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Geometric Formulation of Maxwell’s Equations in the
Frequency Domain for 3D Wave Propagation Problems in

Unbounded Regions
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Abstract: In this paper we propose a geometric formulation to solve 3D elec-
tromagnetic wave problems in unbounded regions in the frequency domain. An
absorbing boundary condition (ABC) is introduced to limit the size of the compu-
tational domain by means of anisotropic Perfectly Matched Layers (PML) absorb-
ing media in the outer layers of an unstructured mesh. The numerical results of
3D benchmark problems are presented and the effect of the PML parameters and
scaling functions on PML effectiveness are discussed.
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1 Introduction

In the last decades, several methods have been developed to numerically solve
Maxwell’s equations over a finite mesh: From the classical Finite Element Method
(FEM) [Jin (1993)] and Finite-Difference Time-Domain (FDTD) [Yee (1966)], to
Finite Integration Technique (FIT) [Weiland (1977, 1985)]. More recently, the so-
called Discrete Geometric Approach (DGA)3 gained popularity in Computational
Electromagnetics [Tonti (1975, 1988, 2002); Bossavit (1998b); Bossavit and Ket-
tunen (2000)]. According to this approach, the electromagnetic field is discretized
over a pair of interlocked cell complexes. The unknowns of the problem are the
circulations along edges and fluxes across faces, and they are arranged in degrees
of freedom (DoF) arrays.

The DGA have been already applied as a numerical method to solve various classes
of physical problems. In particular, a number of numerical routines have been
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developed to solve wave propagation problems on unstructured grids in the fre-
quency domain, see for example [Weiland (1977); Teixeira and Chew (1999); Mar-
rone (2001); Cinalli, Edelvik, Schuhmann, and Weiland (2004); Bettini, Boscolo,
Specogna, and Trevisan (2006)]. Nevertheless, not so much has been done yet
in the framework of the geometric formulations to tackle 3D wave propagation in
unbounded regions (e.g. towards infinite free space around a scatterer/radiator or
through waveguides with infinite length).

The aim of the present paper is that of extending the Discrete Geometric Approach
of Maxwell’s equations in the frequency domain to the case of unbounded regions,
by introducing anisotropic Perfectly Matched Layers (PML) in the outer layers
of an unstructured mesh [Taflove (1995)] to limit the size of the computational
domain. Numerical results of 3D non trivial benchmark problems will be presented
to validate the approach, and the effect of the PML parameters and scaling functions
on the reflectionless absorption effectiveness will be discussed in details.

2 The Discrete Geometric Approach (DGA)

According to the DGA a pair of interlocked grids is introduced in the computational
domain of interest D. We denote denote them as primal and dual, respectively. The
primal mesh is tetrahedral, while the dual is obtained by the primal one by barycen-
tric subdivision, see for example [Tonti (1998, 2002)]. The incidence matrices rel-
ative to the primal and dual interlocked grids form the cell complexes K and B,
respectively. The geometric elements of K are referred to n for nodes, e for edges,
f for triangular faces and v for tetrahedra, whereas the geometric elements of the
barycentric complex B are referred to nB, eB, fB and vB, respectively. We denote
the incidence matrices relative to K with G between edges e and nodes n, with C
between faces f and edges e and with D between cells v and faces f . The matrices
G̃ = DT , C̃ = CT and D̃ =−GT describe the incidences of the dual complex B.

The integrals of the electromagnetic differential forms with respect to the oriented
geometric elements of the pair of complexes K and B are referred to as Degrees
of Freedom (DoFs) [Bossavit (1998a)]. Each DoF is stored in a DoFs array and in-
dexed with the corresponding geometric element on which integration is performed.
The DoFs arrays will be denoted in boldface type. According to the Tonti’s classi-
fication of variables, there is a unique association between every physical variable
and the corresponding oriented geometric element.

2.1 Geometric formulation in terms of U

For an electromagnetic wave propagation problem, the following arrays of DoFs
are introduced:
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Figure 1: Association of the DoFs to the oriented geometrical elements.

• ΦΦΦ is the array of magnetic fluxes associated with faces f ∈K ;

• ΨΨΨ is the array of electric fluxes associated with dual faces f ∈B;

• F is the array of magneto-motive forces (m.m.f.s) associated with dual edges
eB ∈B;

• Ie is the array of source currents associated with dual faces fB ∈B;

• U is the array of electro-motive forces (e.m.f.s) on primal edges e ∈K .

We assume that no free charge is present in D and all the media are linear. The
discrete Maxwell’s equations [Tonti (1975); Weiland (1977)] are written as

CU =−dΦΦΦ

dt
(a)

CT F = Ie +
dΨΨΨ

dt
(b)

DΦΦΦ = 0 (c)

−GT ΨΨΨ = 0, (d)

(1)

where (1a) is the Maxwell–Faraday’s law, (1b) is the Ampère–Maxwell’s law, (1c)
is the magnetic Gauss’s law and (1d) is the electric Gauss’s law.

Continuity equation −GT (Ie +
dΨΨΨ

dt
) = 0 is implied by (1b); from it and (1d) we

have GT Ie = 0.

The discrete counterparts of the constitutive laws, called constitutive matrices, are
now considered. Constitutive matrices links the arrays of DoFs as

F = νννΦΦΦ (a)

ΨΨΨ = εεεU, (b)
(2)
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where ννν and εεε are square matrices depending upon the geometry of the problem
and the parameters of the materials. The construction of the constitutive matrices
is the topic of Section 2.2.

The discrete wave propagation problem in the frequency domain consists of de-
termining the DoF arrays such that (1) and (2) are satisfied simultaneously [Tonti
(1975); Weiland (1977)]. We may reformulate this problem in terms of DoF array
U only. By assuming the magnetic currents null in D, by substituting in (1b), (2a)
for F, (2b) for ΨΨΨ and using (1a), we obtain a sparse linear system of equations

KU =−iω Ie, (3)

where

K = CT
νννC−ω

2
εεε. (4)

A synthetic tool that gives relevance to the geometrical aspects of the approach,
and allows to derive the algebraic formulation of Maxwell’s equations for wave
propagation problems in the frequency domain, is the Tonti’s diagram (for a com-
prehensive description, see [Tonti (1975)]), see Fig. 2.

2.2 Constitutive matrices and their construction

The square matrix ννν is the reluctance matrix1 such that (2a) holds exactly at least
for an element-wise uniform induction field B and magnetic field H in each cell
and it is the approximate discrete counterpart of the constitutive relation H = ν B
at continuous level, ν being the reluctivity assumed element-wise uniform.

The square matrix εεε is the permittivity matrix2 such that (2b) holds exactly at least
for an element-wise uniform electric field E and electric flux density D in each cell
and it is the approximate discrete counterpart of the constitutive relation D = ε E at
continuous level, ε being the permittivity assumed element-wise uniform.

A classical way to construct the constitutive matrices ννν and εεε for a tetrahedral
mesh is the technique based on Whitney maps described in [Tarhasaari, Kettunen,
and Bossavit (1999)], where the resulting matrices are non-symmetric. The fact that
matrices are non-symmetric is irrelevant for the reluctance matrix, while the per-
mittivity matrix εεε can be constructed in a symmetric way as described in [Specogna
and Trevisan (2005)]. Alternatively, the Galerkin Hodge technique [Bossavit (2000)]
produces the same stiffness and mass matrices as the Finite Elements with first or-
der Whitney edge and face element basis functions. Another solution that guar-

1 dim(ννν) = N f , N f being the number of faces in K .
2 dim(εεε) = Ne, Ne being the number of edges in K .
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Figure 2: Tonti’s diagram for wave propagation problems in the frequency domain.
The pillars on the left refer to primal space and time complexes, the pillars on the
right to their dual.

antees both stability and consistency3 simultaneously exploits the original set of
edge and face vector basis functions defined in [Codecasa, Specogna, and Trevisan
(2007)] for tetrahedra and triangular prisms. In the case of hexahedral grids, the
construction of the constitutive matrices can be addressed as in [Dular, Specogna,

3 A precise definition of the notion of consistency for constitutive matrices is available in [Bossavit
and Kettunen (2000)].
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and Trevisan (2008)], where a consistent but non-symmetric matrix is obtained. To
gain symmetry, at the price of consistency, the Galerkin Hodge technique can be
used instead, by means of the mixed elements vector basis functions described in
[Dular, Hody, Nicolet, Genon, and Legros (1994)]. In order to recover again sta-
bility and consistency simultaneously, the original geometric technique presented
in [Codecasa, Specogna, and Trevisan (2008)] can be profitably used. Symmet-
ric, positive-definite and consistent constitutive matrices suitable with a confor-
mal mesh made by general polyhedra have been recently introduced in [Codecasa,
Specogna, and Trevisan (2009a, 2010)]. The possibility of using general polyhe-
dral elements, enables the rigorous use of subgridding [Codecasa, Specogna, and
Trevisan (2009b)].

The keypoint of geometric-based construction of constitutive matrices is that no
numerical evaluation of a volume integral is needed. In fact, the constitutive ma-
trices can be constructed by using only the vectors associated with the geometric
elements of the cell complexes K and B, which yields to simple and computa-
tionally efficient solutions.

2.3 Boundary Conditions

When analysis of a propagating wave is considered, both in the time and frequency
domain, Boundary Conditions (BCs) are needed to close the computation domain.
However, so far DGA has been tested mostly by simulating the propagation of
an electromagentic wave inside a hard-wall waveguide. To this end, simple Per-
fectly Electric Conductor (PEC) or Perfectly Magnetic Conductor (PMC) bound-
aries have been used. On the other hand, geometries of real interest are often de-
fined in open regions, i.e in a domain (either 2D or 3D) which is unbounded with
respect to at least one coordinate. In this case, suitable BCs must be introduced on
the outer part of the computational domain to limit its size, while allowing outward
propagating waves to exit without giving rise to unphysical reflections.

At this purpose, during the 1970s and 1980s a number of analytical techniques
have been developed and implemented in FDTD computer softwares, from radia-
tion operators [Bayliss and Turkel (1980); Bayliss, Gunzburger, and Turkel (1982);
Higdon (1986, 1987)], one way wave equations [Engquist and Majda (1977)], ex-
trapolation techniques [Liao, Wong, Yang, and Yuan (1984)], to Ramahi’s comple-
mentary operator method (COM) [Ramahi (1997, 1998)].

In a different approach, the outer boundary of the computation domain may also be
numerically coated with an artificial absorbing material. The main idea behind this
approach is that of mimicking the superficial treatment of an anechoic chamber.
This trick was first suggested by J.P. Berenger, who introduced a highly effective
absorbing material, that he called Perfectly Matched Layer (PML), to truncate 2D
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FDTD meshes [Berenger (1996)]. To this end, a novel split field formulation of
Maxwell’s equations was used by Berenger in his original paper. Later on, it was
proved that an equivalent behavior could also be obtained by introducing a suitable
complex stretched coordinate system into Maxwell’s equations [Chew and Weedon
(1994); Rappaport (1995)]. With both the approaches, a planar interface between
the PML material and free space is reflectionless for plane waves of arbitrarily
incidence, polarization and frequency.

In this paper we focus on yet a different approach, which is based on a physical
model of the absorbing medium [Sacks, Kingsland, Lee, and Lee (1995)]. For
a planar interface (between the anisotropic medium and free space) this medium
has an uniaxial anisotropy and is described by means of electric permittivity and
magnetic permeability tensors. Values in these tensors can be chosen such that the
interface is perfectly reflectionless.

2.3.1 Uniaxial Perfectly Matched Layer (UPML)

The uniaxial medium (UPML) performs as well as Berenger’s PML or its com-
plex stretched coordinate counterpart, but it does not require a modification of
Maxwell’s equations. Therefore, its implementation into the DGA code is straight-
forward. in fact, DGA can easily handle anisotropies in the material’s properties.

To illustrate the main idea behind the UPML approach, we begin with the simple
2D geometry of Fig.3. Later on, we will show the generalization to the full 3D
case. An arbitrarily polarized time harmonic plane wave impinges on the planar
interface between Region 1 (which is supposed to be a loss less, isotropic medium,
half-space x < 0) and Region 2 (uniaxial PML medium, half-space x > 0).

Region 1 Region 2

x

θi

µ1 ε1 µ2 ε2

Figure 3: A plane wave incident upon a half-space of diagonal anisotropic medium.
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By a proper decomposition of the plane wave into a linear combination of forward
and backward T Ez (the electric field E has only a z-component) and T Mz (the mag-
netic field H has only a z-component) modes, it can be shown [Sacks, Kingsland,
Lee, and Lee (1995)] that the planar interface is perfectly reflectionless for plane
waves with arbitrary incidence, polarization and frequency, provided that the elec-
tric and magnetic tensors of the uniaxial PML read as follows

εεε2 = ε1 SSSxxx, µµµ2 = µ1 SSSxxx, SSSxxx =

 s−1
x 0 0
0 sx 0
0 0 sx

 . (5)

Notice that the reflectionless behavior at the interface is observed for any real or
complex value of sx. Indeed, this parameter does not affect the wave impedance of
the field in the UPML medium, so that the reflectionless behavior is solely deter-
mined by the proper choice of the magnetic permittivity and electric permeability:√

µ1ε1 =
√

µ2ε2.

An interpretation on the material properties (µ,ε,σM,σE) required for a perfectly
matched interface can be found in [Sacks, Kingsland, Lee, and Lee (1995)].
Usually, the following form is chosen for sx: sx = 1 + σx

iω ε1
. This way, the trans-

mitted wave propagates in the UPML medium with the same phase velocity as the
incident wave. Nevertheless, the imaginary part of the tensor gives rise to an at-
tenuations which turns out to be independent of frequency, and dependent on the
incidence angle θi and the magnitude of the conductivity σx.

Similar results can be obtained for planar interfaces in the other coordinate direc-
tions (y, z) too, so that a generalized 3D formulation of the UPML medium can
be derived very simply [Taflove (1995)]. To this end, one defines 3D electric and
magnetic tensors as follows:

εεε2 = ε1 SSS, µµµ2 = µ1 SSS, (6)

where SSS is the following diagonal matrix

SSS = SSSxxx SSSyyy SSSzzz =

 s−1
x 0 0
0 sx 0
0 0 sx

 sy 0 0
0 s−1

y 0
0 0 sy

 sz 0 0
0 sz 0
0 0 s−1

z

=

=


sy sz
sx

0 0
0 sx sz

sy
0

0 0 sx sy
sz

 ,

(7)

and sξ = kξ + σξ

iω ε1
, ξ = {x, y, z}4.

4 Values kξ 6= 1 still permit to achieve perfect impedance matching, while attenuating evanescent
waves too.
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As for the numerical implementation of UPMLs in the computational domain, one
may proceed as follows. The domain is decomposed in an inner region, where
the geometry of the real problem at hand are placed, along with the sources of the
electromagnetic field, and an outer region, which is formed by 26 anisotropic sub-
regions. 8 of those are trihedral corners, 12 are dihedral edges and 6 are boundary
faces, as shown in Fig. 4.

x

y
z

trihedral 
corner

dihedral 
edge

face

Outer region
(UPML medium)

Inner region
(real geometry embedded 

in isotropic media)

Figure 4: The computational domain is subdivided into an inner region (different
sources are embedded in isotropic media) and an outer region which includes 26
anisotropic subregions (8 trihedral corners, 12 dihedral edges, 6 faces).

For the sake of simplicity, we assume that the inner region is homogeneous, so that
its electric permittivity and magnetic permeability are constant and the generalized
constitutive tensor SSS reduces to the identity matrix. Whereas, parameters of the
electric and magnetic tensors in the 26 anisotropic boundary subregions are defined
as follows:

• Faces (6)

– UPML media at faces normal to x̂: σy = σz = 0 and ky = kz = 1.

– UPML media at faces normal to ŷ: σx = σz = 0 and kx = kz = 1.

– UPML media at faces normal to ẑ: σx = σy = 0 and kx = ky = 1.

• Dihedral edges (12)

– UPML media at dihedral edges normal to x̂ and ŷ: σz = 0 and kz = 1.

– UPML media at dihedral edges normal to x̂ and ẑ: σy = 0 and ky = 1.
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– UPML media at dihedral edges normal to ŷ and ẑ: σx = 0 and kx = 1.

• Trihedral corners (8)

– UPML media at trihedral corners: the complete general tensor SSS is
used.

2.3.2 Grading of the UPML loss parameters

In any practical implementation, the absorbing layer has a finite thickness LPML

and is terminated by the outer boundary of the mesh. Notice that since the task of
UPMLs is exactly that of attenuating the outward-propagating waves, small fields
components have to be expected in the outer boundary of the computational do-
main. This in turn means that no particular care has to be employed in their im-
plementation, i.e. no radiation operators or extrapolation techniques need really to
be used. Even a simple PEC wall can actually perform well enough. Indeed, the
amplitude of a wave which travels through the UPML and is reflected by the hard
wall and travels back again through the UPML into the computational domain is

R(θ) = e−2σξ η cosθ LPML , (8)

where θ is the angle of incidence (with respect to the ξ -directed surface normal),
and σξ and η are, respectively, the PML’s electric conductivity, referred to the
propagation in the ξ -direction, and the characteristic wave impedance. We call
R(θ) the theoretical reflection error. Poor performance, if any, may be expected
for glancing incidence (θ ≈ π/2) only, while a rapid decay of the spurious re-
flected wave is usually obtained. Notice that, as it might actually be expected, the
larger is the product σξ LPML, the smaller is the reflection error. From the viewpoint
of the computational burden, this might induce to think that the use of a really thin
UPML layer with a large conductivity value should be the right choice. Actually,
the theoretically rigorous reflectionless behavior of UPMLs is affected by the mesh
discretization error, and additional spurious reflections can arise if too abrupt dis-
continuities among domain parameters are present. Usually, therefore, a suitable
grading of σ along ξ is required to balance the R(θ) and the mesh discretization
error.

Several grading profiles have been suggested in the literature [Taflove (1995)]. In
the present paper, the polynomial one (2≤ m≤ 4) has been adopted

σ =
(

ξ

d

)m

σξ ,max. (9)
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The following rule of thumb has proven to be effective to calculate the optimal
value of σξ ,max

σξ ,max = q
m+1
η ∆

, (10)

where ∆ is the average step size of the unstructured mesh in the ξ direction; typi-
cally 0.1≤ q≤ 0.8 has been found to be nearly optimum for most cases.

3 Numerical experiments

Correct implementation of UPMLs in the DGA has been checked through an exten-
sive series of numerical experiments, that we performed on two benchmark prob-
lems: a rectangular waveguide and a λ/2 linear antenna. Observe that the choice
for such simple problems was done on purpose: indeed, the focus of the present
paper is the implementation of UPMLs in DGA in the presence of unstructured
meshes and unlimited domain, not the characterization of the electromagnetic be-
havior of a given device. Simple benchmark problems gave us the possibility of
checking the numerical results against analytical solutions. This way we could ac-
tually understand how the UPML parameters affect the accuracy of the solution.
Observe also that the performance of UPML is almost independent on the com-
plexity of the dielectrics and sources inside the computational domain (at least as
long as the radiated field does not primarily impinges on the boundaries along very
grazing rays). Therefore, our analysis may represent a useful guideline for the de-
sign of UPMLs in the DGA even in the presence of more complex electromagnetic
problems.

3.1 Rectangular waveguide

We consider a rectangular waveguide with the width a = 3cm and length L = 5cm
(see Fig. 5), at the operating frequency f = 10 GHz. With these parameter, the
wavelength of the guided wave turns out to be λg = 3.46cm. An electric source
with the spatial profile of the T E10 mode is introduced at the input coordinate z = 0,
while the anisotropic UPML is place at the opposite side (i.e. for L≤ z < L+LPML).
A PEC terminates the UPML at z = L+LPML.

As a preliminary step, a 2D analysis has been performed in order to select the
parameters of the anisotropic medium (UPML): thickness of the PML layer (1cm≤
LPML ≤ 4cm) and order of the polynomial profile of the electric conductivity (2≤
m≤ 4) with its maximum value (σz,max), as optimized according to (10).

Later on, for any dyad (LPML, m) the effect of the step size (∆hz) within the UMPL
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Figure 5: Rectangular waveguide: a = 3cm, L = 5cm (not to scale).

medium has been investigated5. Specifically, we have evaluated the effect of the
condition number6 of K on the accuracy of numerical results (average (erravg%)
and standard deviation (σ%) of the difference between the numerical results and
the reference analytical solution).

As a general trend, we have observed that the wider the number of UPML elements
in the z direction, the worse the conditioning of the problem, which raises the com-
putational cost of the numerical solution. As an example, the results of a test case
(LPML = 3cm, m = 2) are presented in Table 1 together with some mesh parameters
(step size ∆hz, number of primal elements nele).

Table 1: Results of a test case (LPML = 3cm, m = 2): condition number (c), average
error (erravg%) and standard deviation (errstd%) of the numerical results compared
to the reference analytical solution, for different values of the step size ∆hz and
number of primal elements nele of the mesh.

∆hz [mm] nele c erravg% errstd%

2.0 1456 6.85e+07 2.94 1.97
1.0 5652 1.15e+08 0.85 0.60
0.5 22508 2.25e+08 0.34 0.25

5 Notice that since the mesh is unstructured, we need to refer to an average step size in the z direction.
6 The quantity c = ||K|| ||K−1|| is called the condition number of K with respect to inversion. If we

use the 2-norm, the condition number is simply the ratio of the largest singular value of K to the
smallest.
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Then, though the problem is intrinsically 2D (plane symmetry), it has been solved
in a 3D numerical domain D (the height of the waveguide has been set to b = 2cm):
a pair of interlocked grids has been introduced, the primal is tetrahedral, while the
dual is obtained by the primal grid by barycentric subdivision. As an example the
outer elements (triangular faces) of a coarse mesh of about 50,000 tetrahedra are
shown in Fig. 6.

The electric and magnetic tensors have been constructed according to (7), for the
simplest case of a wave normally impinging on the interface (planar surface at
z = L) between the isotropic medium and the UPML medium.

0
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Figure 6: Numerical domain D of a rectangular waveguide (width a = 3cm, height
b = 2cm, length L = 5cm) fed at one side by an electric source equivalent to the
T E10 mode. The outer elements (triangular faces) of a coarse mesh of about 50,000
tetrahedra are shown (not to scale).

The amplitude of the electric field evaluated at a cut plane (y = 1cm) is shown in
Fig. 7.

Fig. 8 shows an almost linear dependance of the average error of the numerical
results (electric E and magnetic H field components), compared to the reference
solution, upon the number of primal elements nele of the mesh, which span from
about 50,000 tetrahedra for the most coarse mesh to about 200,000 tetrahedra for
the finest mesh. In this case the results are encouraging, even in the worst case
(coarse mesh), but this is a fairly simple problem since the wave is purely propa-
gating and is normally incident on the PML.
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LPML

a

Figure 7: Amplitude of the electric field evaluated at a cut plane (y = 1cm).

3.2 λ/2 linear antenna

To asses the effectiveness of the proposed formulation, a more demanding 3D un-
bounded problem has been considered, consisting in the numerical evaluation of
the Poynting vector flux across a number of nested surfaces containing a λ/2 linear
antenna, fed at f = 10GHz, embedded in air.

The electric and magnetic tensors have been constructed according to (7), subdivid-
ing the numerical domain D into an isotropic inner subregion and 26 outer boundary
subregions, as previously described.

The algorithms were implemented in C++ and run on a 2.1GHz Intel Core 2 Duo
processor with 3GB RAM. The construction of the matrices and the solution of
(3) required 12.7s and 97s, respectively. A state of the art direct solver (Pardiso)
from Intel Math Kernel Library (MKL) is used to solve efficiently the sparse linear
system of equations.

The percentage error between numerical and reference values is fairly constant
among different surfaces (ε% < 2%), using a primal mesh of about 220,000 tetra-
hedra and 275,000 primal edges.
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Figure 8: Average error (erravg%) of the numerical results (electric E and magnetic
H field components) compared to the reference analytical solution.

4 Conclusions

A geometric formulation for 3D wave propagation problems in the frequency do-
main has been developed and successfully applied to unbounded problems, by ex-
ploiting UPML absorbing BCs over an unstructured mesh, which is a key factor in
modeling complex 3D geometries. Moreover, the proposed formulation can easily
handle almost any kind of material properties, including anisotropies, so that the
implementation of UPML into a numerical code has been straightforward and par-
ticularly efficient. A state-of-the-art direct solver has been used to solve efficiently
the sparse linear system of equations, but other solvers for sparse symmetric ma-
trices are under investigation, mainly based on iterative schemes such as COCG
(Conjugate Orthogonal Conjugate Gradient) algorithms, to allow the solution of
3D problems with over hundred millions of DoFs.

Acknowledgement: The authors are grateful to M.Sc. Michele Giorgiutti for
developing, testing, and running the preliminary version of the computer software.
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