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Dynamic Stress around Two Cylindrical Inclusions in
Functionally Graded Materials under Non-Homogeneous

Shear Waves
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Abstract: In the authors’ previous work (Zhang et al., 2010), the dynamic stress
resulting from two cavities in exponential functional graded materials subjected to
non-homogeneous shear waves has been studied. In this paper, the wave function
expansion method is further developed to the case of two cylindrical inclusions
embedded in functional graded materials, and the incident angle is also considered.
The multiple scattering and refraction of non-homogeneous shear waves around the
two inclusions are described accurately. The dynamic stress concentration factors
around the two inclusions are presented analytically and numerically. The multiple
effects of geometrical and physical parameters on the dynamic stress in functional
graded materials are analyzed. These results can provide important reference in
predicting the dynamic response of functional graded materials.
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1 Introduction

As a new type of non-homogeneous materials, functionally graded materials (FGMs)
have found broad applications in high-temperature environments such as space
shuttle, advanced turbine systems, aircraft engines, pressure vessels and combus-
tion chambers. Over the past decades, theoretical and experimental investigations
on FGMs have received considerable attention.

To increase the stability during the serving, it is important to understand the strength
properties of FGMs subjected to various loading. In FGMs, the embedded disconti-
nuities, such as cavities, cracks and inclusions are the major reason of reducing the
strength of FGMs. Therefore, the study on the response of FGMs with discontinu-
ities is attracting much interests in recent years. In the past decade, a considerable

1 Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043,P.R.
China



102 Copyright © 2010 Tech Science Press CMES, vol.66, no.2, pp.101-116, 2010

amount of research work has concentrated on the fracture mechanics in FGMs un-
der the static loadings (Wang et al., 2003; Sladek et al., 2005; Zhou et al., 2009).

Most recently, due to the practical significance of dynamic case, the investigations
on the deformation and fracture in FGMs under dynamic loading are becoming
more important. Recently, Li and Weng (2001) presented the dynamic stress inten-
sity factor of a cylindrical interface crack located between two coaxial dissimilar
homogeneous cylinders that were bonded with a functionally graded interlayer and
subjected to a torsion impact loading. Chen and Liu (2005) studied the transient
response of an embedded crack and edge crack perpendicular to the boundary of
an orthotropic functionally graded strip. Ma et al. (2007) investigated the dynamic
behavior of a finite crack in functionally graded materials subjected to the normally
incident elastic harmonic waves.

To predict the dynamic response of FGMs under various loadings, the study on
the wave scattering in FGMs is very important. However, the propagation and
and scattering of elastic waves from discontinuities (e.g., cavities, inclusions and
cracks) in FGMs are quite different from those in common materials. In FGMs,
the non-homogeneous elastic waves come into being. In our previous work, the
scattering of a circular cavity buried in semi-infinite FGMs (Fang et al. 2007a) and
a semi-infinite slab of FGMs (Fang et al. 2007b) have been studied. Most recently,
the multiple scattering effects of non-homogeneous waves from two cavities have
been studied (Zhang et al., 2010). In this paper, this work is extended to the case of
two cylindrical inclusions in exponential functionally graded materials subjected to
the oblique incident wave, and the refracted waves in the cylindrical inclusions are
described accurately.

The remainder of this paper is organized as follows: Section 2 describes the prob-
lem, and the general solution of this problem is obtained. In Section 3, the incident,
scattering and refracting waves in FGMs are described by using wave function ex-
pansion method. Boundary conditions around the two inclusions are presented in
Section 4. In Section 5, the expanded mode coefficients are determined by satisfy-
ing the boundary conditions. Numerical examples are given in Section 6, and the
effects of the geometric and material parameters on the dynamic stress concentra-
tion factors around the inclusions are analyzed. In Section 7, conclusion of this
study is presented.

2 Problem description and governing equation

An infinite functionally graded material embedded with two cylindrical inclusions
is considered, as depicted in Fig.1. The relative position of the two inclusions is
shown in Fig.1. The radii of the two cylindrical inclusions are denoted as a1 and
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a2. The distance between the two centers of the two inclusions is b. To describe the
wave fields in FGMs, three Cartesian coordinate systems are set up. Suppose that
an anti-plane shear wave with frequency ω propagates along the positive x direction
in FGMs, and the incident angle is θ0.
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Figure 1: Schematic of two inclusions and the incident shear waves in functionally
graded materials

The shear modulus and mass density of the two inclusions are denoted by µc and
ρc. The gradient direction of FGMs is along the x-axis. Since the effect of Pois-
son’s ratio on the dynamic stress is negligible, the Poisson’s ratio is assumed to
be a constant. It is assumed that the shear modulus and density of materials vary
continuously, and they dependent only on the x coordinate. They are modeled by
an exponential function, i.e.,

µ(x) = µ0e2βx, ρ(x) = ρ0e2βx, (1)

where µ0 and ρ0 are the shear modulus and density of materials at the position
of x = 0, respectively, and β is a non-homogeneous parameter which denotes the
exponent of spatial variation of the shear modulus and density of materials. It is
noted that this assumption is very common in many other papers (Wang et al., 2003;
Ma et al., 2007).

In the case of this paper, only the anti-plane displacement in FGMs is considered.
In our previous work (Zhang et al. 2010), it has been found that the general solution
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of the scattered field resulting from the inclusions in FGMs can be described as

u(s) = e−β r cosθ
∞

∑
n=−∞

anH(1)
n (κr)einθ1e−iωt , (2)

where H(1)
n (·) is the nth Hankel function of the first kind, an are the mode coeffi-

cients of the scattered waves, and determined by satisfying the boundary conditions.
The propagating wave number κ is expressed as

κ = (k2
s −β

2)1/2, (3)

where ks = ω/cs is the wave number of elastic waves, and cs =
√

µ0/ρ0. The
solution of the scattered-reflected waves is similar as that of the scattered waves.

3 The multiple scattering of elastic waves from the two inclusions

Consider an anti-plane shear wave propagating along the positive x direction with
an incident angle θ0. Following the work of Pao and Mao (1973), the wave fields
in FGMs can be expressed as follows.

a. Incident wave fields in the two local coordinate systems

In the local cylindrical coordinate systems (r1,θ1) and (r2,θ2) of the two inclu-
sions, the incident waves can be described as

u(in)
1 = u0e−β r1 cosθ1

∞

∑
n=−∞

inJn(κr1)ein(θ1−θ0)e−iωt , (4)

u(in)
2 = u0e−β (r2 cosθ2+bcosθ12)

∞

∑
n=−∞

inJn(κr2)ein(θ2−θ0)e−iωt , (5)

where w0 is amplitude of incident waves, κ is the wave number of propagating
waves, Jn(·)is nth Bessel function of first kind. For convenience, the time factor is
omitted in the following notations.

b. Scattered wave fields in the two local coordinate systems

When the non-homogeneous shear wave propagates in FGMs, it is scattered by
the two inclusions at first. The non-homogeneous scattered wave from one in-
clusion is scattered by another inclusion again, and the multiple scattering of non-
homogeneous waves between the two inclusions arises. This complex phenomenon
is shown in Fig.1.

In the two local cylindrical coordinate systems, the scattered fields resulting from
the two inclusions in FGMs can be described as

u(s)
1 = u0e−β r1 cosθ1

∞

∑
n=−∞

AnH(1)
n (κr1)einθ1 , (6)
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u(s)
2 = u0e−β r2 cosθ2

∞

∑
n=−∞

BnH(1)
n (κr2)einθ2 , (7)

where r1 = (x1,y1), r2 = (x2,y2), and An and Bn are the mode coefficients of the
scattered waves.

Thus, the total fields of elastic waves in FGMs are taken to be the superposition of
the incident field, the scattered fields resulting from the two cylindrical inclusions,
namely,

u(t)
1 = u(in)

1 +u(s)
1 +u(s)

2 , (8)

u(t)
2 = u(in)

2 +u(s)
2 +u(s)

1 . (9)

c. Refracted wave fields in the two local coordinate systems

The refracted waves, being confined inside the cylindrical inhomogeneityinclusion,
are standing waves, and represented by

u(r)
1 = u0

∞

∑
n=−∞

CnJn(kcr1)einθ1 , (10)

u(r)
2 = u0

∞

∑
n=−∞

DnJn(kcr2)einθ2 , (11)

where the cylindrical Bessel functions of the first kind are used to obtain the stand-
ing waves, Cn and Dn are the refracted mode coefficients, and kc = ω/cc with
cc =

√
µc/ρc . It should be noted that the refracted waves only exist inside the

cylindrical inclusion, and do not influence the wave fields outside the cylindrical
inclusion.

4 Boundary conditions around the two inclusions

The boundary conditions around the two inclusions are that the displacement field
and radial shear stress are continuous. They can be expressed as

u(t)
i = u(r)

i , i = 1,2, (12)

µ(ri,θi)
∂u(t)

i
∂ ri

= µc
∂u(r)

i
∂ ri

, i = 1,2. (13)
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5 Determination of mode coefficients and dynamic stress concentration fac-
tor

By satisfying the boundary conditions around the two inclusions, the scattering and
refracting mode coefficients of elastic waves are determined.

To accomplish the superposition of wave field in the two local coordinate system
(ri,θi), the addition theorem for Bessel function is used, i.e.,

H(1)
n (κr2)einθ2 =

∞

∑
m=−∞

ei(m−n)θ21H(1)
m−n(κb)Jm(κr1)eimθ1 , (14)

H(1)
n (κr1)einθ1 =

∞

∑
m=−∞

ei(m−n)θ12H(1)
m−n(κb)Jm(κr2)eimθ2 , (15)

It is noted that θ21, θ12 and b are shown in Fig.1.

So, the following translation relations of coordinate systems can be obtained

e−β r2 cosθ2
∞

∑
n=−∞

H(1)
n (κr2)einθ2 =

e−β (r1 cosθ1+bcosθ21)
∞

∑
n=−∞

∞

∑
m=−∞

ei(m−n)θ21H(1)
m−n(κb)Jm(κr1)eimθ1 , (16)

e−β r1 cosθ1
∞

∑
n=−∞

H(1)
n (κr1)einθ1 =

e−β (r2 cosθ2+bcosθ12)
∞

∑
n=−∞

∞

∑
m=−∞

ei(m−n)θ12H(1)
m−n(κb)Jm(κr2)eimθ2 , (17)

where

r2 =
√

r2
1 +b2−2r1bcos(π−θ21 +θ1),

and

r1 =
√

r2
2 +b2−2r2bcos(π−θ12 +θ2).

Substituting Eqs.(8)-(11) into Eqs.(12)-(13), and using the orthogonal relation of
e−isθ , one can obtain a set of linear algebra equations determining the mode coeffi-
cients An, Bn, Cn and Dn.
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When time factor is omitted, the relations among every mode coefficient of scat-
tered waves can be written as

Ase−βa1 cosθ1H(1)
n (κa1)+ e−β (a1 cosθ1+bcosθ21)

∞

∑
n=−∞

Bnei(s−n)θ21H(1)
s−n(κb)Js(κa1)

−CnJn(kca1) =−ise−βa1 cosθ1Js(κa1)e−inθ0 , (18)

e−β (a2 cosθ2+bcosθ12)
∞

∑
n=−∞

Anei(s−n)θ12H(1)
s−n(κb)Js(κa2)+ e−βa2 cosθ2BsH

(1)
s (κa2)

−DsJs(kca2) =−ise−β (a2 cosθ2+bcosθ12)Js(κa2)e−inθ0 , (19)

Aseβa1 cosθ1

{
−β cosθ1H(1)

s (κa1)+
1
a1

[
sH(1)

s (κa1)−κa1H(1)
s+1(κa1)

]}
+ eβ (a1 cosθ1−bcosθ21)

∞

∑
n=−∞

Bnei(s−n)θ21H(1)
s−n(κb){

−β cosθ1Js(κa1)+
1
a1

[sJs(κa1)−κa1Js+1(κa1)]
}

−Cn
µc

µ0

1
a1

[sJs(kca1)− kca1Js+1(kca1)]

= iseβa1 cosθ1

{
β cosθ1Js(κa1)−

1
a1

[sJs(κa1)−κa1Js+1(κa1)]
}

e−inθ0 , (20)

eβ (a2 cosθ2−bcosθ12)
∞

∑
n=−∞

Anei(s−n)θ12H(1)
s−n(κb){

−β cosθ2Js(κa2)+
1
a2

[sJs(κa2)−κa2Js+1(κa2)]
}

+ eβa2 cosθ2Bs

{
−β cosθ2H(1)

s (κa2)+
1
a2

[
sH(1)

s (κa2)−κa2H(1)
s+1(κa2)

]}
−Ds

µc

µ0

1
a2

[sJs(κca2)−κca2Js+1(κca2)]

= iseβ (a2 cosθ2+bcosθ12)
{

β cosθ2Js(κa2)−
1
a2

[sJs(κa2)−κa2Js+1(κa2)]
}

e−inθ0 ,

(21)

After rearrangement of Eqs.(18)-(21), the following matrix equation can be ob-
tained

[E]s{Xs}s = {A}s, s = 0,±1,±2, . . .∞, (22)



108 Copyright © 2010 Tech Science Press CMES, vol.66, no.2, pp.101-116, 2010

The mode coefficients can be obtained by solving Eq.(22).

Dynamic stress concentration is an important factor influencing the strength of
FGMs. According to the definition of the dynamic stress concentration factor(DSCF)
[10], the DSCF is the ratio of the circumferential shear stress around the inclusions
to the maximum stress. Thus, the DSCF around the cylindrical inclusions in FGMs
is expressed as

DSCF = τ
∗
θz = |τθz/τ0|, (23)

where τθz = µ
∂u
∂θ

, and τ0 = µµ0κ .

Thus, the DSCF around the two inclusions can be written as

τ
∗(1)
θz =

1
κa1

e−βa1 cosθ1
∞

∑
n=−∞

in (βa1 sinθ1 + in)Jn(κa1)einθ1e−inθ0

+
1

κa1
e−βa1 cosθ1

∞

∑
n=−∞

An (βa1 sinθ1 + in)H(1)
n (κa1)einθ1

+
1

κa1
e−β (a1 cosθ1+bcosθ21)

∞

∑
n=−∞

∞

∑
m=−∞

Bnei(m−n)θ21H(1)
m−n(κb)(βa1 sinθ1 + im)Jm(κa1)eimθ1 , (24)

τ
∗(2)
θz =

1
κa2

e−βa2 cosθ2
∞

∑
n=−∞

in (βa2 sinθ2 + in)Jn(κa2)einθ2e−inθ0

+
1

κa2
e−βa2 cosθ2

∞

∑
n=−∞

Bn (βa2 sinθ2 + in)H(1)
n (κa2)einθ2

+
1

κa2
e−β (a2 cosθ2+bcosθ12)

∞

∑
n=−∞

∞

∑
m=−∞

Anei(m−n)θ12H(1)
m−n(κb)(βa2 sinθ2 + im)Jm(κa2)eimθ2 . (25)

6 Numerical examples and analysis

To analyze the effects of physical and geometrical parameters of FGMs on the the
dynamic stress in the structure, the following numerical solutions are presented.
For convenience, it is assumed that the two inclusions have the same radius, i.e.,
a1 = a2 = a.

In the following, a characteristic length a, where a is the radius of the two inclusions
is introduced. Other dimensionless variables and quantities have been chosen for
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computation: the incident wave number is k∗ = ka = 0.1−3.0, the material prop-
erties ratios of the inclusion to matrix are µ∗ = µc/µ0 = 0.1− 4.0, ρ∗ = ρc/ρ0 =
0.1−2.0, the non-homogeneous parameter of FGMs is β ∗ = βa =−0.5−0.5, and
the distance between the two inclusions is b∗ = b/a = 2.1−8.0.

The reduced case of the present dynamic model is computed in Fig.2. In Fig.2, the
dynamic stresses around the inclusion 1 are illustrated with parameters: k∗ = 0.5,
b∗ = 10.0, µ∗ = 0,θ21 = π/2, and θ0 = 0. Whenβ = 0, the functionally graded
material is reduced to homogeneous material. When the distance between the two
inclusions is b∗ = 10.0, the interaction between the two inclusions vanishes. From
Fig.2, it is clear that the dynamic stress is symmetrical about the two axes, and
the maximum dynamic stress occurs at the position of θ1 =±π/2. The maximum
DSCF is about 2.0. These conclusions are consistent with those in Pao and Mow
(1973) and Zhang et al. (2001). When the distance between the two inclusions
becomes small, the dynamic stress at the positions near the inclusion 2 increases
greatly. However, the variation of the dynamic stress at the positions far from the
inclusion 2 is very little. The phenomenon is due to the multiple scattering of shear
waves between the two inclusions. When the distance between the two inclusions
is little, the multiple scattering effects are very strong, and so the dynamic stress
increases greatly.

Fig.3 shows the DSCFs around the inclusion 1 with different non-homogeneous pa-
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Figure 2: Comparison with the exist-
ing solutions with k∗ = 0.5,µ∗ = 0,β =
0,θ21 = π/2,θ0 = 0. 1. b∗ = 10.0 ob-
tained from this paper; 2. b∗ = 10.0
obtained from Pao and Mow (1973); 3.
b∗ = 2.5
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Figure 3: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
0.5,µ∗ = 0,θ21 = π/2,θ0 = 0. 1. β =
0.2,b∗ = 8.0; 2. β = 0.2,b∗ = 2.5; 3.
β = −0.2,b∗ = 8.0; 4. β = −0.2,b∗ =
2.5
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Figure 4: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
0.5,µ∗ = 4.0,ρ∗ = 2.0,θ21 = π/2,θ0 =
0. 1. β = 0.2,b∗= 8.0; 2. β = 0.2,b∗=
2.5; 3. β = −0.2,b∗ = 8.0; 4. β =
−0.2,b∗ = 2.5
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Figure 5: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
0.5,µ∗ = 0.2,ρ∗ = 0.1,θ21 = π/2,θ0 =
0. 1. β = 0.2,b∗= 8.0; 2. β = 0.2,b∗=
2.5; 3. β = −0.2,b∗ = 8.0; 4. β =
−0.2,b∗ = 2.5

rameters. It can be seen that the non-homogeneous property expresses great effect
on the dynamic stress distribution around the inclusion. The maximum dynamic
stress increases with the absolute value of non-homogeneous parameter. Compar-
ing with the results in Fig.2, it is clear that the distance between the two inclusions
expresses great effect on the dynamic stress around the inclusion when the non-
homogeneous property is considered. If the distance between the two inclusions
is little, the dynamic stress around the inclusion increases. However, the variation
of the dynamic stress at the positions near θ1 = π/2,3π/2 is the greatest. If the
non-homogeneous parameter is great than zero, that is to say, the material proper-
ties increase in the positive xdirection, the effect of the distance between the two
inclusions is greater.

Fig.4 shows the DSCFs around the inclusion 1 with different non-homogeneous
parameters when the inclusions are stiffer that the matrix. Comparing with the
results in Fig.3, it can be seen that the existence of the stiffer inclusion expresses
great effect on the dynamic stress. In this case, the effect of the distance between
the two inclusion decreases. This phenomen results from the refraction of shear
waves around the stiffer inclusion. The refraction effect increases with the value of
µ∗. Different from the case of cavities, the dynamic stress decreases if the distance
between the two inclusions is little.

Fig.5 displays the DSCFs around the inclusion 1 with different non-homogeneous
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parameters when the inclusions are softer that the matrix. It can be seen that the
effect of the inclusion on the dynamic stress is quite different from that in Fig.4.
If the inclusion is softer, the effects of the non-homogeneous parameter and the
distance between the two inclusions are great. If the non-homogeneous is greater
than zero, that is to say, the material properties increase in the x direction, the
maximum dynamic stress around the inclusions has a trend of shifting towards the
illuminate side of the inclusion. However, the maximum dynamic stress around the
inclusions has a trend of shifting towards the shadow side of the inclusion if the
non-homogeneous is less than zero. The dynamic stresses at the positions near the
second inclusion increase greatly if the distance between the two inclusion is little.
The greater the non-homogeneous parameter, the greater the effect of the distance
between the two inclusion.
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Figure 6: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
1.5,µ∗ = 4.0,ρ∗ = 2.0,θ21 = π/2,θ0 =
0. 1. β = 0.2,b∗= 8.0; 2. β = 0.2,b∗=
2.5; 3. β = −0.2,b∗ = 8.0; 4. β =
−0.2,b∗ = 2.5

0  0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0  

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 

2 

3 

4 

 

 

 

 

 

 

 

 

 

 

1 /θ π

D
SC

F 

Figure 7: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
1.5,µ∗ = 0.2,ρ∗ = 0.1,θ21 = π/2,θ0 =
0. 1. β = 0.2,b∗= 8.0; 2. β = 0.2,b∗=
2.5; 3. β = −0.2,b∗ = 8.0; 4. β =
−0.2,b∗ = 2.5

Fig.6 displays the DSCFs around the stiffer cylindrical inclusion 1 with different
non-homogeneous parameters in the region of high frequency. Comparing with
the results in Fig.4, it can be seen that the dynamic stress around the inclusion
decreases if the wave frequency is high. It is due to the strong refraction of waves
around the stiffer inclusion in the region of high frequency. It is also clear that the
effects of non-homogeneous parameter and the distance between the two inclusions
decrease. If the non-homogeneous parameter is less than zero, the effect of the
distance between the two inclusions is even less.
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Figure 8: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
0.5,µ∗ = 4.0,ρ∗ = 2.0,β = 0.2,b∗ =
8.0,θ0 = 0. 1. θ21 = π/4; 2. θ21 = π/2;
3. θ21 = 3π/2
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Figure 9: Dynamic stress concentration
factor around the inclusion 1 with k∗ =
0.5,µ∗ = 4.0,ρ∗ = 2.0,β = 0.2,b∗ =
2.5,θ0 = 0. 1. θ21 = π/4; 2. θ21 = π/2;
3. θ21 = 3π/2
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Figure 10: Dynamic stress concen-
tration factor around the inclusion 1
with k∗ = 0.5,µ∗ = 4.0,ρ∗ = 2.0,β =
−0.2,b∗ = 2.5,θ0 = 0. 1. θ21 = π/4; 2.
θ21 = π/2; 3. θ21 = 3π/2
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Figure 11: Dynamic stress concen-
tration factor around the inclusion 1
with k∗ = 1.5,µ∗ = 4.0,ρ∗ = 2.0,β =
0.2,b∗ = 2.5,θ0 = 0. 1. θ21 = π/4; 2.
θ21 = π/2; 3. θ21 = 3π/2

Fig.7 displays the DSCFs around the softer cylindrical inclusion 1 with different
non-homogeneous parameters in the region of high frequency. It can be seen that
the effect of wave frequency on the dynamic stress is great if the inclusion is soft.
Comparing with the results in Fig.6, it is clear that the effect of non-homogeneous
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Figure 12: Dynamic stress concen-
tration factor around the inclusion 1
with k∗ = 0.5,µ∗ = 4.0,ρ∗ = 2.0,β =
0.2,b∗ = 2.5,θ21 = π/2. 1. θ0 = 0; 2.
θ0 = π/3; 3. θ0 = π/2
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Figure 13: Dynamic stress concen-
tration factor around the inclusion 1
with k∗ = 0.5,µ∗ = 4.0,ρ∗ = 2.0,β =
−0.2,b∗ = 2.5,θ21 = π/2. 1. θ0 = 0; 2.
θ0 = π/3; 3. θ0 = π/2

parameter on the dynamic stress increases due to the existenc of softer inclusion.
However, the effect of the distance between the two inclusions decreases.

To find the effect of the relative position of the two inclusions on the dynamic stress,
Figs.8-11 are plotted. In Figs.8-10, the wave frequency is low. In Fig.11, the wave
frequency is high.

In Fig.8, the inclusion is stiffer, the non-homogeneous parameter is greater than
zero, and the interactive effect of the two inclusions disappears. It is clear that the
relative position of the two inclusions nearly expresses no effect on the the dynamic
stress.

In Fig.9, the distance between the two inclusions is very little. It can be seen that the
effect of the relative position of the two inclusions becomes great. At the positions
near θ1 = π/2, the dynamic stress decreases with the increase of θ21. However, at
the positions near θ1 = 3π/2, the dynamic stress in the case of θ21 = π/2 is the
minimum.

In Fig.10, the distance between the two inclusions is very little, and the non-
homogeneous parameter is less than zero. Comparing with the results in Fig.9,
it can be seen that the relative position of the two inclusions shows great effect
on the dynamic stress, expecially at the positions near the second inclusion. With
the variation of θ21, the distribution of the maximum dynamic stress around the
inclusion has a great variation.
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In Fig.9, it can be seen that the effect of the relative position of the two inclusions
on the dynamic stress is great only at the positions near θ21 = π/2,3π/2. In Fig.11.
the wave frequency is high. It is cleat that the effect at other positions also shows
great variation. When the value of θ21 is little, the effect of the distance between
the two inclusions becomes great.

Figs.12-13 illustrate the effect of incident angle on the DSCFs around the inclusion
1. It can be seen that more peaks occur if the incident angle increases. The varia-
tion of dynamic stress around the inclusion decreases with the increase of incident
angle. The greater the incident angle, the less the variation of the dynamic stress
around the inclusion. If the wave frequench is high, the effect of the incident angle
on the dynamic stress increases.

7 Conclusion

In this paper, the multiple scattering of non-homogeneous shear waves from two
inclusions and dynamic stress in functionally graded materials are studied. Wave
function expansion method for non-homogeneous waves is used to express the
wave field in FGMs. The effects of the material properties of inclusions, the rela-
tive distance and position of the two inclusions, the non-homogeneous parameters
and the incident angle of wave on the dynamic stress around the inclusions are an-
alyzed, and the interactive effects of these parameters are also presented. The main
findings of this paper are as follows.

1. The non-homogeneous properties of FGMs express great effect on the dy-
namic stress around the inclusion. If the non-homogeneous parameter is
great than zero, that is to say, the material properties increase in the positive
x direction, the effect of the distance between the two inclusions is greater.

2. When the material properties increase in the positive x direction, the maxi-
mum dynamic stress has a trend of shifting toward the illuminate side of the
inclusion.

3. The effect of the distance between the two inclusion becomes little if the in-
clusion is stiffer. If the inclusion is softer, the effects of the non-homogeneous
parameter and the distance between the two inclusions are great.

4. In the region of high frequency, if the inclusion is stiffer, the effects of non-
homogeneous parameter and the distance between the two inclusions de-
crease. If the inclusion is softer, the effect of non-homogeneous parameter
on the dynamic stress increases. However, the effect of the distance between
the two inclusions decreases.
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5. The effect of the relative position of the two inclusions increases if the dis-
tance between the two inclusions becomes great. If the distance between the
two inclusions is very little, and the non-homogeneous parameter is less than
zero. the relative position of the two inclusions shows great effect on the
dynamic stress, expecially at the positions near the second inclusion.

6. The variation of dynamic stress around the inclusion decreases with the in-
crease of incident angle. The greater the incident angle, the less the variation
of the dynamic stress around the inclusion.
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