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Optimum Design of a Thin Elastic Rod Using a Genetic
Algorithm
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Abstract: The best methods of the genetic algorithms (GA) are obtained in or-
der to optimize the shape of a thin elastic rod subjected to spatial bending and
torsion. The optimal cross-section is determined from the minimum volume condi-
tion, against the three modal bucklings.
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1 Introduction

The Lagrange problem [Cox (1992) and Seyranian and Privalova (2003)] of deter-
mining the shape of a column of given volume from the condition of the maximum
strength against buckling, was formulated by Lagrange in 1777 [Lagrange (1868)],
and solved by Clausen in 1851. The bimodal optimization of a column on elastic
foundation was treated by Shin et al. (1988a), Shin et al. (1988b), Atanackovic
and Novakovic (2006) for a variety of boundary conditions. The shape design for
beams and plates on an elastic foundation was treated by Shin et al. (1988a), Shin
et al. (1988b) and Plaut et al. (1986). Recently, with the increasing interest in the
optimum design of structures, various models and methods are explored to solve the
optimum design problems, with goals to improve the computational efficiency, see
for example 3D finite element analysis [Zhou and Wang (2006); Wang and Wang
(2006); Wang et al. (2007a, b)], the finite volume messhless local Petrov-Galerkin
method [Zheng et al. (2009)], and evolutionary structural optimization approach
[Zhou and Rozvany (2001)].

Structural optimization techniques based on mathematical programming and op-
timality criteria approach are presented in the book [Popescu and Chiroiu 1980].
Recent techniques developed by imitating the design methods existing in the na-
ture are referred to as genetic algorithms (GAs). These evolutionary structural
optimization methods have attracted attention and have been applied to optimum
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design of different types of structural problems. The current trend indicates that
GA based structural optimization techniques are quite promising and they are to be
used as a standard solution algorithm for the design problem of structures, where
the design variables are to be selected from a discrete set [Khoshravan and Hossein-
zadch (2009); Narayana, Gopalakrishnan and Ganguli (2008); Chiroiu and Chiroiu
(2003)]. The mixed method has been applied to solve elasto-static problems [Atluri
et al. (2004)] and nonlinear problems with large deformations and rotations [Han
et al. (2005); Chiroiu et al. (2005)].

Our goal in this paper is to use a GA to obtain the shape of a thin elastic rod sub-
jected to the spatial bending and torsion, without making any assumptions about
the cross section. The most important findings regarding the GAs corresponding
to our research are related to the treatment of combinations of continuous and dis-
crete variables associated with the initial conditions and three modal bucklings [Ol-
hoff and Rasmussen (1977) and Seyranian (1984); Cox (1992); Cox and Overton,
1992)].

2 Mathematical formulation

The theory of thin elastic rods is presented in the spirit of [Munteanu and Donescu
(2004)]. Let us consider a straight, thin elastic, homogeneous and isotropic rod
of length l, having a variable cross section in its natural state. External forces and
couples fix the ends of the bar. We assume that the rod deforms in space by bending
and torsion. The rod occupies, at time t = 0, the region Ω9⊂R3. After motion takes
place at time t, the rod occupies the region Ω(t).
The motion of the rod between t = 0 and λ ,θ ,ψ it is known if and only if we know
the mapping [Truesdell and Toupin (1960; Şoós (1974)]

S(0, t), ∀t ∈ [0, t1], (2.1)

which takes a material point in ξ = s− vt at t = 0 to a spatial position in λ =
ζ d3 +(0,0,λ3) at t = ζ =−ρv2.

The mapping (2.1) is single valued and possesses continuous partial derivatives
with respect to their arguments. The position of a material point in Ω0 may be
denoted by a rectangular fixed coordinate system X ≡ (X ,Y,Z) and the spatial po-
sition of the same point in Ω(t), by the moving coordinate system x≡ (x,y,z).
In the following, X and x are referred to as the material or Lagrange coordinates
and the spatial or Euler coordinates, respectively. The origin of these coordinate
systems is lying on the central axis of the rod. The motion of the rod carries
various material points through various spatial positions. This is expressed by
x = fi(X , t), i = 1,2,3.
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We take s to be the coordinate along the central line of the natural state. The
orthonormal basis of the Lagrange coordinate system is denoted by (e1,e2,e3), and
the orthonormal basis of the Euler coordinate system is denoted by (d1,d2,d3).
The basis {dk} , k = 1,2,3 is related to {ek} , k = 1,2,3 by the Euler angles θ ,ψ
and ϕ . These angles determine the orientation of the Euler axes with respect to the
Lagrange axes Tsuru (1986, 1987)]

d1 = (−sinψ sinϕ + cosψ cosϕ cosθ)e1 + (cosψ sinϕ + sinψ cosϕ cosθ)e2

− sinθ cosϕ e3,

d2 = (−sinψ cosϕ− cosψ sinϕ cosθ)e1 +(cosψ cosϕ− sinψ sinϕ cosθ)e2

+ sinθ sinϕe3,

d3 = sinθ cosψe1 + sinθ sinψe2 + cosθ e3 (2.2)

The Z-axis coincides with the central axis. The plane (xy) intersects the plane (XY)
by the nodal line. The motion of the rod is described by three vector functions

R×R(s, t)→ r(s, t), d1(s, t), d2(s, t) ∈ E3.

The material sections of the rod are identified by the coordinate s. The posi-
tion vector r(s, t) can be interpreted as the image of the central axis in the Eu-
ler configuration. The functions d1(s, t),d2(s, t) can be interpreted as defining
the orientation of the material section sin the Euler configuration. The function
d3(s, t) = d1(s, t)× d2(s, t) represents the unit tangential vector along the rod and
can be expressed as d3(sinθ cosψ,sinθ sinψ,cosθ).
We introduce the strains y1,y2,y3 by

r′ = ykdk, (2.3)

where (′) means the partial differentiation with respect to s. Since{dk} , k = 1,2,3,
is orthonormal, there is a vector u such as d′k = u×dk. The components of u with
respect to the basis {dk} are

uk =
1
2

eklmd′l ·dm, (2.4)

where eklm the components of the alternating tensor. Relation (2.4) becomes

u1 = d31d′21 +d32d′22 +d33d′23,
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u2 = d11d′31 +d12d′32 +d13d′33,

u3 = d21d′11 +d22d′12 +d23d′13,

where di j, i = j = 1,2,3, are the components of the vectors di, i =1,2,3, given by
(2).

Substitution of (2.2) into the above relations gives

u1 = θ
′ sinϕ−ψ

′ sinθ cosϕ, u2 = θ
′ cosϕ +ψ

′ sinθ sinϕ, u3 = ϕ
′+ψ

′ cosθ .

(2.5)

These functions measure the bending and torsion of the elastic rod. The functions
uk, k = 1,2,3, can be interpreted as the components of the angular velocity vector
(the variation with respect to s) for the rotational motion of the moving system
of coordinates with respect to the fixed system of coordinates. If we substitute
the differentiation with respect to s by the differentiation with respect to time we
will obtain the components of the angular velocity vector defined by (2.5). The
functions u1 and u2 represent the components of the curvature of the central line
denoted by κ corresponding to the planes (yz) and (xz)

κ
2 = u2

1 +u2
2 = θ

′2 +ψ
′2 sin2

θ , (2.6)

and u3 is the torsion of the bar denoted by τ

ψ(0) = ψ(l) = ψ0. (2.7)

In this way, we consider the rod is rigid along the tangential direction and the total
length of the rod θ(0) = θ(l) = θ0 is invariant, the ends being fixed by external
forces.

The full set of strains of the rod is τ(0) = τ(l) = τ0. In the natural state f (u) = 0
coincides with u3 < u2 < u1, and f (u) = 0 are constant functions of s. The values
of the strains in the natural state are

y1 = y2 = 0, y3 = 1, uk = 0. (2.8)

In the following we assume that extensional and compression strains have the val-
ues m = u2−u3

u1−u3
and focus only on the bending and torsion of the rod.

The link between the position vector r = (x,y,z) and unit tangential vector d3 is
obtained from the first two relations of (2.8) and (2.3)

r′ = d3. (2.9)
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From (2.9) we obtain Π(x,z,m). To characterize the position of the ends of the rod,
we introduce the vector D whose components are x(L),y(L),z(L)

D =
l∫

0

d3ds. (2.10)

2.1 The equilibrium equations

The elastic energy U of the deformed rod is composed of the bending energy and
the torsional energy

U =
B
2

l∫
0

κ
2ds+

T
2

l∫
0

τ
2ds, (2.11)

Where κ and τ are given by (2.6) and (2.7) [Landau and Lifshitz (1968), Solomon
(1968)]. The quantities B and T are the bending stiffness and the torsional stiffness,
respectively, which are generally related to the area A of the cross section and the
material constants, i.e. the Young’s modulus E and the shear modulus µ

B = αA2E0, T = βA2
µ0, (2.12)

with α and β dimensionless parameters, and E0,µ0 the referenced values for the
elastic constants. On using (2.6) and (2.7), the elastic energy (2.11) can be written
in the following form

U =
αA2E0

2

l∫
0

(θ ′2 +ψ
′2 sin2

θ)ds+
βA2µ0

2

l∫
0

(ϕ ′+ψ
′ cosθ)2ds.

To write the equilibrium equations, the variation of the elastic energy U with respect
to θ , ϕ and ψ is considered.

THEOREM 1 [Munteanu and Donescu (2004)]. The exact static equilibrium equa-
tions of a thin elastic rod with the ends fixed by the external force F = −λ with
λ = (λ1,λ2,λ3) are given by

αA2E0(ψ ′2 sinθ cosθ −θ
′′)−βA2

µ0(ϕ ′+ψ
′ cosθ)ψ ′ sinθ +λ1 cosθ cosψ+

+ λ2 cosθ sinψ −λ3 sinθ = 0,

∂

∂ s
[αA2E0ψ

′ sin2
θ +βA2

µ0(ϕ ′+ψ
′ cosθ)cosθ ]−

−λ1 sinθ sinψ + λ2 sinθ cosψ = 0,
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∂

∂ s
[−βA2

µ0(ϕ ′+ψ
′ cosθ)] = 0. (2.13)

The end couples at f (u) = 0 and s = lareMi(0), i = 1,2,3, and Mi(l), i = 1,2,3,
respectively, where

M1(s) = αA2E0θ ′are the couples with respect to the nodal line ON,

M2(s) = αA2E0ψ ′ sin2
θ +βA2µ0(ψ ′ cosθ +ϕ ′)cosθ is the couple with respect to

Z-axis,

M3(s) = βA2µ0(ϕ ′ cosθ +ψ ′)is the couple with respect to z-axis.

If f (u) = 0 is the force applied to the ends of the rod, where Fi, i = 1,2,3, are
the components of the force with respect to the fixed coordinate system m = u2−u3

u1−u3
,

then this force is related to w =
√
|λ3|
2A (u1−u3), by F = ∂U

∂D = −λ . Therefore,
−λ represents the external force that fixes the ends of the rod. The couples M =
(M1,M2,M3) at the ends of the rod with respect to the line node ON and Z and
zaxes are given by

M1 =
∂ℑ

∂θ
|s=0or l =

∂U
∂θ
|s=0or l = |αA2

θ
′E0|s=0or l,

M2 =
∂ℑ

∂ψ
|s=0or l =

∂U
∂ψ
|s=0or l

= |A2 (
αE0ψ

′ sin2
θ +β µ0(ψ ′ cosθ +ϕ

′)cosθ
)
|s=0or l, (2.14)

M3 =
∂ℑ

∂ψ
|s=0or l =

∂U
∂ψ
|s=0or l = |βA2

µ0(ϕ ′ cosθ +ψ
′)|s=0or l.

The equilibrium equations (2.13) are coupled nonlinear ordinary differential equa-
tions with respect to the unknown Euler angles. Next, we see that equation (2.13)3
can be solved

ϕ
′(s)+ψ

′(s)cosθ(s) = c,

with c an integration constant. From the definition of the torsion (2.7) we can
conclude thatc = τ . So, the above relation becomes

ϕ
′(s)+ψ

′(s)cosθ(s) = τ. (2.15)

By using equation (2.15), the first two equations (2.13) can be written as

αA2E0(ψ ′2 sinθ cosθ −θ
′′)−βA2

µ0τψ
′ sinθ + λ1 cosθ cosψ

+ λ2 cosθ sinψ −λ3 sinθ = 0,
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αA2E0(ψ ′′ sinθ +2ψ
′
θ
′ cosθ)−βA2

µ0τθ
′+λ1 sinψ−λ2 cosψ = 0. (2.16)

We introduce λ =
√

λ 2
1 +λ 2

2 , ψ1 = ψ +π + arctan λ1
λ2

, and write

u1 = u2 =−1, u3 = 1

Adding (2.16) f (u) = 0 multiplied by 2θ ′ and (2.16)2 multiplied by (−2ψ ′1 sinθ),
we obtain

−αA2ψ ′21(sin2
θ)′−αA2(ψ ′21)

′ sin2
θ −αA2(θ ′2)′+λ3(cosθ)′−

−2λ sinψ1(sinθ)′−2λ sinθ(sinψ1)
′ = 0.

Dividing the above relation by 1/2 we have[
0.5αA2E0(θ ′2 +ψ

′2
1 sin2

θ)+ λ sinθ sinψ1−λ3 cosθ

]′
= 0.

Integrating this expression with respect to s, we find the bending energy density of
the thin elastic rod as

αA2E0κ
2 =−2λ sinθ sinψ1 +2λ3 cosθ +C0,

where C0 is an integration constant.

In the case when λ = (0,0,λ3), the equilibrium equations (2.15) and (2.16) become

ϕ
′(s)+ψ

′(s)cosθ(s) = τ,

αA2E0(ψ ′
2 sinθ cosθ −θ

′′)−βA2
µ0τψ

′ sinθ −λ3 sinθ = 0,

αA2E0(ψ ′
′ sinθ +2ψ

′
θ
′ cosθ)−βA2

µ0τθ
′ = 0.

(2.17)

2.2 The equations of motion

To write the equations of motion, let us introduce the inertia of the rod characterized
by the functions Rs→ (ρ0A)(s),(ρ0I1)(s),(ρ0I2(s) ∈ (0,∞), where A is the cross-
sectional area, (ρ0I1) is the principal mass moment of inertia around the axis, which
is perpendicular to the central axis, and (ρ0I2) is the principal mass moment of
inertia around the central axis, ρ0 is the mass density per unit volume, and I1, I2 are
the geometrical moments of inertia around the axis, which are perpendicular to the
central axis and around the central axis, respectively.

The cross-sectional area A is related to the moments of inertia I1 and I2by the fol-
lowing relations

I1 = γA2, I2 = δA2, (2.18)
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where γ,δ are dimensionless constants. The volume of the rod is given by

V =
l∫

0

A(s)ds. (2.19)

We assume that the cross-sectional area A(s) belongs to the set of admissible twice
continuously differentiable and positive cross-sectional area functions. We consider
to have 0 < Amin ≤ A(s)≤ Amax.

The kinetic energy K of the rod is the sum between the energy of the translational
motion K1, the energy of the rotational motion of the tangential vector K2 and the
energy of the rotational motion around the central axis K3 [Tsuru (1986, 1987)]

K = K1 +K2 +K3, K1 =
Aρ0

2

l∫
0

ṙ2ds,

K2 =
k1

2

l∫
0

ḋ2
3ds =

k1

2

l∫
0

(Ω2
1 +Ω

2
2)ds, K3 =

k2

2

l∫
0

Ω
2
3ds,

(2.20)

where the dot represents differentiation with respect to time,

ρ = Aρ0, k1 = I1ρ0 = γA2
ρ0, k2 = I2ρ0 = δA2

ρ0, (2.21)

and Ω(Ω1,Ω2,Ω3) is the vector of angular velocity of rotation

Ω1 =−ψ̇ sinθ cosϕ + θ̇ sinϕ,

Ω2 = ψ̇ sinθ sinϕ + θ̇ cosϕ,

Ω1 = ψ̇ cosθ + ϕ̇.

These relations are analogous to (2.5). On using d′k = u×dk, we obtain the follow-
ing expressions for K2 and K3

K2 =
γA2ρ0

2

l∫
0

(ψ̇2 sin2
θ + θ̇

2)ds, K3 =
δA2ρ0

2

l∫
0

(ψ̇ cosθ + ϕ̇)2ds.

THEOREM 2 [Munteanu and Donescu (2004)]. The exact set of equations of mo-
tion for a thin elastic rod with the ends fixed by the forceF = −λ , where λ =
(λ1,λ2,λ3), are the following:

−ρ0Ar̈−λ
′ = 0,
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γA2
ρ0(ψ̇2 sinθ cosθ − θ̈)

−δA2
ρ0(ϕ̇ + ψ̇ cosθ) ψ̇ sinθ −αA2E0(ψ ′

2 sinθ cosθ −θ
′′)+

+βA2
µ0(ϕ ′+ψ

′ cosθ)ψ ′ sinθ −λ1 cosθ cosψ−λ2 cosθ sinψ +λ3 sinθ = 0,

− ∂

∂ t

{
γA2

ρ0ψ̇ sin2
θ +δA2

ρ0(ϕ̇ + ψ̇ cosθ) cosθ
}

+

+
∂

∂ s

(
αA2E0ψ

′2 sin2
θ +βA2

µ0(ϕ ′+ψ
′ cosθ)cosθ

)
+ λ1 sinθ sinψ−λ2 sinθ cosψ = 0,

−δρ0
∂

∂ t
(ϕ̇ + ψ̇ cosθ)+β µ0

∂

∂ s
(ϕ ′+ψ

′ cosθ) = 0. (2.22)

The equations of motion (2.22) are coupled nonlinear partial differential equations
with respect to the unknown Euler angles and the vector function, which character-
izes the external force applied to the ends of the rod in order to maintain it fixed.

We have to add to the equations of motion the following initial conditions

λ (s,0) = λ0(s) =−ρ0Av2d3(s,0)+(λ1,λ2,λ3),
θ(s,0) = θ0(s), ψ(s,0) = ψ0(s), ϕ(s,0) = ϕ0(s).

(2.23)

In the case when λ = (0,0,λ3), the equations of motion (2.22) and (2.23) become

−ρ0Ar̈−λ
′ = 0,

γA2
ρ0(ψ̇2 sinθ cosθ − θ̈)

−δA2
ρ0(ϕ̇ + ψ̇ cosθ) ψ̇ sinθ −αA2E0(ψ ′

2 sinθ cosθ −θ
′′)+

+ βA2
µ0(ϕ ′+ ψ

′ cosθ)ψ ′ sinθ + λ3 sinθ = 0,

− ∂

∂ t

{
γA2

ρ0ψ̇ sin2
θ +δA2

ρ0(ϕ̇ + ψ̇ cosθ) cosθ
}

+

+
∂

∂ s

{
αA2E0ψ

′2 sin2
θ +βA2

µ0(ϕ ′+ψ
′ cosθ)cosθ

}
= 0,

−δρ0
∂

∂ t
(ϕ̇ + ψ̇ cosθ)+β µ0

∂

∂ s
(ϕ ′+ψ

′ cosθ) = 0. (2.24)

and

λ (s,0) = λ0(s) =−ρ0Av2d3(s,0)+(0,0,λ3),
θ(s,0) = θ0(s), ψ(s,0) = ψ0(s), ϕ(s,0) = ϕ0(s).

(2.25)
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3 The optimum design problem

The optimum design problem is based on the relation between the equilibrium
equations and the equations of motion for a thin elastic rod [Tsuru (1986, 1987);
Munteanu and Donescu (2004)]. The aim of this problem is to determine the con-
ditions when the equations of motion can be reduced to the equilibrium equations.

3.1 The equivalence theorem

THEOREM 3 [Munteanu and Donescu (2004)]. Let λ ,θ ,ψ and ϕ be given as
functions of the variable ξ = s− vt only and suppose that

λ = ζ d3 +(0,0,λ3), (3.1)

where ζ = −ρv2 and d3 = (sinθ cosψ,sinθ sinψ,cosθ). In this case, the equa-
tions of motion (2.24) are equivalent to the equilibrium equations (2.17) for

αE0− γρ0v2→ αE0, β µ0−δρ0v2→ µ0β , ξ → s. (3.2)

Consider now the equilibrium equation (2.17)3. Multiplying both sides of this equa-
tion by sinθ , we get α(sin2

θψ ′)′+βτ(cosθ)′ = 0, and integrating with respect to
??, we obtain

αA2E0 sin2
θψ
′+βA2

µ0τ cosθ +b1 = 0, (3.3)

where b1 is an integration constant. By virtue of (3.3), we obtain

ψ
′ =−βA2µ0τ cosθ +b1

αA2E0 sin2
θ

. (3.4)

Substituting (3.4) into (2.17)2 and multiplying the resulting equation by 2θ ′, we
obtain by integration with respect to ??

αA2E0θ
′2− (βA2µ0τ cosθ +b1)2

αA2E0 sin2
θ

+2βA2
µ0τ cosθ

βA2µ0τ cosθ +b1

αA2E0 sin2
θ

− 2λ3 cosθ + b2 = 0,

where b2 is an integration constant. The above equation can be written as

αA2E0θ
′2 +

β 2A4µ0τ2 cos2 θ −b2
1

αA2E0 sin2
θ

−2λ3 cosθ +b2 = 0. (3.5)
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Substituting u = cosθ into (3.5), we obtain the following ordinary differential equa-
tion

u′2 =
1−u2

αA2E0

{
−β 2A4µ0τ2u2−b2

1
αA2E0(1−u2)

+2λ3u−b2

}
,

or

1
2

u′2 = f (u), (3.6)

f (u) =− 1
αA2E0

[
λ3u3− 1

2

(
b2−

β 2A2µ0τ2

α

)
u2−λ3u+

1
2
(b2−

b2
1

αA2E0
)
]
.

We recognize in (3.6) a Weierstrass equation with a third-order polynomial. The
torsion τ and the integration constants b1and b2 are determined from the boundary
conditions

ψ(0) = ψ(l) = ψ0, θ(0) = θ(l) = θ0, τ(0) = τ(l) = τ0. (3.7)

Eq. (3.6) admits closed form solutions [Munteanu and Donescu (2004)]. Starting
with the solutions of (3.6), the exact solutions for the equilibrium equations (2.17)
and the equation of motion (2.24), respectively, can be easily determined. These
solutions are given by two theorems for two cases. In the first case, the equation
f (u) = 0 has three distinct and real roots.

THEOREM 4 [Munteanu and Donescu (2004)]. Given u3 < u2 < u1,u3 6=±1 , the
distinct and real roots of the cubic equation f (u) = 0given by (3.6), the equilibrium
equations (2.17) have a unique solution for the Euler angles

u = u2− (u2−u3)cn2 (w(s− s3),m) ,
ψ = Γ

{
−b1+βA2µ0τ

1−u3
Π

[
w(s− s3), u2−u3

1−u3
,m
]
− b1−βA2µ0τ

1+u3
Π

[
w(s− s3), u2−u3

1+u3
,m
]}

,

ϕ =− τ(β µ0−αE0)
αE0

s+

+Γ

{
b1+βA2µ0τ

1−u3
Π

[
w(s− s3), u2−u3

1−u3
,m
]
− b1−βA2µ0τ

1+u3
Π(w(s− s3), u2−u3

1+u3
,m)
}

,

(3.8)

where m = u2−u3
u1−u3

,Γ = 1
4α2A4E0w2 , w =

√
|λ3|

2αA2 (u1−u3), and Π(x,z,m) is the normal

elliptic integral of the third kind Π(x,z,m) =
x∫

0

dy
1−zsn2(y,m) .

In the second case

b1 = βA2
µ0τ, b2 =

β 2A2µ2
0 τ2

αE0
−2λ3, α 6= 0, (3.9)
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f (u) from (3.6)2 becomes

f (u) =− λ3

αA2E0
(u+1)2(u−1),

with the solutions u1 = u2 =−1, u3 = 1.

In this case, we have the second theorem:

THEOREM 5 [Munteanu and Donescu (2004)]. Given u1 = u2 = −1, u3 = 1 the
roots of the cubic equation f (u) = 0 given by (3.6), the Euler angles are uniquely
determined from the equilibrium equations (2.17)

u(s) =−1+2 |λ3|
αA2E0

sech2
√

|λ3|
αA2E0

s,

ψ = −β µ0τs
2αE0

+ arctan
(

4αE0
β µ0τ

tanh
(
−
√

|λ3|
αA2E0

s
))

,

ϕ = τ(2αE0−β µ0)s
2αE0

+ arctan
(

4α

φτ
tanh

√
|λ3|

αA2E0
s
)

.

(3.10)

3.2 The family of elastica solutions

The stable shape of a long rod compared with the cross section dimensions, into
which the central line is deformed, is called elastica. These shapes are obtained
from (3.8). For a circular cross section of radius r, r � l, Fig. 1 displays four
shapes of elastica for τ = 0 and different set of values. Here we used the notation
(3.9). These shapes are similar to the shapes of elastica found by Love in 1926.
The case τ 6= 0 is illustrated in Fig. 2.

For τ 6= 0 the rod deviates from a plane and has a 3D structure. This structure is
simpler for small values of τ and more complicated when τ increases. The shape
of the rod consists of a single loop or a series of loops lying altogether in space.

The family of elastica solutions of (2.17) in the case λ = (01,0,λ3) contains a large
number of curves. Euler noticed that there exists an infinite variety of such elastic
curves, but “it will be worth while to enumerate all the different kinds included in
this class of curves. For this way not only will the character of these curves be more
profoundly perceived, but also, in any case whatsoever offered, it will be possible
to decide from the mere figure into what class the curve formed ought to be put. We
shall also list here the different kinds of curves in the same way in which the kinds
of algebraic curves included in a given order are commonly enumerated” [Euler
(1744)].

3.3 Exact solutions of the equations of motion

We determine the exact solutions of the equations of motion using the equivalence
theorem (Theorem 3). Therefore, the theorems demonstrated in the static case are
valid also in the dynamic case.
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Figure 1: Shapes of elastica of Love for τ = 0, and different set of values (b1= 0.3,
λ3= 0.4, b2= 0.2), (b1= 0.7, λ3= 0.2, b2 = 0.1), (b1= 0.3, λ3= 0.1, b2= 0.1) and (b1=
0.9, λ3= 0.4, γ= 0.3) from left to right.

The exact solutions for the equations of motion (2.24) are obtained from the static
Theorems 4 and 5, for the same two situations.

In the first case, the following theorem holds:

THEOREM 6 [Munteanu and Donescu (2004)]. Given u3 < u2 < u1,u3 6=±1, the
distinct and real roots of the cubic equation f (u) = 0 given by (3.6), the equations
of motion (2.24) have a unique solution for the Euler angles

u = u2− (u2−u3)cn2[w(ξ −ξ3),m],
ψ = Γ̄

{
−b1+A2(β µ0−δρ0v2)τ

1−u3
Π(u)− b1−A2(β µ0−δρ0v2)τ

1+u3
Π(v)

}
,

ϕ =− τ[β µ0ν0−αE0−(γ2+δ )ρ0v2]
(αE0−γρ0v2) ξ+

+Γ̄

{
b1+A2(β µ0−δρ0v2)τ

1−u3
Π(u)− b1−A2(β µ0−δρ0v2)τ

1+u3
Π(v)

}
,

(3.11)

where m = u2−u3
u1−u3

, Γ̄ = 1
4A2(αE0−γρ0v2)2w2 , w =

√
|λ3|
2A (u1−u3), u =

[
w(ξ −ξ3), u2−u3

1−u3
,m
]
,

v =
[
w(ξ −ξ3), u2−u3

1+u3
,m
]
, and Π(x,z,m) is the normal elliptic integral of the third

kind.

In the second case (3.9), we the following theorem holds:

THEOREM 7 [Munteanu and Donescu (2004)]. Given, u1 = u2 =−1, u3 = 1, the
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Figure 2: Shapes of elastica of Love for τ 6= 0 and τ = 0.2,b1=0.3, λ3= 0.4, b2=0.2),
(τ =0.3, b1=0.7, λ3= 0.2, b2=0.1), (τ =0.4, b1=0.3, λ3= 0.1, b2=0.1) and (τ =0.5,
b1=0.9, λ3= 0.4, b2=0.3) from left to right.

roots of the cubic equation f (u) = 0 given by (3.6), the Euler angles are uniquely
determined from the equations of motion (24)

u(ξ ) =−1+2 |λ3|
A2(αE0−γρ0v2) sech2

√
|λ3|

A2(αE0−γρ0v2)ξ ,

ψ = −(β µ0−δρ0v2)τξ

2(αE0−γρ0v2) + arctan
[

4(αE0−γρ0v2)
(β µ0−δρ0v2)τ tanh

(
−
√

|λ3|
A2(αE0−γρ0v2)ξ )

)]
,

ϕ = τ[2αE0−β µ0+v2(δρ0−2γρ0)]ξ
2(αE0−γρ0v2) +

+arctan
[

4(α−γρ0v2)
(β µ0−δρ0v2)τ tanh

√
|λ3|

A2(αE0−γρ0v2)ξ

]
.

(3.12)

3.4 The optimum rod

Let us consider a rod that vibrates around the strained position, which satisfies the
static equilibrium equations (2.17). The exact solutions of the equilibrium equa-
tions (2.17) are given by (3.8) or (3.9).

Let us suppose that the strained rod has a helical shape. It should be mentioned that
there are many 1D media in biology, such as DNA, RNA and α-helix of protein,
exhibiting a helical shape.
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We start by differentiating the equation (2.24)1 with respect to s

−ρ0Ad̈3−λ
′′
3 = 0. (3.13)

The Euler angles are written as

θ = θs(s)+ ε cos(kx−ωt),
ψ = ψs(s)+ ε sin(ks−ωt),
ϕ = ϕs(s)+ ε sin(kx−ωt),

(3.14)

where θs(s), ψs(s), ϕs(s) are given by (3.8) or (3.9), and ε a small parameter.
Substituting (3.14) into (3.13), we obtain an equation with respect to the unknown
λ3

λ
′′
3 =−ρ0Ad̈3, (3.15)

with

d̈3 =

(θ̈ cosθ cosψ−2θ̇ ψ̇ cosθ sinψ− θ̇
2 sinθ cosψ− ψ̈ sinθ sinψ− ψ̇

2 sinθ cosψ,

θ̈ cosθ sinψ +2θ̇ ψ̇ cosθ cosψ− θ̇
2 sinθ sinψ + ψ̈ sinθ cosψ− ψ̇

2 sinθ sinψ,

− θ̈ sinθ − θ̇
2 cosθ).

Then, we differentiate equations (2.24) with respect to s, where λ ′′3 given by (3.15).
After some calculations and by neglecting the third-order terms with respect to ε ,
we obtain the vibrations equation written in a matrix form

T ε = 0, (3.16)

where T is a 3×3 symmetric matrix whose components are given by

T11 =
ω2

k2

{
Aρ0 + γA2

ρ0k2− (ψ ′4s −3k2ψ ′2s )cos2 θs

(k2−ψ ′2s )2

}
+

+
{
(β µ0−2αE0)cos2

θs +(αE0−β µ0)
}

A2
ψ
′2
0 +β µ0A2

τψs cosθs−αA2E0k2,

T12 = T21 =− 2kρ0Aω2

(k2−ψ ′2s )2
ψ
′
0 cosθs sinθs

+ kA2 sinθs
{
(β µ0−2αE0)cosθsψ

′
s +β µ0τ

}
,



16 Copyright © 2010 Tech Science Press CMES, vol.65, no.1, pp.1-26, 2010

T13 = T31 = (2γρ0ω
2−β µ0k2)A2 cosθs,

T22 = ω
2
{

Aρ0

(k2−ψ ′2s )2
(ψ ′2s + k2)sin2

θs + γA2
ρ0(cos2

θs +1)
}

− k2A2(β µ0 cos2
θs + αE0 sin2

θs),

T23 = M32 = (2γρ0ω
2−β µ0k2)A2 cosθs,

T33 = A2(2γρ0ω
2−β µ0k2), (3.17)

and ε = (ε,ε,ε)t is a column vector. In (3.17) we have used the relations k2 = 2k1
and ϕ ′s = τ −ψ ′s cosθs. The dispersion relations are calculated from detT = 0,
where the determinant of T is a cubic polynomial in ω2.

Consider the case of transverse vibrations. The characteristic equation is given by

ρ
2
0 [(1−u2

s )ψ
′2
s +k2(1+γA2

ρ0)]ω4−Aρ0k2[αE0u2
s ψ
′2
s (ψ

′2
s +13k2−γA2

ρ0(u2
s +1))

−β µ0τusψ
′
s(ψ

′2
s +5k2)+2αE0(k4− k2

ψ
′2
s + γA2

ρ0k2−2γA2
ρ0us)]ω2

− k4(ψ ′2s − k2)[α2E2
0 A2u2

s ψ
′2
s −3αβ µ0E0A2

τusψ
′
s

+αE0(ψ ′
2
s − k2 +2γA2

ρ0us)+β
2
µ

2
0 A2

τ
2] = 0, (3.18)

where us = cosθs 6=±1.

Equation (3.18) is a polynomial equation with respect to ω2. The roots of (3.18),
ω1 = (ω+)2 and ω2 = (ω−)2, are functions of k, α,β ,γ and A. The parameters α

and β , defined by (2.12), characterize the bending stiffness and torsional stiffness,
respectively, for known A. The parameter γ , given by (2.18) and (2.21), characterize
the moments of inertia I1 and I2, for known A(k2 = 2k1).

In the following, we consider that the parameters α,β ,γ are known.

We make the assumption that the rod buckles in three modes.

Numerical investigations show that for ψ ′2s < k2, the roots (ω ,
1ω

)
2 are positive, and

for ψ ′2s ≥ k2 the root ω1 is positive and ω2 is negative. The waves are stable for real
values of the angular frequency ω . The initial strain is determined by us, ψ ′s and τ .

If A(s) is given in (2.17), (2.24)2,3,4,(3.15) and the initial conditions are given by
(2.25) then the values of (ω1,ω2) for which the problem has a nontrivial solution
define a set of eigenvalue curves C j, j = 1,2,3, .... [Atanackovic and Novakovic
(2006)]. Let (ω1

1 ,ω1
2 ) be a point on the lowest eigenvalue curve corresponding to

the first buckling mode, say C1. For a rod with constant cross-section, the eigen-
value curves can be easily determined. For some value of ω2, the eigenvalue curves
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intersect. This situation is shown on the left part of Fig. 3 for the first and second
eigenvalue curves C1 and C2. At the point of intersection, bimodal buckling is pos-
sible. Let ω̄1

1 be the value of ω1
1 at the point of intersection. Then for ω1

1 < ω̄1
1 the

rod buckles in the first mode. We refer to the part of the curve C1 with 0 < ω1
1 ≤ ω̄1

1
as the lower part of C1. Similarly, let ω̄n

1 be a point on the ω1 axis corresponding to
the intersection of the nth and (n+1)th eigenvalue curve. Then the part of the curve
Cn with ω̄

n−1
1 ≤ ω1

1 ≤ ω̄n
1 will be the lower part of Cn (see Fig. 3). For different

values of the parameters α,β and γ , we obtain from (3.18) different pairs (ω1,ω2).
Suppose now that (ω∗1 ,ω∗2 ) is given. We define the optimal thin elastic rod as a rod
shaped in such a manner that any other rod of the same length and smaller volume
will buckle under the load λ3 for(ω∗1 ,ω∗2 ). Thus, the problem of determining the
shape of the optimal rod may be mathematically stated as follows:

Given(ω∗1 ,ω∗2 ), find A∗(s) such that the integral (2.19) is a minimum for A∗(s)
among all 0 < Amin ≤ A(s)≤ Amax, i.e.

min IA = min
A

l∫
0

A(s)ds =
l∫

0

A∗(s)ds. (3.19)

In addition, when A∗(s)is used in (3.11) or (3.12), the values (ω1,ω2) determined
from (3.18) are equal to(ω∗1 ,ω∗2 ) and belong to a point on the lower part of some
eigenvalue curve Cn, n = 1,2, ....

This optimization problem is solved by employing a GA.

 

Figure 3: Eigenvalue curves for the rod of optimal cross sectional area.
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4 Genetic algorithm

GAs try to find an optimal answer by evolving a population of trial answers in a way
that mimics biological evolution [Goldberg (1989); Gen and Cheng (2000)]. Each
answer is called an individual and is coded as a string chromosome. Individual
parameters are substrings of characters (genes). From one generation to the next,
the strongest genes and chromosomes remain by destroying the weakest ones.

The objective function is built starting with (3.19) and some additional restrictions,
which measure the degree of verification of the equations of motion and the initial
conditions, as

F(p) = IA +
8

∑
j=1

w js j =
l∫

0

A(s)ds+
8

∑
j=1

w js j. (4.1)

The unknown parameters are p = {k,A}, while the known parameters are (α,β ,γ,δ3).
Expressions s j, j = 1, ...,8, are built by (2.24)2,3,4, (3.15) and (2.25). The Euler an-
gles ϕ,ψ and θ are known analytically, from (3.11) or (3.12). The quantities w j,
j = 1, ...,8 are selected weights, such that the dimension of w js j, j = 1, ...,8 is m3.
We obtain

s1 = γA2
ρ0(ψ̇2 sinθ cosθ − θ̈)

−δA2
ρ0(ϕ̇ + ψ̇ cosθ) ψ̇ sinθ −αE0A2(ψ ′2 sinθ cosθ −θ

′′)

+ β µ0A2(ϕ ′+ ψ
′ cosθ)ψ ′ sinθ + λ3 sinθ = 0,

s2 =− ∂

∂ t
{γA2

ρ0ψ̇ sin2
θ

+δA2
ρ0(ϕ̇ + ψ̇ cosθ) cosθ}+ ∂

∂ s
{αE0A2

ψ
′2 sin2

θ

+ β µ0A2(ϕ ′+ ψ
′ cosθ)cosθ} = 0,

s3 =−δρ0
∂

∂ t
(ϕ̇ + ψ̇ cosθ)+β µ0

∂

∂ s
(ϕ ′+ψ

′ cosθ) = 0, (4.2)

s4 = λ
′′+ρ0Ad̈3 = 0,

s5 = λ (s,0)+ρ0Av2d3(s,0)+(01,0,λ3) = 0,

s6 = θ(s,0)−θ0(s) = 0,

s7 = ψ(s,0)−ψ0(s) = 0,

s8 = ϕ(s,0)−ϕ0(s) = 0.
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4.1 Sensitivity analysis of the GA

All steps required when applying a GA to an optimization problem are explained in
the literature [Gen and Cheng (2000); Rajasekaran and Vijayalakshmipai (2005)].
The sensitivity analysis of the GA is presented in the spirit of [Khoshravan and
Hosseinzadch (2009)].

The successful application of a GA consists of the right choice of its operators:
reproduction, crossover and mutation. Before choosing these operators, the popu-
lation size (P), generation size (G), crossover rate (Cr), and mutation rate (Mr) are
determined.

For the crossover operator, three methods are applied: single-point (C1), two-point
(C2) and scattered (C3). In order to prevent large scatter in the responses and obtain
uniform responses, the scale factor methods to the chromosomes must to be applied.
The scale methods are: rank (F1), top (F2) and uniform (F3). For the selection of the
chromosomes, three methods are used: roulette (S1), tournament (S2) and uniform
(S3). For mutation we use the uniform method (M).

As already mentioned, we aim to decrease the weight of the rod by decreasing its
area and hence to avoid the buckling under load. If a chromosome is not supporting
the applied load, the buckling criterion would identify this chromosome. Thus the
probability of transferring this chromosome to the next generation would decrease
significantly.

We have tested three groups of methods, i.e. (F1,S1,C3), (F2,S2,C1) and (F3,S3,C2),
for different values ofP (a number from 10 to 100), G (a number from 10 to 100),
Cr (a number from 0 to 1) and Mr(a number from 0.05 to 0.5). In the following we
report only the optimal results which are acceptable to our problem.

Firstly, to obtain the best crossover rate Cr, we study the variation of the objec-
tive function F with respect to this coefficient, for P = 40, G = 30 and Mr = 0.15,
and three groups of different methods, i.e. (F1,S1,C3), (F2,S2,C1) and (F3,S3,C2)
. From Fig. 4 we see that Cr has its lowest value (for the lowest weight that the
rod could have) at Cr =0.5 as given by methods F1,S1,C3. This result was also ob-
tained by [Khoshravan and Hosseinzadch (2009)]. Normally, short chromosomes
(0 and 01) do not require a high population size P. A convenient value for P is
obtained from Fig. 5, for the same groups of methods, Mr = 0.15 and Cr =0.5.
Fig. 5 shows that when P =35, there are no significant changes in the values of
F . Therefore,P =40 would be acceptable. A similar analysis of the variation of F
with respect to G, for different P, has shown that G = 30 would be acceptable for all
methods. The value Mr =0.15 for the mutation uniform method M and (F1,S1,C3),
is chosen from Fig. 6.

In Fig. 7, the scale factor scale methods F1, F2 and F3 are compared for similar



20 Copyright © 2010 Tech Science Press CMES, vol.65, no.1, pp.1-26, 2010

 

Figure 4: Variation of the objective function with respect to the cross over rate.

 

Figure 5: Variation of the objective function with respect to the population size.

conditions (for S1 and C3). It can be seen that the rank method F1 gives the best
response in comparison with F2 and F3. In a similar way, the selection methods
S1,S2 and S3 are compared for similar F1 and C3, in Fig. 8. The method S1 appears
to be the best. In conclusion, we have combined the scale rank method F1, with the
selection roulette method S1 and the scattered methodC3.
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Figure 6: Variation of the objective function with respect to the mutation rate.

 

Figure 7: Scale factor methods testing.

4.2 Optimization results

The GA simulation of the optimization problem is carried out for an elastic heli-
cal rod with l = 1m, E =194.2GPa, E0 =109GPa, µ =75.85GPa, µ0 =40.67GPa,
ρ0=7876 kg/m3, α = E

4πE0
=0.14 and β = µ

2πµ0
=0.3. Let us consider that the

rod has a circular cross section, therefore γ = 1
4π

and δ = 1
8π

. The results are ob-
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Figure 8: Selection methods testing.

tained after 45 iterations, showing good convergence and an acceptable value for
the objective function Fmin = 6.18cm3.

For given (ω∗1 ,ω∗2 ), A∗(s) is found from (4.1). When A∗(s) is used in (3.11) or
(3.12), we obtain from (3.18) (ω1,ω2) = (ω∗1 ,ω∗2 ), belonging to a point on the
lower part of the eigenvalue curvesC3, n = 1,2,3. So, for ω∗1 =50 and ω∗1 =100,
the first three buckling modes and the corresponding optimal area are shown in Fig.
9. The dimensionless quantities that appear in Fig. 9 are a = A

l2 and ξ = s
l .

5 Conclusions

Carrying out a sensitivity analysis for the GA considered herein, we combined the
scale rank method F1 with the selection roulette method S1 and the scattered method
C3 in order to optimize the shape of a thin elastic rod which vibrates in space by
bending and torsion. The vibrations were studied around the strained position of
the rod, i.e. the helical form, which satisfies the static equilibrium equations. The
optimal cross-section was determined from the minimum weight condition against
the three modal buckling.

The basic laws of equilibrium and motion for the rod were studied and solved by
using the equivalence theorem, which determines the conditions when the motion
equations can be reduced to the equilibrium equations. Some important theorems
were also reported. The closed form solutions were expressed using elliptic and
hyperbolic functions (or solitons). The rod deviates from a plane and has a 3D
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Figure 9: Three buckling modes and optimal cross section corresponding to these
modes.

structure, changing its form as the torsion angle τ increases.

The effectiveness of the proposed GA was illustrated by a good convergence and a
low computational time for the numerical code employed.
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