinguished. Isotherms show that temper-
ature gradients near the heater and cold wall become more severe. For Ra = 105,
the streamlines elongate parallel to the horizontal wall.

4.3 Mixed convection in a square cavity

Following, mixed convection flow and temperature fields in a lid-driven square
cavity are examined and the numerical results are compared with those obtained
in [Aydin (1999)]. The dimensional parameter that characterizes the flow is the
Richardson (Ri) number. From the physical point of view, Ri characterizes the
relative importance of buoyancy to forced convection. More precisely, for Ri < 1,
the flow and heat transfer is dominated by forced convection, while for Ri > 1, it is
dominated by natural convection. Finally, when Ri = 1, the flow is a mixed regime.

The physical model under consideration is in Fig. 6. The left wall is moving
across the cavity from bottom to top at a constant velocity. Furthermore, the flow
is considered to be two-dimensional, steady and laminar. Both upper and lower
walls were considered adiabatic, while the left and the right walls are the hot and
the cold, respectively (Fig. 6a), or vice versa (Fig. 6b). The Richardson number
(Ri) is varied from 0.01 to 100.0 in order to simulate forced convection, pure mixed
convection and free convection dominated flow in the cavity.

From the physical point of view, the two different thermal boundary conditions
used, result in two different heat transfer mechanisms, namely buoyancy aiding
and buoyancy opposing. For the buoyancy aiding case, where the hot left and
the cold right walls were considered, the resulting buoyancy induce a clockwise
rotating flow. In this flow, cell recirculation is enforced, driven by the moving left
wall, while the buoyancy has an adding result on the forced convection flow. For
the buoyancy opposing case, for the cold left and the hot right walls, the buoyancy
tends to induce a counter-clockwise flow, opposed to the lid-driven recirculation.

In Figs. 7 and 8 the streamlines (left) and the isotherms (right) are presented at var-
ious values of mixed convection parameter Ri, for the buoyancy aiding and buoy-
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Figure 5: Streamlines and isotherms of (a) Ra = 103 (b) Ra = 104 (c) Ra = 105 and
(d) Ra = 106.
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Figure 6: Geometry configuration and boundary conditions for mixed convection.

ancy opposing flows, respectively. The Reynolds number Re was kept constant at
Re = 100. In every case seven different values of Richardson (Ri) number were
used namely, 0.01, 0.1, 0.5, 1, 2, 10 and 100.

In details, as it can be seen from the Fig. 7, for the case of buoyancy aiding flow, an
increase of Ri from 0.01 to 0.1 does not change significantly the flow and temper-
ature fields. In this case, the forced convection remains dominant over the natural
convection, because the buoyancy is still weak to affect the flow pattern. When the
Ri increases from 0.1 to 0.5 the strength of the cell is enhanced and the isotherms
tend to be stratified, due to the effect of the buoyancy on the flow and the tempera-
ture field. When 0.5 < Ri < 2, the buoyancy and shear effects are comparable. As
Ri approach 0.5 and 2.0, it makes the shear and buoyancy effect important, respec-
tively. For Ri 10 and 100, the flow and the temperature fields are almost the same as
those in natural convection, indicating that the natural convection is the dominant
mechanism over the forced convection.

As far as the opposing buoyancy, as it can be observed at Fig. 8, there is no sig-
nificant difference in streamlines and isotherms for Ri = 0.01 and 0.1. When Ri
is increased beyond 0.1, the cellular motion is destroyed, leading to a new flow
type. When, Ri = 0.5 a secondary cell is generated due to buoyancy effects. This
secondary cell is counter-rotating with respect to the original cell due to the motion
of the left wall. With the increasing value of Richardson number this secondary
cell, originating from the buoyancy, becomes larger due to the shear, restricting the
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Figure 7: The streamlines (left) and the isotherms (right) at different values of
Richardson (Ri) number for aiding buoyancy.

primary cell to a region adjacent to the left vertical wall. At Ri = 10, the forced
convection cell becomes restricted to a very small region. Finally, when Ri = 100,
the primary cell is disappeared and the flow field is dominated by the buoyancy. All
results are qualitatively compared with corresponding presented in [Aydin (1999)]
and the agreement is obvious.

5 Conclusions

A meshless, point collocation with Local Radial Basis Functions (LRBF) inter-
polation based method is presented for the numerical solution of the incompress-
ible, non-isothermal Navier-stokes equations in velocity-vorticity formulation. A
velocity-correction method is applied ensuring the continuity equation. The nu-
merical results were compared with the solution of benchmark problems. From
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Figure 8: The streamlines (left) and the isotherms (right) at different values of
Richardson (Ri) number for opposing buoyancy.

the comparison made, it can be seen that the presented method can solve incom-
pressible, non-isothermal, viscous flow problems accurately. As benchmark prob-
lems the forced, natural and mixed convection in a rectangular domain were stud-
ied. In every case, solutions were obtained for high values of the characteristics
non-dimensional numbers of the flow, that is, the Reynolds, the Rayleigh and the
Richardson number. The numerical scheme is accurate and efficient, yet for rela-
tively coarse grids.

All the above computations were taken place using a uniform 161×161 grid. Fur-
thermore, the choice of the specific nodal configuration was taken after a grid inde-
pendence study. For that reason we used grids of 81×81, 121×121 and 161×161
nodes. A shape parameter c = 3 and the nine close neighbors as the support domain
were used. The condition number was calculated as 6.482×1013. It is important to
notice that the proposed meshless numerical scheme can be applied in cases were
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irregular geometries are present. Also, the nodal distributions can be regular or ir-
regular, but it requires a trial and error procedure for the determination of both, the
suitable nodal distribution and the shape parameter c, so that the condition number
takes high values.
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