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Shape Optimization in Time–Dependent Navier–Stokes
Flows via Function Space Parametrization Technique1

Zhiming Gao2 and Yichen Ma3

Abstract: Shape optimization technique has an increasing role in fluid dynamics
problems governed by distributed parameter systems. In this paper, we present the
problem of shape optimization of two dimensional viscous flow governed by the
time dependent Navier–Stokes equations. The minimization problem of the viscous
dissipated energy was established in the fluid domain. We derive the structure of
continuous shape gradient of the cost functional by using the differentiability of a
saddle point formulation with a function space parametrization technique. Finally
a gradient type algorithm with mesh adaptation and mesh movement strategies is
successfully and efficiently applied.

Keywords: shape optimization, shape gradient, gradient type algorithm, time–
dependent Navier-Stokes equations, mesh movement.

1 Introduction

A major focus of computational fluid dynamics (CFD) research in the past few
years has been on simulating the time dependent behavior of viscous flows. Shape
optimization problems for time–dependent Navier–Stokes flows are of great impor-
tance in CFD for airplanes, cars, turbines, automotive vehicles, and arterial grafts
in biomedical engineering.

Most of the work done in optimization of Navier–Stokes flow has focused on opti-
mal control and steady flows. For instance, Gunzburger (2003) published the book
about flow control and optimization; O.Pironneau in Mohammadi and Pironneau
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(2001); Pironneau (1984, 1988) computes the derivative of the cost functional us-
ing normal variation approach; Murat and Simon (1974) use the formal calculus to
deduce an expression for the derivative; J.A.Bello et.al. in Bello, Fernandez-Cara,
and Simon (1992a,b); Bello, Fernandez-Cara, Lemoine, and Simon (1997) con-
sidered this problem theoretically in the case of steady Navier–Stokes flow by the
formal calculus; Srinath and Mittal (2007) proposed and implemented a gradient-
based procedure based on a continuous adjoint approach for steady low Reynolds
number flows (Re=25).

Recently, there has been growing interest in extending optimal design capabilities
to unsteady flows. For instance, E.Katamine, H.Azegami, and Y.Matsuura (2003)
is concerned with shape identification of unsteady heat conduction fields by the
so-called traction method; He, Ghattas, and Antaki (1997) showed the method of
shape optimality based on the Bezier curves; Yagi and Kawahara (2005, 2007) in-
vestigated the solid body in time–dependent Navier–Stokes flow based on optimal
control theory; Abraham, Behr, and Heinkenschloss (2005) carried out shape op-
timization in the context of non-Newtonian fluids using stabilized finite element
methods.

Our concern in this paper is on shape optimization of a body subjected to the mini-
mum dissipation energy in time–dependent Navier–Stokes flows, and on proposing
an efficient algorithm for solution of two dimensional realizations of such prob-
lems.

For the study of the shape gradient of the cost functional, we will use the so-called
function space parametrization technique which was advocated by M.C.Delfour
and J.-P.Zolésio to solving Poisson equation with Dirichlet and Nuemann condi-
tion (see Delfour and Zolesio (2002)). In our paper Gao and Ma (2006); Gao, Ma,
and Zhuang (2008a); Gao and Ma (2008); Gao, Ma, and Zhuang (2008b), we ap-
ply them to solve a Robin problem and shape optimization for Stokes and steady
Navier–Stokes flow.

In this paper we extend them to study the energy minimization problem for time–
dependent Navier–Stokes flow with velocity–pressure boundary conditions in spite
of its lack of rigorous mathematical justification in case where the Lagrange formu-
lation is not convex. We shall show how this theorem allows, at least formally to
bypass the study of material derivative and obtain the expression of shape gradient
for the dissipated energy functional.

One of the major difficulties in shape optimization for time–dependent Navier–
Stokes flows is the large number of equality constraints arsing in the time and
spatial discretization of the flow state systems.This makes our time–dependent op-
timization problem in the category of very large scale, nonlinear constrained opti-
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mization problem. A gradient type algorithm with mesh adaptation technique and
mesh movement strategy is utilized in the present work. Finally, we give some nu-
merical tests concerning on optimization of a two dimensional obstacle located in
the time–dependent viscous flow.

This paper is organized as follows. In section 2, we briefly recall the velocity
method which is used for the characterization of the deformation of the shape of
the domain and give the description of the shape minimization problem for the
time–dependent Navier–Stokes flow.

Section 3 is devoted to the computation of the shape gradient of the Lagrangian
functional due to a minimax principle concerning the differentiability of the mini-
max formulation by function space parametrization technique.

Finally in section 4, we give its spatial and time discretization and propose a gradi-
ent type algorithm with some numerical examples.

2 Preliminaries and statement of the problem

2.1 Elements of the velocity method

To our little knowledge, there are about three types of techniques to perform the do-
main deformation: Hadamard (1907)’s normal variation method, the perturbation
of the identity method by Simon (1980) and the velocity method (see Céa (1981)
and Delfour and Zolesio (2002); Zolesio (1979)). We will use the velocity method
which contains the others. In that purpose, we choose an open set D in RN with the
boundary ∂D piecewise Ck, and a velocity space Ek := {V ∈C([0,ε];Dk(D̄,RN)) :
V ·n∂D = 0 on ∂D}, where ε is a small positive real number and Dk(D̄,RN) denotes
the space of all k−times continuous differentiable functions with compact support
contained in RN . The velocity field

V (s)(x) = V (s,x), x ∈ D, s≥ 0

belongs to Dk(D̄,RN) for each s. It can generate transformations

Ts(V )X = x(s,X), s≥ 0, X ∈ D

through the following dynamical system{
dx
ds (s,X) = V (s,x(s))
x(0,X) = X

(1)

with the initial value X given. We denote the "transformed domain" Ts(V )(Ω) by
Ωs(V ) at s≥ 0, and also set ∂Ωs := Ts(∂Ω).
There exists an interval I = [0,δ ), 0 < δ ≤ ε, and a one-to-one map Ts from D̄ onto
D̄ such that
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(i) T0 = I;

(ii) (s,x) 7→ Ts(x) belongs to C1(I;Ck(D;D)) with Ts(∂D) = ∂D;

(iii) (s,x) 7→ T−1
s (x) belongs to C(I;Ck(D;D)).

Such transformation are well studied in Delfour and Zolesio (2002).

Furthermore, for sufficiently small s > 0, the Jacobian Js is strictly positive:

Js(x) := |det(DTs(x))|= detDTs(x) > 0, (DTs)i j = ∂ j(Ts)i (2)

where DTs(x) denotes the Jacobian matrix of the transformation Ts evaluated at a
point x ∈ D associated with the velocity field V . We will also use the following
notation: DT−1

s (x) is the inverse of the matrix DTs(x) , ∗DT−1
s (x) is the transpose

of the matrix DT−1
s (x). These quantities also satisfy the following lemmas.

Lemma 2.1 (Sokolowski and Zolesio (1992)) For any V ∈ Ek, DTs and Js are in-
vertible. Moreover, DTs, DT−1

s are in C1([0,ε];Ck−1(D̄;RN×N)), and Js, J−1
s are in

C1([0,ε];Ck−1(D̄;R))

Lemma 2.2 (Sokolowski and Zolesio (1992)) ϕ is assumed to be a vector func-
tion in C1(D)N .

(1) D(T−1
s )◦Ts = DT−1

s ;

(2) D(ϕ ◦T−1
s ) = (Dϕ ·DT−1

s )◦T−1
s ;

(3) (Dϕ)◦Ts = D(ϕ ◦Ts) ·DT−1
s .

Now let J(Ω) be a real valued functional associated with any regular domain Ω, we
say that this functional has a Eulerian derivative at Ω in the direction V if the limit

lim
s↘0

J(Ωs)− J(Ω)
s

:= dJ(Ω;V )

exists.

Furthermore, if the map

V 7→ dJ(Ω;V ) : Ek→ R

is linear and continuous, we say that J is shape differentiable at Ω. In the distri-
butional sense we have

dJ(Ω;V ) = 〈∇J,V 〉Dk(D̄,RN)′×Dk(D̄,RN). (3)
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When J has a Eulerian derivative, we say that ∇J is the shape gradient of J at Ω.

Given T > 0, we introduce the notation Lp(0,T ;X) which denotes the space of Lp

integrable functions f from [0,T ] into the Banach space X with the norm

‖ f‖Lp(0,T ;X) =
(∫ T

0
‖ f‖p

X dt
)1/p

, 1≤ p < +∞.

We also denote by L∞(0,T ;X) the space of essentially bounded functions f from
[0,T ] into X , and is equipped with the Banach norm

ess sup
t∈[0,T ]

‖ f (t)‖X .

Before closing this subsection, we introduce the following functional spaces which
will be used in this paper:

V k(Ω) := {u ∈ Hk(Ω)N : u = 0 on Γw∪Γ0},
V k

g (Ω) := {u ∈ Hk(Ω)N : u = 0 on Γw∪Γ0, u = g1 on Γu},
V k

0 (Ω) := {u ∈ Hk(Ω)N : u = 0 on Γw∪Γu∪Γ0},

Qk(Ω) :=
{

p ∈ Hk(Ω) :
∫

Ω

pdx = 0 ( if meas(Γd) = 0)
}

.

2.2 Formulation of the flow optimization problem

Consider a flow region Ω ∈ R2, with its boundary Γ, that is occupied by a fluid of
kinematic viscosity ν . The governing equations for a viscous incompressible flow
in Ω are given as

∂ty− divσ(y, p)+Dy · y = 0 in Ω× (0,T ), (4)

divy = 0 in Ω× (0,T ), (5)

where y denotes the velocity field, p the pressure, and σ(y, p) the stress tensor
defined by σ(y, p) := −pI + 2νε(y) with the rate of deformation tensor ε(y) :=
(Dy+ ∗Dy)/2, where ∗Dy denotes the transpose of the matrix Dy and I denotes the
identity tensor. (0,T ) is the time interval during which the flow is considered.

(4) and (5) have to be completed by further conditions, such as the following initial
condition which consists of a specified divergence-free velocity field:

y(0) = y0 in Ω (6)

and boundary conditions. Let us consider the isolated body problem described in
Figure 1, corresponding to an external flow around a solid body S.



140 Copyright © 2010 Tech Science Press CMES, vol.66, no.2, pp.135-163, 2010

Γw

Γw

Γu Γd

�g

SΩ

Figure 1: External flow around a solid body S.

We reduce the problem to a bounded domain D by introducing an artificial bound-
ary ∂D which has to be taken sufficiently far from S so that the corresponding flow
is a good approximation of the unbounded external flow around S and Ω := D\S̄ is
the effective domain. Typical boundary conditions are

y = g1 on Γu× (0,T ) (7)

y = 0 on (Γ0∪Γw)× (0,T ) (8)

σ(y, p) ·n = g2 on Γd× (0,T ), (9)

where n denotes the unit vector of outward normal on Γ = Γu ∪Γd ∪Γw ∪Γ0, Γu

is the inflow boundary, Γd the outflow boundary, Γw the boundary corresponding
to the fluid wall and Γ0 is the boundary which is to be optimized. We also re-
call that the Reynolds number Re is classically defined by Re = UL/ν with U a
characteristic velocity and L a characteristic length.

Our goal is to find a shape Ω such that a given cost functional J which depends on
y(x, t), p(x, t) and on Ω itself, is minimized. The optimal shape design problem is
given as follows.{

minimize J(Ω) subject to (4)− (9)
with Ω ∈ O :=

{
Ω⊂ RN : Γu∪Γd ∪Γw is fixed,

∫
Ω

dx = constant
}

.
(10)

We consider

J(Ω) =
∫ tU

tL
Φ(y)dt = 2ν

∫ tU

tL

∫
Ω

|ε(y)|2 dxdt, (11)

where [tL, tU ] is a characteristic time interval and Φ(y) is the viscous dissipation
energy which is due to the work done by the pressure and frictional shear forces
acting on the boundary of the flow region. Definitions of tL and tU are problem
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dependent. For instance, if the optimization problem involves flow with initial
condition generated transients that are damped out, the interval starts at the initial
time and ends after the steady state is reached.

3 Function space parametrization

In this section we derive the structure of the continuous shape gradient for the cost
functional J(Ω) by function space parametrization techniques in order to bypass
the usual study of material derivative.

Let Ω be of class C2, the weak formulation of (4)–(6) in mixed form is:

∀t ∈ (0,T ), seek (y(t), p(t)) ∈V 2
g (Ω)×Q1(Ω) such that∫

Ω
[∂ty · v+2νε(y) : ε(v)+Dy · y · v− pdivv]dx

=
∫

Γd
g2 · vds, ∀v ∈V 2

0 (Ω),∫
Ω

divyqdx = 0, ∀q ∈ Q1(Ω),

y(0) = y0.

(12)

Where in the weak form (12), we have used the following lemma.

Lemma 3.1

2
∫

Ω

ε(y) : ε(v)dx =−
∫

Ω

(∆y+∇divy) · vdx+2
∫

∂Ω

ε(y) ·n · vds.

Now we introduce the following Lagrange functional associated with (12) and (11):

G(Ω,y, p,v,q) = J(Ω)−L(Ω,y, p,v,q), (13)

where

L(Ω,y, p,v,q) =
∫ T

0

∫
Ω

[−∂tv · y+2νε(y) : ε(v)+Dy · y · v− pdivv

− divyq]dxdt−
∫ T

0

∫
Γd

g2 · vdsdt +
∫

Ω

y(T ) · v(T )dx−
∫

Ω

y0 · v(0)dx.

The minimization problem (10) can be put in the following form

min
Ω∈O

min
(y,p)∈V 2

g (Ω)×Q1(Ω)
max

(v,q)∈V 2
0 (Ω)×Q1(Ω)

G(Ω,y, p,v,q), (14)

where

V 2
g (Ω) := L2(0,T ;V 2

g (Ω)), V 2
0 (Ω) := L2(0,T ;V 2

0 (Ω)),



142 Copyright © 2010 Tech Science Press CMES, vol.66, no.2, pp.135-163, 2010

Q1(Ω) := L2(0,T ;Q1(Ω)).

We can use the minimax framework to avoid the study of the state derivative. The
Karusch-Kuhn-Tucker conditions will furnish the shape gradient of the cost func-
tional J(Ω) by using the adjoint system. Now let’s establish the first optimality
condition for the problem

min
(y,p)∈V 2

g (Ω)×Q1(Ω)
max

(v,q)∈V 2
0 (Ω)×Q1(Ω)

G(Ω,y, p,v,q). (15)

Formally the adjoint equations are defined from the Euler–Lagrange equations of
the Lagrange functional G. Clearly, the variation of G with respect to (v,q) can
recover the state system (12). On the other hand, in order to find the adjoint state
system, we differentiate G with respect to p in the direction δ p,

∂G
∂ p

(Ω,y, p,v,q) ·δ p =
∫ T

0

∫
Ω

δ pdivvdxdt = 0,

Taking δ p with compact support in Ω gives

divv = 0. (16)

Then we differentiate G with respect to y in the direction δy and employ Green
formula,

∂G
∂y

(Ω,y, p,v,q) ·δy =∫ T

0

∫
Ω

(−2χ(t)ν∆y+∂tv+ν∆v−∇q− ∗Dy · v+Dv · y) ·δydxdt

−
∫ T

0

∫
∂Ω

σ(v,q) ·n ·δydsdt +4
∫ T

0

∫
∂Ω

χ(t)νε(y) ·n ·δydsdt

−
∫ T

0

∫
∂Ω

(y ·n)(v ·δy)dsdt +
∫

Ω

δy(T ) · v(T )dx,

where

χ(t) =
{

0 o≤ t < tL,
1 tL ≤ t ≤ tU .

Taking δy with compact support in Ω gives

∂tv+ν∆v−∇q− ∗Dy · v+Dv · y = 2χ(t)ν∆y. (17)
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Then varying δy on Γd gives

σ(v,q) ·n+(y ·n)v−4χ(t)νε(y) ·n = 0, on Γd× (0,T ). (18)

Finally we obtain the following adjoint state system

−∂tv− divσ(v,q)+ ∗Dy · v−Dv · y =−2χ(t)ν∆y in Ω× (0,T )
divv = 0 in Ω× (0,T )
σ(v,q) ·n+(y ·n)v−4χ(t)νε(y) ·n = 0, on Γd× (0,T )
v = 0 on (Γu∪Γw∪Γ0)× (0,T )
v(T ) = 0 in Ω,

(19)

and its variational form

∀t ∈ (0,T ), seek (v,q) ∈V 2
0 (Ω)×Q1(Ω) such that∫

Ω
[−∂tv ·ϕ +2νε(v) : ε(ϕ)+Dϕ · y · v+Dy ·ϕ · v−qdivϕ]dx

= 4νχ(t)
∫

Ω
ε(y) : ε(ϕ)dx, ∀ϕ ∈V 2

0 (Ω),∫
Ω

divvψ dx = 0, ∀ψ ∈ Q1(Ω),

v(T ) = 0.

(20)

We employ the velocity method to modelize the domain deformations. We only
perturb the boundary Γ0 and consider the mapping Ts(V ), the flow of the velocity
field

V ∈Vad := {V ∈C0(0,τ;C2(RN)N) : V = 0 in the neighorhood of Γu∪Γw∪Γd}.

Our objective in this section is to study the derivative of j(s) with respect to s,
where

j(s) := min
(ys,ps)∈V 2

g (Ωs)×Q1(Ωs)
max

(vs,qs)∈V 2
0 (Ωs)×Q1(Ωs)

G(Ωs,ys, ps,vs,qs), (21)

(ys, ps) and (vs,qs) satisfy (12) and (20) on the perturbed domain Ωs, respectively.

Unfortunately, the Sobolev space V 2
g (Ωs), V 2

0 (Ωs), and Q1(Ωs) depend on the pa-
rameter s, so we need to introduce the so-called function space parametrization
technique which consists in transporting the different quantities (such as, a cost
functional) defined on the variable domain Ωs back into the reference domain Ω
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which does not depend on the perturbation parameter s. Thus we can use differ-
ential calculus since the functionals involved are defined in a fixed domain Ω with
respect to the parameter s.

To do this, we define the following parametrizations

V 2
g (Ωs) = {y◦T−1

s : y ∈V 2
g (Ω)};

V 2
0 (Ωs) = {v◦T−1

s : v ∈V 2
0 (Ω)};

Q1(Ωs) = {p◦T−1
s : p ∈ Q1(Ω)}.

where "◦" denotes the composition of the two maps.

Note that since Ts and T−1
s are diffeomorphisms, these parametrizations can not

change the value of the saddle point. We can rewrite (21) as

j(s) = min
(y,p)∈V 2

g (Ω)×Q1(Ω)
max

(v,q)∈V 2
0 (Ω)×Q1(Ω)

G(Ωs,y◦T−1
s , p◦T−1

s ,v◦T−1
s ,q◦T−1

s ).

(22)

where the Lagrangian

G(Ωs,y◦T−1
s , p◦T−1

s ,v◦T−1
s ,q◦T−1

s ) = I1(s)+ I2(s)+ I3(s)

with

I1(s) := 2ν

∫ T

0

∫
Ωs

χ(t)|ε(y◦T−1
s )|2 dxdt,

I2(s) :=−
∫ T

0

∫
Ωs

[−∂t(v◦T−1
s ) · (y◦T−1

s )+2νε(v◦T−1
s ) : ε(y◦T−1

s )

+D(y◦T−1
s ) · (y◦T−1

s ) · (v◦T−1
s )− (p◦T−1

s )div(v◦T−1
s )

− div(y ◦T−1
s )(q ◦T−1

s )]dxdt,

and

I3(s) :=
∫ T

0

∫
Γd

g2 · vdsdt−
∫

Ωs

[(y(T )◦T−1
s ) · (v(T )◦T−1

s )− y0 · (v(0)◦T−1
s )]dx.

Now we introduce the theorem concerning on the differentiability of a saddle point
(or a minimax). To begin with, some notations are given as follows.

Define a functional
G : [0,τ]×X×Y → R

with τ > 0, and X ,Y are the two topological spaces.
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For any t ∈ [0,τ], define g(t) = infx∈X supy∈Y G (t,x,y) and the sets

X(t) = {xt ∈ X : g(t) = supy∈Y G (t,xt ,y)}
Y (t,x) = {yt ∈ Y : G (t,x,yt) = supy∈Y G (t,x,y)}

Similarly, we can define the dual functional h(t) = supy∈Y infx∈X G (t,x,y) and the
corresponding sets

Y (t) = {yt ∈ Y : h(t) = infx∈X G (t,x,yt)}
X(t,y) = {xt ∈ X : G (t,xt ,y) = infx∈X G (t,x,y)}

Furthermore, we introduce the set of saddle points

S(t) = {(x,y) ∈ X×Y : g(t) = G (t,x,y) = h(t)}

Now we can introduce the following theorem (see Correa and Seeger (1985) or
page 427 of Delfour and Zolesio (2002)):

Theorem 3.1 Assume that the following hypothesis hold:

(H1) S(t) 6= /0, t ∈ [0,τ];

(H2) The partial derivative ∂tG (t,x,y) exists in [0,τ] for all

(x,y) ∈

 ⋃
t∈[0,τ]

X(t)×Y (0)

⋃X(0)×
⋃

t∈[0,τ]

Y (t)

 ;

(H3) There exists a topology TX on X such that for any sequence {tn : tn ∈ [0,τ]}
with lim

n↗∞

tn = 0, there exists x0 ∈ X(0) and a subsequence {tnk}, and for each

k ≥ 1, there exists xnk ∈ X(tnk) such that

(i) lim
n↗∞

xnk = x0 in the TX topology,

(ii) liminf
t↘0
k↗∞

∂tG (t,xnk ,y)≥ ∂tG (0,x0,y), ∀y ∈ Y (0);

(H4) There exists a topology TY on Y such that for any sequence {tn : tn ∈ [0,τ]}
with lim

n↗∞

tn = 0, there exists y0 ∈Y (0) and a subsequence {tnk}, and for each

k ≥ 1, there exists ynk ∈ Y (tnk) such that

(i) lim
n↗∞

ynk = y0 in the TY topology,
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(ii) limsup
t↘0
k↗∞

∂tG (t,x,ynk)≤ ∂tG (0,x,y0), ∀x ∈ X(0).

Then there exists (x0,y0) ∈ X(0)×Y (0) such that

dg(0) = lim
t↘0

g(t)−g(0)
t

= inf
x∈X(0)

sup
y∈Y (0)

∂tG (0,x,y) = ∂tG (0,x0,y0) = sup
y∈Y (0)

inf
x∈X(0)

∂tG (0,x,y) (23)

This means that (x0,y0) ∈ X(0)×Y (0) is a saddle point of ∂tG (0,x,y).

Following Theorem 3.1, we need to differentiate the perturbed Lagrange functional
G(Ωs,y◦T−1

s , p◦T−1
s ,v◦T−1

s ,q◦T−1
s ).

To perform the differentiation, we introduce the following Hadamard formula (see
Hadamard (1907))

d
ds

∫
Ωs

F(s,x)dx =
∫

Ωs

∂F
∂ s

(s,x)dx+
∫

∂Ωs

F(s,x)V ·ns ds, (24)

for a sufficiently smooth functional F : [0,τ]×RN → R.

By Hadamard formula (24), we get

∂tG(Ωs,y◦T−1
s , p◦T−1

s ,v◦T−1
s ,q◦T−1

s ) = I′1(0)+ I′2(0)+ I′3(0),

where

I′1(0) = 4ν

∫ T

0

∫
Ω

χ(t)ε(y) : ε(−Dy ·V )dxdt +2ν

∫ T

0

∫
Γ0

χ(t)|ε(y)|2V n dsdt; (25)

I′2(0) =
∫ T

0

∫
Ω

[∂t(−Dv ·V ) · y+∂tv · (−Dy ·V )]dxdt

−
∫ T

0

∫
Ω

[2νε(−Dy ·V ) · ε(v)+2νε(y) · ε(−Dv ·V )+Dy · y · (−Dy ·V )

+D(−Dy ·V ) · y · v+Dy · (−Dy ·V ) · v− pdiv(−Dv ·V )
− div(−Dy ·V )q− divy(−∇q ·V )− (−∇p ·V )divv]dxdt

+
∫ T

0

∫
Γ0

(∂tv · y−2νε(y) : ε(v)−Dy · y · v+ pdivv+ divyq)V n dsdt; (26)



Shape Optimization in Navier-Stokes Flows 147

and

I′3(0) =−
∫

Ω

[(−Dy(T ) ·V ) · v(T )+ y(T ) · (−Dv(T ) ·V )]dx−
∫

Γ0

y(T ) · v(T )V n ds

+
∫

Ω

y0 · (−Dv(0) ·V )dx +
∫

Γ0

y0 · v(0)V n ds. (27)

To simplify (25) and (26), we introduce the following lemma.

Lemma 3.2 If two vector functions y and v vanish on the boundary Γ0 and divy =
divv = 0 in Ω, the following identities

Dy ·V ·n = (Dy ·n ·n)V n = divyV n; (28)

ε(y) : ε(v) = ε(y) : (ε(v) · (n⊗n)) = (ε(y) ·n) · (ε(v) ·n); (29)

(ε(y) ·n) · (Dv ·V ) = (ε(y) ·n) · (Dv ·n)V n = (ε(y) ·n) · (ε(v) ·n)V n (30)

hold on the boundary Γ0, where the tensor product n⊗n := ∑
N
i, j=1 nin j.

Using Lemma 3.1, for (25) we have

I′1(0) =−2ν

∫ T

0

∫
Ω

χ(t)∆y · (−Dy ·V )dxdt

+4ν

∫ T

0

∫
Γ0

χ(t)(ε(y) ·n) · (−Dy ·V )dsdt +2ν

∫ T

0

∫
Γ0

χ(t)|ε(y)|2V n dsdt.

By the identities (29) and (30), we further get

I′1(0) =−2ν

∫ T

0

∫
Ω

χ(t)∆y · (−Dy ·V )dxdt−2ν

∫ T

0

∫
Γ0

χ(t)|ε(y)|2V n dsdt. (31)

Employing Lemma 3.1 and y|Γ0 = V |Γw∪Γu∪Γd = 0, (26) can be rewritten as

I′2(0) =
∫ T

0

∫
Ω

[(−∂ty+ν∆y−Dy · y−∇p) · (−Dv ·V )+ divy(−∇q ·V )]dxdt

+
∫ T

0

∫
Ω

[(∂tv+ν∆v+Dv · y− ∗Dy · v−∇q) · (−Dy ·V )+ divv(−∇p ·V )]dxdt

−
∫ T

0

∫
Γ0

[σ(y, p) ·n · (−Dv ·V )+σ(v,q) ·n · (−Dy ·V )]dsdt

+
∫ T

0

∫
Γ0

[∂tv · y−2νε(y) : ε(v)−Dy · y · v+ pdivv+ divyq]V n dsdt

+
∫

Ω

[(−Dv ·V )(T ) · y(T )− (−Dv ·V )(0) · y(0)]dx. (32)
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Since (y, p) and (v,q) satisfy (4)–(6) and (19) respectively, (32) reduces to

I′2(0) = 2ν

∫ T

0

∫
Ω

χ(t)∆y · (−Dy ·V )dxdt

−
∫ T

0

∫
Γ0

[σ(y, p) ·n · (−Dv ·V )+σ(v,q) ·n · (−Dy ·V )+2νε(y) : ε(v)V n]dsdt

+
∫

Ω

[(−Dv ·V )(T ) · y(T )− (−Dv ·V )(0) · y(0)]dx. (33)

On the boundary Γ0, we can deduce that

−σ(y, p) ·n · (−Dv ·V )−σ(v,q) ·n · (−Dy ·V )
= 2ν [ε(y) ·n · (Dv ·V )+ ε(v) ·n · (Dy ·V )] (by (28))
= 4ν(ε(y) ·n) · (ε(v) ·n)V n (by (30))
= 4νε(y) : ε(v)V n. (by (29))

Therefore, (33) becomes

I′2(0) = 2ν

∫ T

0

∫
Ω

χ(t)∆y · (−Dy ·V )dxdt +2ν

∫ T

0

∫
Γ0

ε(y) : ε(v)V n dsdt

+
∫

Ω

[(−Dv ·V )(T ) · y(T )− (−Dv ·V )(0) · y(0)]dx. (34)

Adding (31), (34) and (27) together, and then using v|Γ0 = 0 and v(T ) = 0 in Ω, we
finally obtain the boundary expression for the Eulerian derivative of J(Ω),

dJ(Ω;V ) = 2ν

∫ T

0

∫
Γ0

[
ε(y) : ε(v)−χ(t)|ε(y)|2

]
V n dsdt, (35)

Finally for each t ∈ [0,T ], since the mapping V 7→ dJ(Ω;V ) is linear and continu-
ous, we get the expression for the shape gradient

∇J = 2ν [ε(y) : ε(v)−χ(t)|ε(y)|2]n (36)

by (3).

4 Time and space approximation of our problem

In general it is impossible to solve the infinite dimensional shape optimization prob-
lem, so we resort to numerical approximation in both space and time.
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4.1 Semidiscrete-in-time approximation

To discretize the state system (12) in time, we use a semi-implicit Oseen–Crank–
Nicolson scheme. Let 0 = t0 < · · · < tL < · · · < tU = T be a uniform partition in
the time dimension. We will denote by q the vector (q0,q1, · · · ,qL, · · · ,qU) defined
discretely with respect to time.

The state variables y = (y0,y1, · · · ,yU) ∈V 1(Ω) and p = (p0, p1, · · · , pU) ∈ Q0(Ω)
are constrained to satisfy the following semidiscrete system

∫
Ω

[
1
∆t (y

n− yn−1) · v+2νε(yn− 1
2 ) : ε(v)+Dyn− 1

2 · yn−1 · v− pn− 1
2 divv

]
dx

=
∫

Γd
gn− 1

2
2 · vds, ∀v ∈V 1

0 (Ω), for n = 1, · · · ,U,∫
Ω

divyn− 1
2 qdx = 0, ∀q ∈ Q0(Ω), for n = 1, · · · ,U,

yn− 1
2 |Γu = gn− 1

2
1 , for n = 1, · · · ,U,

y0 = y0, in Ω.

(37)

Where the notations

∆t = tn− tn−1, yn− 1
2 =

1
2
(yn−1 +yn), pn− 1

2 =
1
2
(pn−1 + pn), gn− 1

2
i =

1
2
(gn−1

i +gn
i ),

with yn, pn, gn
1 and gn

2 are approximated values of y, p, g1 and g2 at time tn, respec-
tively.

At each time in (37), we only need to solve a linear problem, a steady Oseen prob-
lem, since the nonlinear term is treated linear. This scheme is second order accurate
in time (see Quarteroni and Valli (1994)).

The adjoint variables v = (v0,v1, · · · ,vU)∈V 1
0 (Ω) and q = (q0,q1, · · · ,qU)∈Q0(Ω)

are constrained to satisfy the following semidiscrete system

∫
Ω
[− 1

∆t (v
n− vn−1) ·ϕ +2νε(vn− 1

2 ) : ε(ϕ)+Dϕ · yn · vn− 1
2

+Dyn ·ϕ · vn− 1
2 −qn− 1

2 divϕ]dx = 4νχ(n∆t)
∫

Ω
ε(yn) : ε(ϕ)dx, ∀ϕ ∈V 1

0 (Ω),∫
Ω

divvn− 1
2 ψ dx = 0, ∀ψ ∈ Q0(Ω), for n = 1, · · · ,U.

vU = 0, in Ω.

(38)

4.2 Full discrete time–space approximation

We make the additional assumption that Ω is a bounded polygonal domain of R2

and only consider the conforming finite element approximations. Let Xh ⊂H1(Ω)N
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and Sh ⊂ L2(Ω) be two families of finite dimensional subspaces parameterized by
h which tends to zero. We also define

V 1
h := {uh ∈ Xh : uh = 0 on Γw∪Γ0},

V 1
0h := {uh ∈ Xh : uh = 0 on Γw∪Γu∪Γ0},

Q0
h :=

{
ph ∈ Sh :

∫
Ω

ph dx = 0 ( if meas(Γd) = 0)
}

.

Besides, the following assumptions are supposed to hold.

(HA1) There exists C > 0 such that for 0≤ m≤ l,

inf
vh∈V 1

h

‖vh− v‖1 ≤Chm‖v‖m+1, ∀v ∈ Hm+1(Ω)N ∩V 1(Ω);

(HA2) There exists C > 0 such that for 0≤ m≤ l′,

inf
qh∈Q0

h

‖qh−q‖0 ≤Chm‖q‖m, ∀q ∈ Hm(Ω)∩Q0(Ω);

(HA3) The Ladyzhenskaya-Brezzi-Babuska inf-sup condition is verified, i.e., there
exists C > 0, such that

inf
06=qh∈Q0

h

sup
06=vh∈V 1

h

∫
Ω

qh divvh dx
‖vh‖1‖qh‖0

≥C, Vh = V 1
h or V 1

0h.

The state (yn
h, pn

h) ∈V 1
h ×Q0

h satisfies the following fully discrete approximation of
Navier–Stokes equations

∫
Ω

[ 1
∆t (y

n
h− yn−1

h ) · vh +2νε(yn
h) : ε(vh)+Dyn

h · y
n−1
h · vh− pn

h divvh
]

dx
=
∫

Γd
gn

2h · vh ds, ∀vh ∈V 1
0h, for n = 1, · · · ,U,∫

Ω
divyn

hqh dx = 0, ∀q ∈ Q0
h, for n = 1, · · · ,U,

yn
h|Γu = gn

1h, for n = 1, · · · ,U,

y0
h = y0, in Ω,

(39)

where gn
1h and gn

2h are convergent approximations of the boundary conditions gn
1

and gn
2 on Γu and Γd , respectively.

The adjoint state variables (vn
h,q

n
h) ∈ V 1

0h×Q0
h are solutions of the discrete adjoint

system
∫

Ω
[− 1

∆t (v
n
h− vn−1

h ) ·ϕh +2νε(vn−1
h ) : ε(ϕh)+Dϕh · yn

h · v
n−1
h

+Dyn
h ·ϕh · vn−1

h −qn−1
h divϕh]dx = 4νχ(t)

∫
Ω

ε(yn
h) : ε(ϕh)dx, ∀ϕh ∈V 1

0h,∫
Ω

divvn−1
h ψh dx = 0, ∀ψh ∈ Q0

h, for n = 1, · · · ,U.

vU
h = 0, in Ω.
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(40)

The cost functional (11) are spatially discretized using the finite element space V 1
h ,

and time integration is performed using the trapezoidal rule which is second order
accurate. The spatially and temporally integrated dissipation functions in (11) are
fully discretized as

Jh = ν∆t
U−1

∑
n=L

(∫
Ω

|ε(yn
h)|2 dx+

∫
Ω

|ε(yn+1
h )|2 dx

)
(41)

and the associated discrete Eulerian derivative

dJh(Ω;V ) = ν∆t
U−1

∑
n=0

(∫
Γ0

[
ε(yn

h) : ε(vn
h)−χ(n∆t)|ε(yn

h)|2
]
V n ds

+
∫

Γ0

[
ε(yn+1

h ) : ε(vn+1
h )−χ((n+1)∆t)|ε(yn+1

h )|2
]
V n ds

)
.

5 Numerical implementation

5.1 A gradient type algorithm

For the minimization problem (10), we rather work with the unconstrained mini-
mization problem

min
Ω∈R2

G(Ω) = J(Ω)+ lV (Ω), (42)

where V (Ω) :=
∫

Ω
dx and l is a positive Lagrange multiplier. The Eulerian deriva-

tive of G(Ω) is

dG(Ω;V ) =
∫

Γ0

∇G ·V ds,

where ∇G :=
∫ T

0 [2νε(y) : ε(v)−2ν |ε(y)|2 + l]ndt.

The optimization algorithm used in the present paper is a gradient type algorithm
which can be summarized as follows:

(1) Choose an initial shape Ω0, an initial step h0 and a Lagrange multiplier l0;

(2) Generate a computational grid that conforms to the shape of the body;

(3) Compute the state system (39);

(4) Evaluate the discrete cost functional Jh using (41);
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(5) Solve the adjoint system (40);

(6) Evaluate the descent direction dk by using (43) with Ω = Ωk;

(7) Set Ωk+1 = (I+hkdk)Ωk.

In the following, we will discuss some details of the gradient type algorithm and
they will make our algorithm truly efficient and effective.

5.1.1 Mesh movement

In the optimization cycle, the shape changes after each iteration. The simplest
approach is to remesh after each iteration. This type is suitable for any arbitrary
shapes and deformations, but it is computationally very expensive and for time–
dependent flows may lead to projection errors. In the present paper a pseudo-
elastic mesh movement strategy (see He, Ghattas, and Antaki (1997); E.Katamine,
H.Azegami, T.Tsubata, and S.Itoh (2005); Lin, Baker, Martinelli, and et.al (2006);
Tezduyar, Mittal, Ray, and et.al (1992)) is employed. The computational domain
is modeled as a linear pseudo-elastic solid. The algorithm starts with a mesh of
acceptable quality. The change in the location of the boundary is treated as an
imposed displacement and a linear elastic boundary value problem is solved. The
displacement field is taken to be the change of the internal nodes based on the given
shape deformation of the solid boundary. This pseudo-elastic mesh movement strat-
egy guarantees that the coordinates of internal nodes are smooth functions of the
locations of boundary nodes. This mesh movement strategy has been proposed as
procedure for solving the descent direction by

∫
Ω

Aε(d) · ε(V )dx =−dG(Ω;V ). (43)

where A is the Hooke’s law defined by Aξ = 2µξ +λ (Trξ )Id with Lame moduli λ

and µ . (43) indicates that the descent direction d is obtained as a displacement of
a pseudo-elastic body defined in the computational domain Ω by the loading of a
pseudo-external force in proportion to the negative shape gradient function −∇G.
In addition, (43) can also be interpreted as a regularization of the shape gradient
(see Mohammadi and Pironneau (2001), Allaire and Pantz (2006)).

5.1.2 Mesh adaptation

During the shape deformation, we utilize the a metric-based anisotropic mesh adap-
tation technique where the metric can be computed automatically from the Hessian
of a solution.
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The Hessian Hh of yh can be approximated by using a recovery method, such as
the Zienkiewicz-Zhu recovery procedure Zienkiewicz and Zhu (1992), the simple
linear fitting Dompierre, Labb, and Guibault (2003), or the double L2 projection

Hh = IL2 (∇(IL2(∇yh))) , (44)

where IL2 denotes the L2 projection on the P1 Lagrange finite element space (seeAlauzet
(2003); Hecht, Pironneau, Hyaric, and Ohtsuka (2006)). Here we use (44) to get
the Hessian. As it has been said in Hecht, Pironneau, Hyaric, and Ohtsuka (2006),
there’s no convergence proof of this method but the result is better.

5.1.3 Step size

The choice of the descent step size hk is not an easy task. Too big, the algorithm is
unstable; too small, the rate of convergence is insignificant. The classical exact line
search method can be very expensive and is unnecessary to guarantee convergence
in shape optimization problems. Here we use the backtracking approach Quar-
teroni, Sacco, and Saleri (2000). To limit the number of the required state solutions
and to prevent the solver from crashing because of badly shape, it is important to
provide the backtracking procedure with a good initial guess. Here we choose the
initial guess h0 so that

h0∇G(Ωk) ·dk = hk−1∇J(Ωk−1) ·dk−1.

5.1.4 Stopping criterion

In our algorithm, we do not choose any stopping criterion. A classical stopping
criterion is to find that whether the shape gradients in some suitable norm is small
enough. However, since we use the continuous shape gradients, it’s hopeless for
us to expect very small gradient norm because of numerical discretization errors.
Instead, we fix the number of iterations. If it is too small, we can restart it with the
previous final shape as the initial shape.

5.2 Numerical results

In this section we will present the results of numerical tests with the techniques
described in the previous section. All the simulations presented are performed with
finite element discretization in space and finite difference in time for the Navier–
Stokes equations in primitive variable form. The finite element grid for the fluid
region uses triangles which is generated by a Delaunay-Voronoi mesh generator
(see Mohammadi and Pironneau (2001)). The finite element discretization is ef-
fected using the P1bubble–P1 pair of finite element spaces on a triangular mesh,
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i.e., we choose the following velocity space Xh and pressure space Sh:

Xh = {yh ∈ (C0(Ω̄))2 : yh|T ∈ (P∗1T )2,∀T ∈Th}
Sh = {ph ∈C0(Ω̄) : ph|T ∈ P1,∀T ∈Th},

where Th denotes a standard finite element triangulation of Ω, Pk the space of the
polynomials in two variables of degree ≤ k and P∗1T the subspace of P3 defined by

P∗1T = {q : q = q1 +λφT , with q1 ∈ P1,λ ∈ R and

φT ∈ P3,φT = 0 on ∂T, φT (GT ) = 1 with GT is the centroid of T}.

Notice that a function like φT is usually called a bubble function.

The computations have been carried out on a home PC with Intel Pentium 4 CPU
2.8 GHz and 1GB memory.

In our computations, we choose D to be a rectangle (−0.5,1.5)× (−0.5,1.5) and
S is to be determined in our simulations. The time interval is [0,3]. The inflow
velocity is assumed to be parabolic with a profile g1(−0.5,y) = (0.2y2−0.05,0)T ,
while at the outflow boundary Γd , we impose a traction-free boundary condition
(g2 = 0). No-slip boundary condition are imposed at all the other boundaries. We
further define the admissible set

O :=
{

Ω⊂ R2 : ∂D is fixed, the area V (Ω) = 1.9
}

.

To begin with, we denote the reduced energy by the relative error of the cost func-
tional: Errenergy = |Jopt(Ω)− J0(Ω)|/|J0(Ω)|, where Jopt(Ω) and J0(Ω) present the
value of the cost functional in optimal shape and initial shape, respectively. We also
denote the relative error of area V (Ω) between the area of optimal shape Vopt(Ω)
and the target area Vtarget(Ω) by Errarea = |Vopt(Ω)−Vtarget(Ω)|/Vtarget(Ω).
We choose the initial shape of the body S to be a circle of center (0,0) with radius
r = 0.3. The characteristic time interval for cost functional is [tL, tU ] = [1,3] and
we set the time step ∆t = 0.1.

We present results for different Reynolds numbers Re = 40,100,200,300,400 de-
fined by Re = 2r|ym|/ν , where ym is the maximum velocity at the inflow Γu. The
finite element meshes used for the calculations at Re = 40 have been shown in
Figure 1 which consists of 1796 elements with 988 vertices.

Figure 2—Figure 7 give several snapshots in time of horizontal velocity streamlines
corresponding to the initial shape and optimal shape with Reynolds numbers Re =
100,200,400, respectively. Note that the optimizer has found a symmetric optimal
shape, despite the fact that symmetry has not been imposed as a constraint in the
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problem, and the unstructured mesh (see Figure 1) is not symmetric. We also find
that the center of balance of the body is moved backward.

In Figure 8–Figure 10, time histories of the viscous dissipation energy function
Φ(y)= 2ν

∫
Ω
|ε(y)|2 dx are computed with initial shape and optimal shape for Reynolds

numbers Re = 100,200,400, respectively.

Optimization histories for various Reynolds numbers are plotted in Figure 11. In
Table 1, we present the results obtained for the fixed reduced energy Errenergy =
74%. It is obvious that when Re increases, the total dissipated energy for the opti-
mal cannula decreases and the corresponding computational cost raises. The area
of the optimal solid body is located in the range (1.896,1.908). The large CPU
time is due to the need for time–accurate integration and the computation of flow
systems at each time step.

Conclusion

In this work, the viscous dissipation energy minimization problem of a solid body
located in the time–dependent incompressible Navier–Stokes flow is presented.
The volume of the target body is kept constant. The shape gradient which is ob-
tained by the function space parametrization technique is used to obtain the optimal
shape of the body. The flow systems are discretized in space using a P1bubble–P1
finite element formulation, and a Crank–Nicholson scheme is used for integration
in time. We have proved the effectiveness of the proposed gradient type algorithm
with mesh adaptation and mesh movement strategies and compared the results for
different Reynolds numbers. Further study is on numerical simulation for very
large Reynolds numbers.

Figure 1: The finite element mesh for the initial shape (Re=40).



156 Copyright © 2010 Tech Science Press CMES, vol.66, no.2, pp.135-163, 2010

Figure 2: Horizontal velocity at t = 0.4 (upper left), 1.2 (upper right), 2 (bottom
left), 2.8 (bottom right) for the initial shape (Re=100).

Figure 3: Horizontal velocity at t = 0.4 (upper left), 1.2 (upper right), 2 (bottom
left), 2.8 (bottom right) for the optimal shape (Re=100).
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Figure 4: Horizontal velocity at t = 0.4 (upper left), 1.2 (upper right), 2 (bottom
left), 2.8 (bottom right) for the initial shape (Re=200).

Figure 5: Horizontal velocity at t = 0.4 (upper left), 1.2 (upper right), 2 (bottom
left), 2.8 (bottom right) for the optimal shape (Re=200).
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Figure 6: Horizontal velocity at t = 0.4 (upper left), 1.2 (upper right), 2 (bottom
left), 2.8 (bottom right) for the initial shape (Re=400).

Figure 7: Horizontal velocity at t = 0.4 (upper left), 1.2 (upper right), 2 (bottom
left), 2.8 (bottom right) for the optimal shape (Re=400).
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Figure 8: Time history of the dissipation function (Re=100).
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Figure 9: Time history of the dissipation function (Re=200).
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Figure 10: Time history of the dissipation function (Re=400).
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Figure 11: Cost functional as a function of number of optimization iterations for various
Reynolds numbers.
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Table 1: The numbers of iterations, the reduced total dissipated energy Errenergy,
CPU times, the optimal areas for various Reynolds numbers.

Errenergy Re Iterations Energy Vopt(Ω) Errarea CPU time
74% 40 7 0.0243893 1.89666 1.76×10−3 2211.86s
74% 100 12 0.0112406 1.89655 1.82×10−3 3692.70s
74% 200 15 0.00646516 1.90306 1.61×10−3 4976.91s
74% 300 16 0.00606068 1.90368 1.94×10−3 5319.58s
74% 400 17 0.00396328 1.90794 4.18×10−3 5512.53s
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