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Size-Dependent Behavior of Macromolecular Solids I:
Molecular Origin of the Size Effect

W. Wei1 and David C.C. Lam1

Abstract: Molecular rotation is the elastic deformation mechanism underpin-
ning macroscopic deformation in macromolecular solid. In this investigation, molec-
ular mechanic simulations are used to investigate the effect of size on the higher or-
der material properties macromolecular solid. The rotational behavior of molecular
coils embedded in beams was examined as a function of the beam size in tension,
and in bending where the strain gradients in the bent direction are size-dependent.
Analysis showed that the effective elastic modulus is size dependent when strain
gradients are significant in bending, but not in tension. Analysis of the molecu-
lar rotation behavior indicated that the increase in the effective elastic modulus is
generated by increase in molecular rotations with strain gradients. This implies
that the higher order strain gradient stiffening has the same underlying deforma-
tion mechanism as conventional elastic deformation. Further analysis confirmed
that the individual higher order material length scale parameter l2 is uniquely re-
lated to the elastic modulus of individual solid studied. These results suggested
that size-stiffening in polymers is not a new deformation mechanism, but is a new
association of strain gradients with molecular rotations in the solid.

1 Size stiffening mechanics

Conventional view of mechanical deformation is based on displacement at a point
[Fung and Tong (2001)]. This mathematical approach is valid for solids where the
rotational characteristics at the point is negligible [Ashby (1970)]. When the solid
cannot be modeled as collections of points, but must be considered as atoms with
directionality, higher order mechanics that account for rotations at the atom are
needed.

Strain gradient mechanics has been used successfully to model the size dependence
of elastic stiffness in nanofibers, nanoporous solids and nanocomposites [Arinstein
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et al (2007); Ji et al (2006); Yang et al (2006); Lu et al (1994)]. The success was
developed on the basis of the modified strain gradient elasticity theory [Lam et al
(2003)]. In classical strain gradient theories [Mindlin (1968)], 18 strain gradient
terms were grouped without consideration for the character of dilatation, stretch
and rotation in the gradients [Fleck et al (1994)]. The work density in this case is
written as,

w =
1
2

kεiiε j j + µε
′
i jε
′
i j +a1ηi j jηikk +a2ηiikηk j j
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(∂iu j +∂ jui) , (2)

and ui is the displacements, k and µ are the bulk and shear moduli, respectively,
and ai are material length scale parameters, the deviatoric strain, ε ′i j is,

ε
′
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1
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and the strain gradient is,

ηi jk = ∂i juk. (4)

ai, the material length scale parameters were mixed in character. Lam et al (2003)
modified the theory by regrouping the strain gradients according to their character
into pure dilatation, stretch and rotation gradients. The work density in the modified
theory is,
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and the dilatation, stretch and rotation gradients are associated with l0, l1 and l2,
respectively.

In polymers, macromolecular chains in the solid deform via molecular rotations.
When the chains are strained, the macromolecules uncoil by rotating the molecular
segments into new configurations [Treloar (2005)]. The configurational change is
modeled using statistical mechanics such that the shear modulus of a network of
polymer is given as

µ =
ρRT
Mc

, (6)
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Figure 1: Gradients of strain in thin beam is larger than thick beam. Lm1 and Lm2
are the neutral axes of the thick and thin beam, respectively

where ρ is the density, Mc is the segmental molecular weight, R is the Avogadro
constant and T is the temperature in K. In this model, molecular rotations occur
in response to strains between the nodes, but the nodes are regarded as point nodes
such that the rotations at the nodes are ignored. the rotations at the node are not
free, but are constrained by connected chains. The rotations between atomic nodes
are characterized in higher order mechanics by the symmetric rotation gradient.
The deformation energy is given as,

w =
1
2

kεiiε j j + µε
′
i jε
′
i j + µl2

2 χ
s
i jχ

s
i j, (7)

where l2 is the material length scale parameter for rotation gradients in the polymer
[Yang et al (2002)]. Stiffening occurs when is non-negligible.

Rotation gradients are significant when the beam is thin. The effective elastic mod-
ulus Ee f f with rotational stiffening is [Lam et al (2003)],

Ee f f = Eo

[
1+3(1−ν)

l2
2

h2

]
, (8)

where Eo is the conventional elastic modulus, h, is the thickness of the beam and l2
is the higher order length scale parameter associated with rotational gradients [Sun
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et al (2008)]. The equation has been shown to be in good agreement with bending
experiment data [Cuenot et al (2000); Gu et al (2005); Wang and Lam (2010]. In
addition, the higher order theory had also been used to explain the size dependence
observed in nanocomposites [Wang and Lam (2010)] and n anostiffening behavior
in nanoporous solids [Wang and Lam (2009)].

In this investigation, we examined the deformation energy density as a function of
the rotational changes in different molecular solids, including polyethylene (PE),
styrene butyl rubber (SBR) and nylon 6 (Nylon) using molecular mechanics. The
dependence of l2 on the molecular character of the chains is studied as a function of
rotation gradient to examine the molecular origin of size-stiffening in macromolec-
ular solids.

2 Modeling approach

Deformation in metals [Cleri and Rosato (1993)], semiconductors [Giannozzi et
al (1991)] and ceramics, and small molecules, can be modeled using ab initio
methods where Hamiltonian functions are solved and optimized. The approach
is suitable for the simulations of small collections of atoms, molecules and short
macromolecular segments, but is unsuited for large molecules because of compu-
tational demands. Macromolecular solids can be modeled using molecular models
[Maranganti and Sharma (2007)]. To study the deformation energy behavior from
the molecular perspective, molecular rotation as a function of deformation can be
efficiently simulated using molecular mechanics. The molecular rotations before
and after deformation are simulated in this study using the Forcite Plus module in
Material Studio [Material’s studio 4.4]. In the undeformed state, macromolecules
are generally coiled. Pulling the ends apart will neither lengthen nor change the
bond angles of the covalent bonds, but will rotate and uncoil the chain into higher
energetic configurations. An idealized case of entangled or crosslinked coils is
shown on the left in Figure 2 and an isolated coil is shown on the right.

To study the deformation behavior of the macromolecules with and without strain
gradients, the macromolecular coils were embedded into beams (Figure 3), and
their changes in deformation energy density as a function of beam thickness were
examined in bending and in tension. Tension is simulated by imposing the requisite
displacements to the anchor points of the coil segments (Figure 3). When bent, the
coils further away from the neutral axis are stretched. The rotations of the carbon
atoms between the anchor atoms are unconstrained and can rotate freely to adapt a
minimum energy configuration. The anchors, which are crosslinked or entangled,
are constrained from free rotation by the connected neighboring chains. Its position
is prescribed in the simulation according to conventional bending mechanics [Fung



Size-Dependent Behavior of Macromolecular Solids I 217

 
Figure 2: Front view of an idealized network of macromolecular chains (left) and
a single coil (right).

(1977)] via,

εz = κx

εx = εy =−νεz =−vκx

γxy = γyz = γzx = 0

(9)

where

κ =
1
R

=
Lm−Lb

Lm

2
h
. (10)

The relations between the strain and the positions of the anchors at different loca-
tion r before and after deformation [Timoshenko and Goodier (1987)] is,

εx =
|x′r− xr|
|xr|

εy =
|y′r− yr|
|yr|

εz =
|z′r− zr|
|zr|

. (11)

The undeformed positions are unprimed while the deformed positions are primed
(Figure 3). In bending, a gradient of strain is developed along the thickness; and
the rotation at the anchors in one layer would be affected by segmental rotations in
the adjacent layer.

3 Benchmarking

Using this model, the additional rotational energies that were not accounted for in
conventional strain-based mechanics are tracked as a function of the deformation
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a   b   Figure 3: a) Macromolecular coils in beam and b) the coil before (unprimed nodes)
and after bending (primed nodes) in bottom schematic.

and thickness in our model. The deformation energy density per volume, u, is
calculated via,

u =
∆Uρ

m
, (12)

where m is the mass of the coil segment, ρ is the density of the polymer, and ∆U is
the difference in energy before and after deformation. In classical mechanics, u is
a function of the bent curvature [Norton (2006)],

u =
1+2ν2

2
Eε

2
z =

1+2ν2

2
Eκ

2x2, (13)

where x is the location of the coil along the thickness direction such that E can be
determined from a plot of u versus κ . The validity of the simulation is checked by
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comparing the E with experimental data. Since data from experiments are given
as size-independent shear modulus µo. The elastic modulus is converted into shear
modulus for comparison in Table 1. The settings used in the simulation are also
shown. Comparison of the shear moduli showed that the simulation results are
within 10% agreement with reported values for all three polymers modeled.

Table 1: The parameters used in our simulation model setting. The experimental
data is from Boháč and Vretenár ; Bartczak, Argon, Cohen and Weinberg (1999)

PE SBR Nylon
Stoichiometry CH2 C32H44 C12H24N2O2

m0 (g/mol) 14 428 228
Poisson’s ratio 0.5 0.5 0.5
r (g/cm3) 0.9565 1.046 1.15
R (N*m/K*mol) 8.314 8.314 8.314
T (K) 297 297 297
Experimental µ0
(GPa)

2.52E-1 7.67E-3 3.7E-3

Simulation µ0 (GPa) 2.32E-1 7.71E-3 3.19E-3

4 Results and Analysis

4.1 Mechanistic basis for higher order deformation

Strain gradients become significant when the beam thickness is reduced. The effect
of the thickness on the energy density in PE beam in bending is shown in Figure
4. The plot showed that the rate of energy change increases with thickness when
the thickness is less than 150 µm, but becomes independent of thickness at larger
thickness. Using equation (13), the effective elastic modulus can be determined
from Figure 4. The effective moduli normalized by the thickness-independent elas-
tic modulus, Eo, are plotted in Figure 5 as a function of thickness. Figure 5 showed
that without strain gradients, the effective moduli are independent of thickness, but
with strain gradients, the effective moduli become thickness dependent. Thus, the
increase in energy with beam thickness in Figure 4, and the increase in the effective
elastic moduli in Figure 5 is due to non-negligible strain gradients generated in the
beam during bending.

Molecularly, the changes in energy come from molecular rotations. The normal-
ized cumulative difference in rotation as a function of beam thickness is shown in
Figure 6. The figure showed that the molecular rotation increased with decrease in
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density in PE beams in bending.
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Figure 6: The molecular rotation illustration before (up) and 
after (down) the deformation and its size dependence on 
beam thickness. αo is the cumulative rotation for thick beam.  
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Figure 7: Relationship between average molecular rotation 
and deformation energy density taken from beams 
with different thicknesses. The slope is λ.  
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Figure 8: Effect of beam thickness on λ where λ0 is the value 
at h =200μm.  

4.2. Relation between μ and l2 

Since both strain gradient and strain deformation generate 
molecular rotations and rotation energy in a molecular 
segment.  It would be instructive to examine if l2 shares the 
same molecular dependence as μo.  The elastic modulus, and 
by corollary, the shear modulus of a macromolecular solid is 
known to decrease with increase in the molecular weight of 
the chain (equation (6)).  The amount of rotation per carbon 
atom would be reduced resulting in lower rotation energy 
when the molecular weight of the chain is increased. Using 
the developed model, the effect of molecular weight is 
examined in three macromolecules, polyethylene, styrene 
butyl rubber and nylon 6. The molecular weight of PE is 
increased from 8 to 122 units of the monomer, from 5 to 78 
units for SBR and 7 to 45 units for nylon 6. μο is shown to 
increase linearly with 1/n (Figure 9 to Figure 11).  Cross-
plotting μο and l2 showed that the two are linearly related 
(Figure 12 and Figure 13). These plots showed their ratios  
β= l2/μ  changes with chemistry, but is independent of the 
molecular weight. This means that once β is known for a 
molecular solid with a specific chemistry, l2 for the solid 
different molecular weight can be projected from the constant 
and μο. 

5. Remarks  
In this investigation, we examined the rotational behavior of 
molecules using molecular mechanic model and showed that 
the rotation energy per unit rotation is the same regardless of 
whether the rotation is generated with strain alone, or with 

Figure 6: The molecular rotation before
(up) and after (down) deformation and
its size dependence on beam thickness.
α0 is the cumulative rotation for thick
beam.
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Figure 8: Effect of beam thickness on λ where λ0 is the value at h = 200µm.

thickness. A cross plot of the deformation energy density and molecular rotation
is shown in Figure 7. The plot showed that rotations are linearly related to defor-
mation energy density. More importantly, the rate of change between the two, λ

(=u/α), is constant (Figure 8). This means that the increase in deformation energy
density with thickness is associated with molecular rotation and that molecular ro-
tation is the underlying molecular mechanism behind strain gradient deformation.

4.2 Relation between µ and l2

Since both strain gradient and strain deformation generate molecular rotations and
rotation energy in a molecular segment. It would be instructive to examine if l2
shares the same molecular dependence as µo. The elastic modulus, and by corol-
lary, the shear modulus of a macromolecular solid is known to decrease with in-
crease in the molecular weight of the chain (equation (6)). The amount of rotation
per carbon atom would be reduced resulting in lower rotation energy when the
molecular weight of the chain is increased. Using the developed model, the effect
of molecular weight is examined in three macromolecules, polyethylene, styrene
butyl rubber and nylon 6. The molecular weight of PE is increased from 8 to 122
units of the monomer, from 5 to 78 units for SBR and 7 to 45 units for nylon 6. µo

is shown to increase linearly with 1/n (Figure 9 to Figure 11). Cross-plotting µo

and l2 showed that the two are linearly related (Figure 12 and Figure 13). These
plots showed their ratios β= l2vµ changes with chemistry, but is independent of the
molecular weight. This means that once β is known for a molecular solid with a
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specific chemistry, l2 for the solid different molecular weight can be projected from
the constant and µo.
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Figure 9: Shear modulus as a function
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Figure 10: Shear modulus as a function
of 1/n in the SBR system. The solid
square is the experimental data for SBR
shown in Table 1.
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5 Remarks

In this investigation, we examined the rotational behavior of molecules using molec-
ular mechanic model and showed that the rotation energy per unit rotation is the
same regardless of whether the rotation is generated with strain alone, or with
strains and rotation gradients. The results were obtained using an idealized coil
model. The fixed coil approach allowed effective examination of the rotations be-
fore and after deformation, but cannot simulate dynamic chain interactions well.
The behaviors of interactions between chains in entangled thermoplastic and cross-
linked thermosets are examined using dynamic simulations and are reported in
companion papers in this series.

6 Conclusions

Molecular mechanics was used to simulate conventional and higher order size-
dependent elastic deformation behavior. The elastic moduli in bending and in
tension in thick beams were shown to be identical. When the beam thickness is
reduced, the elastic modulus of the beam in tension remains the same while the
beam in bending showed an effective increase that is inversely proportional to the
beam thickness. The higher order material length scale parameters, l2, delineated
from the size-dependence were shown to be associated with molecular rotation.
The rotation energy per unit rotation in the molecular segments in thin beams was
shown to be the same in thick beam where only strains are active. The results
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confirmed that strain-based deformation and higher order deformation shared the
same molecular rotation deformation mechanism. Investigation on the character
of the higher order behavior showed that l2 is uniquely related to the elastic shear
modulus; and this behavior is shown to be consistent in polyethylene, polyimide
and styrene butyl rubber. These results indicate that the higher order elastic defor-
mation behavior in macromolecular solids is not a new mechanism, but is a new
association between the molecular rotation mechanism and the rotation gradients
in the solid.
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