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A Numerical Study of the Influence of Surface Roughness
on the Convective Heat Transfer in a Gas Flow

F. Dierich1 and P.A. Nikrityuk1

Abstract: This work presents a numerical investigation of the influence of the
roughness of a cylindrical particle on the drag coefficient and the Nusselt num-
ber at low Reynolds numbers up to 40. The heated cylindrical particle is placed
horizontally in a uniform flow. Immersed boundary method (IBM) with a con-
tinuous forcing on a fixed Cartesian grid is used. The governing equations are
the Navier Stokes equation and the conservation of energy. A finite-volume based
discretization and the SIMPLE algorithm with collocated-variables and Rie-Chow
stabilization were used to solve the set of equations. Numerical simulations showed
that the impact of the roughness on the drag coefficient is low. But we found out
that the roughness has significant impact on the surface averaged Nusselt number.
In particular, the Nusselt number decreases rapidly with increase of the roughness
thickness. Based on the numerous simulations a mathematical dependency of the
heat transfer efficiency factor on the surface ratio was obtained.
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1 Introduction

Flow past a circular cylinder is a well accepted ’benchmark’ tool to study the drag
forces and heat transfer in bluff body wakes, e.g. see Schlichting and Gersten
(2006). The extensive review of numerical investigations of the flow dynamics
past a cylinder (done in early 1980s) can be found in Braza et al. (1986). It is a
well known fact that at Reynolds numbers, 1 < Re < 46, the flow past a cylinder
is laminar, where a steady recirculation region with toroidal vortex occurs behind
the cylinder. The size of the recirculation region growths with increasing Reynolds
number. Here the Reynolds number is defined as Re =U0d/ν , where U0 is the free-
stream velocity, d is the diameter of cylinder, and ν is the kinematic viscosity. At
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Reynolds numbers Re≥ 46, the flow becomes unsteady with vortex shedding (von
Karman vortex shedding) in the near wake behind the cylinder. Many simulations
were done to study the role of convection on the heat transfer near the cylinder,
e.g. see Juncu (2004), including the influence of a porous layer around the cylinder
on the enhancement of the heat transfer, see the work done by Bhattacharyya and
Singh (2009). Bhattacharyya and Singh (2009) showed that a thin porous wrapper
made of the same thermal conductivity as the cylinder can significantly reduce the
heat transfer. To model the gas flow inside the porous layer they used the Dupuit-
Forchheimer relationship, which states that the velocity inside the porous media
is proportional to the bulk velocity multiplied by the porosity. The use of this
assumption or the Darcy law assumption for the modeling of particle roughness is
questionable due to the fact that the convection may not be negligible within the
roughness region. An alternative way to explore the influence of a roughness on
the heat transfer near the solid body is the direct modeling of a rough surface by
use of Immersed Boundary Method (IBM), see Peskin (1972); Mittal and Iaccarino
(2005); da Silva et al. (2009).

In the present work we use IBM in continuous forcing mode, for details see the
classification done by Mittal and Iaccarino (2005). The main objective of this paper
is the investigation of the flow and heat transfer from a rough solid cylinder placed
horizontally in a cross-flow due to a uniform stream of air with a Prandtl number
of 0.5. The cylinder is assumed to be heated with a uniform surface temperature.
The temperature difference between the free stream flow and the surface of the
cylinder is equal to 20 K. We consider the roughness layer to be made from the
same material as the cylinder. Thus, the main motivation of this study is to estimate
the influence of the thickness of roughness layer on the heat transfer and on the
drag coefficient for a cylindrical particle.The practical context of this study is the
understanding of the impact of particle roughness on the heat transfer in particulate
flows. This kind of knowledge can be used by the enhancement of Nu-based heat
transfer models by simulations of fixed- or fluidized bed systems.

2 Problem formulation and governing equations

We consider a single cylindrical particle with a diameter D1 placed stationary, with
the main gas flow passing around it. The inflow velocity, U0, was assumed to
be uniform and was determined by means of the Reynolds number calculated as
follows:

Re =
U0 D1

ν
(1)

where ν is the kinematic viscosity.
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Figure 1: Principal scheme of the set up under investigation

The principal scheme of the domain is shown in Fig. 1. The rough particle consists
of an inner cylinder with the diameter D2 and an outer cylinder with 10 notches and
the radius D1 as shown in Figure 1. It is placed in the center of the domain with
L1 = 20D1, L2 = 20D1 and L3 = 50D1. The diameter D2 is varied from 0.5D1 to
1D1 to simulate different roughness. To proceed with the governing equations the
following basic assumptions have been done:

1. The gas flow is treated as incompressible media.

2. The viscous heating effect is neglected.

3. The thermophysical properties are constant giving the Prandtl number, Pr, of
about 0.5.

4. The buoyancy effect is neglected.

Taking into account the assumptions done above the conservation equations for
mass-, momentum and energy transport written for the gas phase have the following
form:

∇ ·~u = 0, (2)
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∂~u
∂ t

+(~u ·∇)~u =−∇p
ρ

+ν∇
2~u−ν

~u
Ku

+~gβT (T −Tre f ) , (3)

∂T
∂ t

+(~u ·∇)T =
λ

ρcp
∇

2T − 1
ρcp

(T −Ts)
KT

. (4)

Here~u is the velocity vector, p is the pressure, ν is the kinematic viscosity, λ is the
thermal conductivity, ρ is the density, cp is the heat capacity, Ts is the temperature
of the particle, βT is the thermal expansion coefficient, Tre f is the reference temper-
ature. It should be noted that in spite of the neglecting of the buoyancy effect the
last term is included due to the validation case.

On the bottom we set an inflow boundary condition with constant temperature.
We treat the top with an outlet boundary condition and on the sides we apply a
symmetry boundary condition.

To set the no-slip and the thermal Dirichlet boundary conditions on the particle
surface we tread the interface as porous with a permeability coefficient given by:

Ku =
ε3

cu (1− ε)2 , (5)

KT =
ε3

cT (1− ε)2 , (6)

where ε is the volume fraction of gas, cu and cT are constants, which dimensions
make Ku and KT consistent with the units of the rest of the terms in the momentum
and energy equations, respectively. The constants cu and cT are grid dependent and
must be chosen manually. For example, if cu takes too small value, the velocity
inside the particle is not zero and the particle is treated as porous one. On the
contrary, if cu has too large value, the solution is not converging usually. Based on
the numerous tests, in our case we found out that the choice:

cu = 2 ·104
∆x−1

min (7)

cT = 1 ·104
∆x−1

min (8)

with ∆x−1
min is the edge length of the smallest control volume inside the particle. In

this work ∆xmin ≈ 7.3 ·10−3 D1.

The volume fraction of gas ε takes the following values:
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Figure 2: Zoomed view of the spatial distribution of the volume fraction of gas near
the particle notch.

ε =


1, for the gas phase
0, for the solid phase
0...1, for the interface cells

(9)

For calculating the volume fraction of gas in each control volume we use a two-step
algorithm. The first step of this algorithm consists in the description of the particle
by a polygon. The second step uses the Sutherland-Hodgman clipping algorithm,
for details see I. E. Sutherland and G. W. Hodgman (1974), to calculate the volume
fraction of gas based on a polygon intersection with the ’walls’ of a control volume.
Fig. 2 shows zoomed view of the spatial distribution of ε the particle interface.

3 Numerics and Validation

The set of transport equations has been discretized by a finite-volume, finite-differ-
ence based method. The SIMPLE algorithm with collocated-variables arrangement
was used to calculate the pressure and the velocities, for details see Ferziger and
Peric (2002). Rhie and Chow stabilization scheme was used for the stabilization of
pressure-velocity coupling, see Rhie and Chow (1983).
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To set up the ’internal’ boundary conditions on the particle surface the source terms
−ν

~u
Ku

and − 1
ρcp

(T−Ts)
KT

in eqs. (3) and (4), respectively, are linearized following
recommendations given by Patankar (1980) as follows:

S = SC +SPφ
bc
P (10)

where φ bc
P is the value of principal variable (Ts or us) inside the solid region. Ap-

plied this equation in our case we have:

Su
C = 0, Su

P =−ν
1

Ku
ST

C =
1

ρcp

Ts

KT
, ST

P =− 1
ρcp

1
KT

(11)

Here the term 1
K is nothing else then a number large enough to make the other terms

in the discretization equation negligible in a such way that:

SC +SPTP ≈ 0, Tp =−
ST

C

ST
P

= Ts (12)

Time marching with fixed time step was used. For every time step the outer itera-
tions were stopped if the normalized maximal residual of all equations is less than
10−10 corresponding to 10 orders of magnitude. We used a grid with 400× 600
control volumes. The size of a control volume (CV) inside the solid particle is
about one hundredth of the particle diameter. This is achieved by local refinement
of the grid inside the particle. The time step was equal to 0.1 sec, which is in non-
dimensional time 6.25 · 10−4. It should be noted that unsteady simulations were
necessary in order to obtain the steady-state solution. Thus, all results presented
in this work are related steady state regimes only. To validate the code and the
model we reproduced the results of the flow around a cylinder at Reynolds number
Re = 20. We compared the drag coefficient CD, the angle of separation θs and the
vortex length L/r, where r is the radius of the cylinder as shown in Figure 3. Table
1 shows that the present results are in good consistent with other data published.

Next, we validated our model and the code against experimental results of [Kuehn
(1976); Kuehn and Goldstein (1978)]. The test case compares the numerical pre-
diction of temperature profiles along the symmetry lines with experimental data.
Experimental set up includes a heated inner cylinder placed in the center of another
cold cylinder, see Fig. 4. Due to the gravity field a buoyancy-induced flow occurs.
The inner cylinder with the radius of Ri = 0.0178m has the surface temperature
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Figure 3: Definition of angel of separation (θs) and the vortex length (L)

Authors CD θs L/r
Juncu (2004) 1.99 43.24 1.79
Fornberg (1980) 2.000 45.3 1.82
He and Doolen (1997) 2.152 42.96 1.842
Present 1.99 43.9 1.86

Table 1: Validation I: fluid flow past a cylinder. The definition of parameters θs and
L/r is given in Fig. 3.

Ti = 373K and the outer cylinder with the radius of R0 = 0.0463m has the tem-
perature T0 = 327K. The space between cylinders is filled with the air having the
following transport properties:

ρ = 1.08 kg m−3, βT = 2.83 ·10−3 K−1, cp = 1008 J kg−1 K−1

λ = 0.02967 W m−1 K−1, µ = 2.081 ·10−5 kg m−1 s−1. (13)
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The whole set-up corresponds to the following non-dimensional numbers:

Gr =
gβT (Ti−T0) (R0−Ri)

3

ν2 = 7.912 ·104

Pr =
cp µ

λ
= 0.707 (14)

Ra = Gr ·Pr = 5.594 ·104

The numerical simulations were performed by use of two grids having 50×50 CV
and 100×100 CV, respectively. The gas between cylinders was treated as incom-
pressible media. Additional simulations done by use of a commercial software
where the gas was taken as compressible media showed identical results. The tem-
perature contour plot and the flow pattern are shown in Fig. 5. The comparison
of temperature profiles along the symmetry line compared with the data of Kuehn
(1976); Kuehn and Goldstein (1978) are given in Fig. 6. It can be seen that the
agreement between our predictions and the experimental data is very good.

Y

X

g

D 0

D iT i

T0

Figure 4: Validation II: Scheme of set-up.

4 Results

The present problem can be governed by four parameters: the Reynolds number Re,
which is defined by eq. (1), the Nusselt number, the heat transfer efficiency factor
E f and the surface enlargement Se f . On the surface of the cylinder, the local Nusselt
number Nulocal can be defined and thus the surface–averaged Nusselt number Nuav

is given as:

Nuav =
∮

S Nulocal ds∮
S 1ds

, Nulocal =
D1

Ts−T∞

∂T
∂n

(15)
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Figure 5: Validation II: The spatial distribution of the velocity vectors and contour
plot of the temperature

where T∞ is the free stream temperature, Ts is the particle surface temperature and
n is the inward-pointing normal. In this work Ts−T∞ was set to 20K, where T∞ =
300K.

In order to study the influence of roughness on the heat transfer we introduce the
heat transfer efficiency factor E f , Bhattacharyya and Singh (2009), given by:

E f =
Nuav

Nu0
av

(16)

where Nu0
av is the surface average Nusselt number for the particle with zero rough-

ness. Thus, E f measures the ratio between the average rate of heat transfer from a
rough particle to the average rate of heat transfer from a particle without roughness.
Thus, E f > 1 corresponds to heat transfer enhancement and E f < 1 corresponds to
insulation.

The last parameter to characterize the roughness is the surface enlargement Se f

given by:

Se f =
Srough

S0
(17)

where S0 and Srough are the geometric surface area of the particle without roughness
and with roughness, respectively.

The equation for the calculation of the drag coefficient have the following form:
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Figure 6: Validation II: The temperature profiles at the vertical symmetry line.
Here the experimental data corresponds to the results of Kuehn (1976); Kuehn and
Goldstein (1978)

Se f D2/D1 Re = 10 Re = 20 Re = 40
1.00 1.00 2.76 1.99 1.50
1.13 0.95 2.81 2.03 1.53
1.27 0.90 2.85 2.07 1.56
2.07 0.60 2.93 2.14 1.62

Table 2: Drag coefficient (CD) in different Re and Se f

CD =
FD

1
2 ρU2

0 D1

~F =
∮ (
−p~n+ν

(
∇~u+∇~uT ) ·~n)ds (18)

The vector ~F is the hydrodynamic force acting on the particle. In this work the drag
force FD corresponds to Fy, see Fig. 1.

The numerical simulations were done for three Reynolds numbers 10, 20 and 40.
By fixing the Reynolds number we investigate systematically the influence of the
roughness of the cylinder on the surface averaged Nusselt number. The roughness
of the particle was increased by the decrease of the diameter D2, see Fig. 1.

Fig. 7a shows an example of the velocity distribution near the particle surface for Re
= 40 and D2/D1 = 0.6. It can be seen that the velocity is zero in the dimples. Thus,
the air in the dimples plays the role of an isolator, which decreases the convective
heat transfer. This effect can be clearly seen in the Fig. 7b, which depicts the
temperature profiles along the symmetry line for different Re numbers. Our results
show that due to the ’isolation’ effect produced by the dimples, the temperature
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Figure 7: Contour plot of non-dimensional velocity magnitude
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with Re =
40 and D2/D1 = 0.6, Se f = 2.07 - a, Non-dimensional temperature profiles T−T∞

Ts−T∞

along the symmetry line for different Reynolds numbers - b.

profiles near the interface are not so steep in comparison to the cases with less
roughness. Thus, the temperature gradient in the dimples is decreased. But at the
same time we have the increase of the temperature gradient in front of the convex
ledge on the particle surface. This can be seen in the Fig. 8, which shows contour
plots of the non-dimensional temperature gradient D1

∆T

√
(∂xT )2 +(∂yT )2. It can

be seen that the local heat transfer changes dramatically. In particular, we have
temperature gradients concentrated on the particle ledges. This effect can play a
very import role at the combustion of rough particles leading to the local speed-up
of heterogeneous chemical reactions on the convex shaped interfaces.

Next, we show the contour plots of the non-dimensional temperature, see Fig. 9.
The increase of the Re number at a constant value of Se f leads to the decrease of
the thermal boundary layer, which is well know fact. But at the same time the
increase of the surface enlargement at a constant value of Re leads to the increase
of the thickness of the effective thermal boundary layer and as a result, the surface
averaged Nusselt number decreases with the increase of Se f . This effect can be
seen in Fig. 10. It can be seen that the efficiency factor E f is proportional to the

surface enlargement coefficient Se f as follows E f = S−
5
4

e f .

In comparison to the behavior of the Nusselt number, the drag coefficient CD in-
creases insignificantly with the increase of the roughness, see Tab. 2. We explain
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Figure 8: Contour plots of the non-dimension temperature gradient
D1
∆T

√
(∂xT )2 +(∂yT )2. Here the maximum in the left figure is 5.2 and the

maximum in the right figure is 5.86, the minimum is 0.

this effect by insignificant influence of the roughness on the hydrodynamic bound-
ary layer. To demonstrate it Fig. 11 plots the azimuthal profile of the velocity
magnitude at the distance of 0.1D1 from D1. It can be seen that profiles calcu-
lated for the rough and smooth particles are almost identical excepting the region
at θ =±135◦.

5 Conclusions

A numerical investigation of steady laminar flow past a heated cylindrical particle
with different roughness was carried out. The effect of the thickness of the rough-
ness layer on the flow and heat transfer were systematically investigated. Based on
the presented numerical data and discussions several conclusions can be summa-
rized as follows:

1. The roughness has significant impact on the surface averaged Nusselt num-
ber. In particular, the Nusselt number decreases rapidly with increase of the
roughness thickness.

2. The efficiency factor E f is proportional to the surface enlargement coefficient

Se f as follows E f = S−
5
4

e f

3. The impact of the roughness on the drag coefficient is low.
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(a) Re = 10, D2/D1 = 0.9, Se f =
1.27

(b) Re = 20, D2/D1 = 0.9, Se f =
1.27

(c) Re = 40, D2/D1 = 0.9, Se f =
1.27

(d) Re = 10, D2/D1 = 0.6, Se f =
2.07

(e) Re = 20, D2/D1 = 0.6, Se f =
2.07

(f) Re = 40, D2/D1 = 0.6, Se f =
2.07

Figure 9: Contour plots of the non-dimensional temperature T−T∞

Ts−T∞
in different

Reynolds numbers Re and roughnesses.
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Figure 10: Effect of surface enlargement(Se f ) on the efficiency factor (E f )
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