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Based Active Contours Model and Variational Dirichlet

Process
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Abstract: We propose a new semi-automatic segmentation based Active Con-
tour Model and statistic prior knowledge of Multiple Sclerosis (MS) Lesions in
Regions Of Interest (RIO) within brain Magnetic Resonance Images(MRI). Reli-
able segmentation of MS lesion is important for at least three types of practical
applications: pharmaceutical trails, making decision for drug treatment, patient
follow-up. Manual segmentation of the MS lesions in brain MRI by well qualified
experts is usually preferred. However, manual segmentation is hard to reproduce
and can be highly cost and time consuming in the presence of large volume of MRI
data. In other hand, automated segmentation methods are significantly faster yield-
ing reproducible results. However, these methods generally produced segmentation
results that agree only partially with the ground truth segmentation provided by the
expert. In this paper, we propose a new semi-automatic segmentation based Active
Contour model for MS lesion that combines expert knowledge with a low compu-
tational cost to produce more reliable MS segmentation results. In particular, the
user selects coarse RIO that encloses potential MS lesions and a sufficient back-
ground of the healthy White Matter tissues (WM). Having this two class statistic
properties, we propose to extract texture features corresponding to health and MS
lesion. The results draw showed a significant improvement of the proposed model.
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1 Introduction

Image segmentation is one of the most important tasks in image processing and
computer vision. In last two decades, image segmentation remains a challenging
problem [Derraz, Beladgham, and Khelif (2004); Ma, Tavares, Jorge, and Mas-
carenhas (2010)], particularly because of the dependence of the problem on imag-
ing modalities and on the imaged objects. In medical image processing, particu-
larly as applied to magnetic resonance (MR) images of the brain, segmentation has
drawn much attention during the past twenty years [Gonalves, Tavares, and Jorge
(2008);Vasconcelos and Tavares (2008)]. The segmentation tasks in this area are
aimed at classifying the component tissues of the brain such white matter gray mat-
ter, and at quantifying the volume and shape parameters of different brain tissues for
serving in various neurological and neurosurgical applications such tumors extrac-
tion and Multiple Sclerosis (MS) detection [Filippi, Horsfield, and Ader (1998)].

Magnetic Resonance Imaging (MRI) is the most sensitive technique for detecting
MS lesions [Kamber, Shinghal, Collins, Francis, and Evans (1995);Grossman and
Mcgowan (1998)]. The change in lesion volume over time is often used as an ob-
jective measure of the evolution of the disease. Treatments have recently become
available for MS, which may improve the long-term prognosis for patients [Bene-
dict and Bobholz (2007)] and measuring the change in lesion load is likely to play
an important part in many future phase clinical trials in MS as a secondary measure
of outcome [Miller (2002)].

The most basic form of assessment involves manually tracing the outline of each
MS lesion on each MRI brain slice to compute the total area and volume of lesions
[Filippi, Horsfield, and Ader (1998)]. However, quantitative assessment of MS
lesion is not without difficulty. This is due to their deformable shapes, their loca-
tion across patients which can be significantly different; their intensity and texture
characteristics may vary. The main issues are that many currently-employed im-
age analysis methods are time consuming, and the volumes obtained are operator-
dependent and prone to operator-induced errors [Bazin and Pham (2008); Khayati,
Vafadust, Towhidkhah, and Nabav (2008)]. MS Lesions seen on MRI often have
no clearly-defined borders, and the delineation of such borders is highly subjec-
tive. Many works have addressed the problem of improving the reproducibility
of the measurement of MS lesion volumes using computer-assisted or automated
segmentation methods for Brain MR image.

The Brain MR image segmentation strategies may be broadly classified into boundary-
based, region-based, and hybrid strategies. Boundary-based approaches focus on
delineating the interface between the object and the surrounding co-objects in the
image. Region-based approaches, which are very prevalent in brain MR image
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segmentation, focus on delineating the entire region occupied by the object in the
image rather than its boundary [Ma, Tavares, Jorge, and Mascarenhas (2010); Wu,
Warfield, Tan, Wells, Meier, van Schijndel, Barkhof, and Guttmann (2006) ;Go-
nalves, Tavares, and Jorge (2008)].

1.1 Related Works

Traditional methods commonly approach MS lesion segmentation problem by ap-
plying classification algorithms that rely on a pixel-by-pixel analysis, using pri-
marily image intensities and knowledge issued from probabilitic or topological
atlas [Bazin and Pham (2008);Shiee, Bazin, Ozturk, Reich, Calabresi, and Pham
(2010)]. Neighborhood relations may be encoded through a Markov random field
(MRF) model or other neighborhood statistics [Khayati, Vafadust, Towhidkhah,
and Nabav (2008)]. However, we are unaware of an approach that uses regional
statistical properties related to shape, boundaries and texture at different scales.
A few automatic and semi-automatic segmentation methods have been designed
specifically for MS detection.

A common approach for performing automatic lesion segmentation involves mod-
eling the distribution of intensities in healthy brain MR images as a Gaussian Mix-
ture Model (GMM) and then segmenting the lesions as outliers of this model. [An-
beek, Vincken, van Osch, Bisschops, and van der Grond (2004)] combined a K-
Nearest Neighbor (KNN)classifier with an elastic template registration to segment
the MS brains. In addition to intensity features provided by the input images, the
classifier also used features from a distance map generated from a digital template.
The method iterates between KNN classification and elastic registration of the dig-
ital template to the hard segmentation of the MS brain generated by the classifier
to refine the segmentation of structures and lesions. A similar approach is intro-
duced by [Wu, Warfield, Tan, Wells, Meier, van Schijndel, Barkhof, and Guttmann
(2006)] where intensity-based KNN classification is followed by a template-driven
segmentation and partial volume artifact correction technique to improve the clas-
sification. In another work [Warfield, Dengler, Zaers, Guttmann, Wells, Ettinger,
Hiller, and Kikinis (1995)] used GMM to classify the major brain tissues and an
elastically registered template is used to distinguish the healthy gray matter (GM)
from (WM) combined with MS lesions. Lesions are then separated from (WM)
using a minimum distance classifier.

In their work [Zijdenbos, Dawant, Margolin, and Palmer (2000)] developed an au-
tomatic segmentation method for T1-, T2-, and proton density (PD)-weighted im-
ages based on a supervised artificial neural network classifier and validated it exten-
sively on multicenter clinical trial. [Zijdenbos, Forghani, and Evans (2000)] used a
Gaussian mixture distribution and bias field correction to identify major brain tis-
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sues and separate them from the lesions. [Van Leemput, Maes, V, Colchester, and
Suetens (2001)] extended this framework by incorporating a probabilistic brain at-
las along with neighborhood constraints.

[Ait-Ali, Prima, Hellier, Carsin, Edan, and Barillot (2005)]used an Enhanced Like-
lihood Estimator (ELE) to estimate a GMM from different time points. A Maha-
lanobis distance was used to distinguish the lesions from healthy tissue, and inten-
sity constraints were imposed after this step to reduce the false positives. More re-
cent methods further combined a ELE with a mean shift algorithm [GarciaLorenzo,
Prima, Collins, Morrissey, and Barillot (2008)] or a Hidden Markov chain [Bricq,
Collet, and Armspach (2008)]. [Souplet, Lebrun, Chanalet, and Ayache (2008)]
used a TLE to segment the healthy tissue from T1 and T2 sequences, and derived
a threshold from parameters of the healthy brain to delineate the lesions on an en-
hanced FLuid-Attennuated Inversion Recovery (FLAIR) sequence. These methods
also segment lesions as outliers of the normal brain distribution. Instead of mod-
eling lesions as outliers of a distribution, other methods model lesions as a sep-
arate class. [Harmouche, Collins, Arnold, Francis, and Arbel (2006)] introduced
an unsupervised Bayesian lesion classifier with different intensity distributions for
different regions of the brain. Lesions are segmented based on posterior proba-
bilities and entropy values. [Freifeld, Greenspan, and Goldberger (2009)] used a
constrained GMM to model the image and active contours to delineate lesions. Su-
pervised classifiers that model lesions as distinct classes have also been used. [Nett
(2001)] focused on Bayesian classifier. They improved the statistical classifier by
non-parametric modeling of class conditional probabilities using parzen window
and by a priori probabilities modeling of the class probabilities through a Markov
random field (MRF) model. In addition, quantification was carried out by calculat-
ing the total volumes of normal and diseased (lesions) tissues.

[Wu, Warfield, Tan, Wells, Meier, van Schijndel, Barkhof, and Guttmann (2006)]
tested three algorithms and proposed to combine template-driven segmentation, de-
formable anatomical atlas, and a heuristic connectivity-based Partial Volume Effect
correction component, demonstrating the highest accuracy. [Wu, Warfield, Tan,
Wells, Meier, van Schijndel, Barkhof, and Guttmann (2006)] expanded this method
to a multi-channel MRI segmentation for detection of subtypes of MS lesions, im-
proving sensitivity, specificity, and accuracy. [Souplet, Lebrun, Chanalet, and Ay-
ache (2008)] perform automatic multi-stage segmentation for MS lesion from three
MRI sequences (T1, T2 and T2-FLAIR). As a first step the images are normalized
where the region of interest are focused. Secondly, a classification of the brain is
performed based on expectation maximization algorithm [GarciaLorenzo, Prima,
Collins, Morrissey, and Barillot (2008)] applied on the T1 and T2 sequences. In
a third step, information given by the obtained segmentations and morphological



Semi-automatic Segmentation of Multiple Sclerosis Lesion 99

operations are used to extract lesions. [Admiraal-Behloul, van den Heuvel, Olof-
sen, van Osch, der Grond, van Buchem, and Reiber (2005)] used a grouping arti-
ficial immune network to segment the brain from T1 and T2 sequences, extracted
CSF from the T1 image, and segmented the lesions on the T2 image with masked
cerebro-spinal fluid (CSF).

Recently, a new approach is proposed for fully automatic segmentation of MS le-
sions in fluid attenuated inversion recovery (FLAIR) Magnetic Resonance (MR)
images. The proposed approach, based on a Bayesian classifier, utilizes the Adap-
tive Mixtures Method (AMM) and Markov random field (MRF) model to obtain
and upgrade the class conditional probability density function and the a priori prob-
ability of each class. [Shiee, Bazin, Ozturk, Reich, Calabresi, and Pham (2010)]
proposed in their paper a fully automatic segmentation method based topological
atlas. To compare the performance of the proposed approach with those of previous
approaches including manual segmentation, the similarity criteria of different slices
related to 14 MS patients were calculated. Also, volumetric comparison of lesions
volume between the fully automated segmentation and the gold standard was per-
formed using correlation coefficient. The results showed a better performance for
the proposed approach, compared to those of previous works.

1.2 Our Contribution

This paper introduces a novel semi automatic segmentation method based on a
combination of a powerful multiscale classification based a variational Dirichlet
process and region based active contours model. By combining segmentation and
classification, we are able to utilize integrative, regional properties that provide
regional statistics, characterize their overall shapes, and localize their boundaries.
Our method offers the following advantages. First, it relies on an variational seg-
mentation method, multiscale classification approach to provide a hierarchical de-
composition of a MRI scan in only linear time complexity. Second, we incorporate
an novel rich set of multiscale features to guide the active contours segmentation
and to characterize MS lesions. We further calculate a Bhattachryya distance to dis-
criminate MS lesion. Third, our method is general and flexible, and can be adapted
to handle other, similar medical problems. Fourth, similar to other approaches, the
method is semi-automatic and can fully automatic due to the use of a probabilistic
brain atlas. We further use atlas data to identify the cerebellum due to the difficulty
in detection of MS in this area. Finally, our algorithm provides a soft classification
result with different levels of MS disease probability rather than just a binary result.
As the anticipated extent of the lesions may vary significantly between experts, this
property can be valuable for clinical analysis.

The paper is organized as follows. In next section we introduces the segmentation
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method, in section II presents the feature extraction method, and Section III de-
scribes the classification based Dirichlet Process in our segmentation method. In
Section IV, experiments on two types of brain MRI data are presented. Section V
follows with a discussion and conclusions.

2 Method

2.1 Segmentation method

MS lesions are not randomly distributed throughout the brain or white matter,
but are known to occur more frequently in certain locations and have character-
istic sizes [Filippi, H. van Waesberghe, A. Horsfield, Bressi, Gasperini, A. Yousry,
L. Gawne-Cain, Morrissey, A. Rocca, Barkhof, J. Lycklama-Nijeholt, Bastianello,
and H. Miller (1997)]. The pathological features of MS lesions vary widely, but the
result is usually an increase in the water content, and of the tissue water within le-
sions [Johnston, Atkins, Mackiewich, and Anderson (1996)]. The incorporation of
domain-specific prior information is therefore in three parts. The first relates to the
known intensity characteristics of the image feature-in this case MS lesions-relative
to the surrounding non-feature pixels. The second consists of a probabilistic model
of the spatial variation in the size characteristics of the features. Finally, we incor-
porate a probabilistic model of the known spatial distribution of the feature. The
probabilistic models for size and distribution of MS lesions were derived from a
sample of 280 MRI scans from the MS patient population, with the lesions manu-
ally segmented by domain experts.

2.1.1 Intensity Hints

Often, the intensity distribution of image features relative to the background non-
feature pixels is non-Gaussian, but well characterized. For example, on PD-weighted
images, MS lesions are brighter than the background tissue and CSF, and very
bright pixels adjacent to a seed pixel would always be considered part of the lesion,
regardless of the brightness relative to the mean. Thus, an intensity hint allows the
intensity distribution in the feature to be highly skewed, where our domain knowl-
edge tells us that these pixels must be part of the feature.

2.1.2 Construction of the Prior Distributions

A sample of 14 MS patients was used as a representative selection from the pop-
ulation. All were scanned as part of other MRI-based studies using a double-echo
pulse sequence, and all had given written informed consent for their scans to be
used for research purposes. All scans were acquired with 0.94-mm in-plane resolu-
tion, 3-mm slice thickness, a 512x512 image matrix, and 521 slices covering the en-
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tire brain. The patients were from three MS disease subtypes (primary-progressive,
relapsing-remitting, and secondary progressive), with 6 woman patients and 8 man
patient. The subgroups have different typical lesion volumes [Anbeek, Vincken,
van Osch, Bisschops, and van der Grond (2004)] and possibly different spatial dis-
tributions. However, when we examined visually the spatial distribution for the
subgroups individually, we found no discernible differences between them except
for an intensity scaling because of the differences in mean lesion volume. Thus,
it was decided to combine scans from all three subgroups to form a single tem-
plate. In figure (1) we represent two slice from template images for MS patients,

Figure 1: Two representative slices from the template images formed from 14 MS
patients, from left to right, the T1 MR images are represented, the pre ventricular
structure are represented and the extracted brain structure are represented

where the lesions have been outlined using the contouring method, on the left is the
proton-density weighted template; center is the lesion probability; and on the right
is the lesion feature size image. Intensity scale applies to the lesion probability im-
ages. Note the high frequency of occurrency of lesions in the periventricular areas,
particularly around the horns of the lateral ventricles, a well-documented feature
of typical MS lesions. Feature size image is noisy in locations where there are few
lesions amongst the 14 patients at that location, and so the feature size estimate
is based on only a few data The lesions on each scan were identified by a neurol-
ogist with neuroimaging expertise, and outlined by an experienced neurologist or
technician, who delineated the borders as ROIs using the contouring method [He,
Peng, Everding, Wang, Han, Weiss, and Wee (2008)]. Three sets of involved in the
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segmentation of all patient subgroups. It is expected that any errors in segmenta-
tion would be averaged out over the large sample of 14 patients, unless such errors
are systematic as could result, for example, if lesions in certain locations are less
distinct and more difficult to delineate. In order to form the lesion size and proba-
bility maps, it was first necessary to register all images into a standard anatomical
space. First, the PD images from all patients were averaged to form an initial target
image.The target was then down-sampled from the original 512X512x512 pixels
to 256x256x256 pixels. Next, each of the PD images was registered to the target
image, and the registered images were averaged to form a new target image. This
process was repeated five times, when no substantive changes were seen in the tar-
get after a further iteration. Registration was performed using the root mean square
difference in intensity as the similarity measure to assess the difference between
the target and registered images [Wells, Grimson, Kikinis, and Jolesz (1996)], and
the types of deformation of the registered image allowed were rigid body (trans-
lation and rotation) and scaling in three orthogonal directions. Intensity rescaling
was performed as part of the registration procedure so that all registered images
contributed equally to the final average PD template image. Two representative
slices from the resulting average PD template image are shown in in fig. 1. Using
the lesion ROIs as a mask, binary images of the lesions were produced for each pa-
tient, which were then transformed to the coordinate space of the template image,
using the same transform as was found when registering the PD image to the tem-
plate. The transformed binary images were then summed, divided by the number of
patients in the sample, and downsampled to 256x256x256 pixels, to give the prob-
ability (relative frequency) of lesion occurrence at each anatomical position. This
downsampling provides additional spatial smoothing so that the lesion frequency
map can be constructed using a smaller patient sample. Furthermore, any subse-
quent slight errors in registration to the template will have minimal impact because
of the spatial smoothing

2.2 Active Contours Model based Statistical knowledge

The basic idea consists of finding a regular closed curve ∂Ω discriminating the
image domainΩI into pair-wise disjoint regions. For an image I : Ω⊂ R2→ R+ de-
fined on an open and bounded domain Ω. Binary segmentation consists of finding
a regular closed curve ∂Ω partitioning the domain Ω into image partition. Image
partitioning P(Ω) can be calculated by the Maximum A Posteriori (MAP) of par-
titioning probability p(P(Ω)| I). In Bayesian Framework partitioning probability
can be expressed as:

p(P(Ω)| I) ∝ p( I|P(Ω)) p(P(Ω)) (1)
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where image-based cues in the first term, represented as data likelihood and related
to the region statistics is separated from second term corresponding to the geometric
properties of the partition. The basic idea is to obtain the best ∂Ω by maximizing
the conditional probability:

∂ Ω̂ = argmax

log
(

1
p(P(Ω))

)
︸ ︷︷ ︸

Eb(∂Ω)

+β log
(

1
p( I|P(Ω))

)
︸ ︷︷ ︸

Eimage(Ω,I)

 (2)

In equation (2), the first term corresponds to the geometric properties of the parti-
tion P(Ω). [Chan and Vese (2001);Cremers, Schnorr, and Weickert (2001)] con-
sider the geometric properties of the partition that which favour a short length of
partition boundary:

p(P(Ω)) = e
−
∫

∂Ω

kb(x,∂Ω)da(x)
(3)

where ∂Ω is the contour curve and kb (x,∂Ω) is boundary descriptor. The second
energy term on the right side allows integrating texture descriptor. Although sev-
eral texture energies and shape energies have been proposed in [O. Michailovich
and Tannenbaum (2007)], most of them need a weighting β factor to balance the
two energy’s functional in order to make both of them equally important to the seg-
mentation. In Equation (2), the second term p( I|P(Ω)) gives easier model than
the posterior distribution p(P(Ω)| I). The second the term in equation (2) allows
introducing prior knowledge. For that we assume that image partitioning P(Ω)
consider only two pairwise {Ω1,Ω2} disjoint regions (Ω1∩Ω2) = φ . This can be
summarized as:

• all the probabilities of observing an image I when Ω1,Ω2 partitions are
equally possible: p( I|{Ω1,Ω2})= Bat (Ω1,Ω2) where Bat is the Bhattacharyya
matching function [O. Michailovich and Tannenbaum (2007)].

• the pixels within each region are independent:

p( I|Ωi) = ∏
x∈Ωi

pi (x) i = 1,2

Then the a posteriori probability can be expressed as:

p(P(Ω)| I) ∝ Bat (Ω1,Ω2)e
−
∫

∂Ω

kb(x,∂Ω)da(x)
(4)
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The Maximization of the a Posteriori Probability (MAP) in equation (4) can be done
by minimizing its log-likelihood. The corresponding energy to MAP in equation
(4) is expressed as:

E (∂Ω,Ω1,Ω2) =
∫

∂Ω

kb (x,∂Ω)da(x)+β log
(

1
Bat (Ω1,Ω2)

)
(5)

This also can be written using descriptor formulation as:

E (∂Ω,Ω1,Ω2) =
∫

∂Ω

kb (x,∂Ω)da(x)

︸ ︷︷ ︸
Eb(∂Ω)

+β

∫
Ω

kr (x,Ω)dx

︸ ︷︷ ︸
EImage(I,Ω)

(6)

Also, the region descriptor can be defined as Bhattacharyya distance [Rauber, Braun,
and Berns (2008)]between two the probability densities defined as:

E (∂Ω,Ω1,Ω2) =
∫

∂Ω

kb (x,∂Ω)da(x)

︸ ︷︷ ︸
Eb(∂Ω)

+βEimage (I,Ω)
(7)

Where the statistical energy can be expressed as: Eimage (I,Ω) = log
(

1
Bat(Ω1,Ω2)

)
where is the Bhattacharyya coefficient given by [Rauber, Braun, and Berns (2008);
O. Michailovich and Tannenbaum (2007)]:

Bat (Ω1,Ω2) = p( I|{Ω1,Ω2}) =
√∫

Ω

p( I|Ω1) p( I|Ω2)dx (8)

The minimization of such energy functional can be efficiently implemented using
the level set framework. Gaussians Mixture Model (GMM) represents straight-
forward uniform regions but fail to properly represent more complicated region
statistics [Kim, III, Yezzi, Çetin, and Willsky (2005)]. We therefore estimate den-
sity by Parzen kernel, which can better describe the regions. This method estimates
the PDF based on the histograms, using a smoothed Gaussian kernel:

p(I,Ωi) =
1
|Ωi|

∫
Ωi

kσ (I− I (Ωi))dx (9)

where kσ denote the Gaussian kernel. Others authors proposed to employ Kullback-
Leibler [?] and claims that this distance give better resultants comparing to the
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maximum likelihood. The minimization of such energy functional can be effi-
ciently implemented using the level set framework. In the level set framework
representation, a contour is the zero level set of an embedding function φ : Ω ⊂
R2→ R,C (t) = {x ∈Ω|φ (x) = 0}. The energy functional in Equation (4) can now
be expressed in level set framework as:

E (φ) =
∫
Ω

|∇H (φ)|dx+β

√∫
Ω

p( I|Ω1) p( I|Ω2)dx (10)

The corresponding Euler-Lagrange evolution equation for φ is given by:

∂φ

∂ t
= δ (φ)

(
div
(

∇φ

|∇φ |

)
−βVBat

)
(11)

where H (φ)and δ (φ) = dH(φ)
dφ

respectively are the regularized Heaviside and Dirac
delta functions respectively. In order to produce two regions, the MS lesion re-
gion Ω1 and the brain tissues Ω2, with two pdfs as disjoint as possible, the en-
ergy the functional is maximized, w.r.t the evolving domain Ω , is done with the
shape derivative tool [S. Jehan-Besson (2003)]. Thus, the Eulerian derivative of
Eimage (I,Ω) in the direction ξ is as follows:〈

∂Eimage (I,Ω)
∂ t

,ξ

〉
=
∫

∂Ω

VBat

〈
ξ ,
−→
N (s)

〉
ds (12)

where the Bhattacharyya velocity is expressed as:

VBat =
1
2

(
1
|Ω1|
− 1
|Ω2|

)√
p(I,Ω1) p(I,Ω2)

+1
2

(
1
|Ω2|

) ∫
R+

√
p(I,Ω1)
p(I,Ω2)

(
kσ (I− I (Ω))−

√
p(I,Ω2)

)
−1

2

(
1
|Ω1|

) ∫
R+

√
p(I,Ω2)
p(I,Ω1)

(
kσ (I− I (Ω))−

√
p(I,Ω1)

) (13)

3 Region statistics in a multi-dimensional feature space

The Probability Density Functions (PDF) chosen to represent p( I|Ω1), p( I|Ω2)
should:

• Capture the distribution of values in the region.

• Discriminate between the two regions.
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MRI data usually has more than one modality (T1, T2, PD, FLAIR, T1-Gado). In
addition, for analyzing the texture information in the MRI images we extract a set of
features that better capture the image local scale and frequency. We therefore need
to generalize the above formulation to vector valued data. Let χ = {I1, I2, ..., Im}
be the set of feature images. If we assume the features to be independent of each
other [Bouguila and Ziou (2004); ], the total a posteriori probability of the re-
gion Ωi,(i = 1,2) is:

p(χ|Ωi) =
m

∏
j=1

p
(

I j
∣∣Ωi
)

=
m

∏
j=1

∏
x∈Ωi

pi, j (x) (14)

The independence hypothesis might not be valid in the case of significant correla-
tion among features. In such a case the set features can be considered as multivari-
ate data, where each pixel location corresponds to a dimensional vector [Bouguila
and Ziou (2007)]. But estimating high dimensional nonparametric densities are
high computational cost. We propose a clustering approach to handle the multi-
variate image data. The clustering features, was previously proposed by [Bouguila
and Ziou (2006)], to identify texture patterns in a feature space but in the con-
text of normalized cuts segmentation. Clustering has been proven to be a very
effective method in image segmentation. Among them K-mean, spectral cluster-
ing, and probabilistic models [Bouguila and Ziou (2004);Bouguila (2008)] have
been proposed and have been used often. One common problem with many of the
clustering algorithms is that they are often parametric, in other words they find a
pre-specified number of clusters. [Kurihara, Welling, and Vlassis (2006);Kurihara,
Welling, and Teh (2007)] proposed a simple nonparametric probabilistic algorithm
based on Dirichlet Processes (DP). Despite the simplicity since it uses a Gibbs sam-
pling approach we feel that can be a slow algorithm to be applied in many image
analysis area.
Most active contours based segmentation methods are used in an unsupervised set-
ting where the region statistics are refined as the curve evolves [He, Peng, Everding,
Wang, Han, Weiss, and Wee (2008)]. This might be quite effective if the region
statistics are discriminative enough. But, as mentioned earlier, one of the main
problems in MS segmentation is that the appearance of MS and surrounding tissue
are not always obviously separated (not even in the feature space). We therefore
have to use additional prior information to help the segmentation. The MS doesn’t
have a particular shape prior. In addition, the surrounding tissues such as the ven-
tricles can be deformed and therefore don’t preserve a shape prior. We therefore
chose to use a prior on the appearance that better disambiguate the two regions. We
used manually labeled data for getting an initial statistics for tumour/brain regions
in the clustered feature space. More and ventricles when part of the ventricles are
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incorrectly segmented as MS. We designed a prior that penalizes the clusters pre-
dominant in the ventricles from having a high probability in the MS. Hence, we
assumed appearance priors for (p1, p2) skewed in such a manner that those promi-
nent clusters in ventricles have a very low prior probability and the rest of the
clusters have uniform probability. We used images with manually segmented MS
and ventricles to identify the overlapping clusters. Given D =

[
Î(1), Î(2), ..., Î(N)

]
a

set of training cluster images. We denote θ the probability of cluster K and regard
θ = {θ1,θ2, ...,θK} as parameters of a Bayesian system.
Following the Dirichlet distribution, the posterior probability of a cluster is:

pi

(
Î (x) = k

∣∣∣D)=
∫

pi

(
Î (x) = k

∣∣∣D,θ
)

p(θ |D)dθ

=
∫

θk p(θ |D)dθ = Ep( θ |D) [θk]
(15)

The posterior of p(θ) is again following a Dirichlet distribution, we get:

pi

(
Î (x) = k

∣∣∣D)= Ep( θ |D) [θk] =
αk +Mk

∑
k

αk +∑
k

Mk
(16)

where MK’s are the counts of the clusters in the training data. We can observe that
by choosing a relatively low value for αk, we can suppress the posterior probabil-
ity of the cluster k. The posteriors (p1, p2) give the MS lesion, WM, GM, CSF
probabilities in equation (6):

Preprocessing (1) Preprocessing and feature extraction (2) Clustering features (3)
Compute WM probability prior and PDF of MS lesion , noted p1 and p2 Segmen-
tation:

4 Evaluation of Segmentation results

Numerous evaluation segmentation methods are presented in literature [D. Martin
(2004)].The performance the segmentation results were quantitatively compared
against the "gold standard" using four different similarity measures :

F (P, R) =
2PR

P+ R
(17)

F-measure (F), percentage of correct estimation (P), percentage of over estima-
tion R. The four similarity measures are formally defined as: where P precision
descriptor measures segmentation precision, defined as:

P =
#(S∩M)

#(S)
(18)
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Figure 2: Our method flow chart and the different steep for MS lesion segmentation

And Ras a recall descriptor measuring the consistency of the reference segmenta-
tion, defined as:

R =
#(S∩M)

#(M)
(19)

and are the numbers of pixels of contours respectively for segmented surface and
the reference surface . indicates the number of pixels belonging to segmented con-
tours and reference contours (segmentation realized by expert). As well as as-
sessing the reproducibility of the lesion volumes, we also required to evaluate the
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degree to which the lesion pixels determined on each analysis corresponded spa-
tially.
If the lesion surface correspond to a high degree, but are determined using a differ-
ent set of pixels, then other factors must be at work when an observer determines
the lesion surface. If an observer delineates a set of pixels , on a scan on one oc-
casion and a different set of pixels , on a second evaluation, then we define the
concordance between the two measures as:

Concordance =
#(S∩M)
#(S∪M)

(20)

When exactly the same sets of pixels are delineated on both occasions, the con-
cordance will be 100; when there is no overlap of the pixels delineated, the con-
cordance will be zero. In order to assess the concordance on the scan-rescan eval-
uations, it is, of course, first necessary to spatially register the two scans in order
that the pixel locations correspond anatomically. The registration was performed
using the root mean square difference in intensity as the similarity measure [cited-
erraz05], and allowing a rigid-body transform (translation and rotation).
The same transform was applied to a binary lesion image produced by using the
lesion ROIs as a mask, with linear interpolation. The resulting transformed lesion
image was, however, blurred by the interpolation process and it was necessary to
threshold this transformed image to produce a new binary lesion image. The thresh-
old level was set so that the lesion volume in the transformed image was the same as
the volume in the original untransformed binary image. The degree of concordance
was then assessed using (15).

5 Experiments results

5.0.1 MRI Scanning

A total of 14 definite MS patients, including 8 female and six male with average age
of 40 years old, were selected in this study according to the revised Mc Donald cri-
teria 2005 [Wu, Warfield, Tan, Wells, Meier, van Schijndel, Barkhof, and Guttmann
(2006)]. Mean disease duration for the patients was five years. For all patients the
same MR images were obtained via a GE 1.5T scanner. All images were acquired
according to full field MRI criteria of MS in T2-w, T1-weighted (T1-w), Gadolin-
ium enhanced T1-weighted, and FLAIR in axial, sagittal and coronal surfaces. We
selected the FLAIR images, especially axial ones, with lesions in deep, priventric-
ular, subcortical, and cortical white matters (supratentorial lesions). More lesion
load and higher accuracy of FLAIR in revealing of these MS lesions were the rea-
son for this selection. Also, FLAIR is especially helpful for pri-ventricular lesions
closely opposed to an ependymal surface, where they may be obscured by the high
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signal CSF on T2-w images. Scan parameters of, repetition time (TR)/echo time
(TE)/inversion time (TI), for FLAIR images were 9000/144/2500 ms, TR/TE for
T1-w images were 424/10 ms and TR/TE for T2-w images were 3820/105 ms.
Each image volume consisted of averagely 40 slices.

As a preprocessing step, the images first had to be scaled. Therefore the range
between zero intensity and maximum intensity, M, in the original 12-b data (I) was
scaled to a new intensity (IS) between 0 and 255 (8-bit) which is obtained by: IS
=I/M*255.

Figure 3: Example segmentations using the active contour model; Left column
shows segmentations lesions are outlined in yellow. Left column shows segmenta-
tions using manual contouring that are broadly similar, but differ in detail

Table 1: Quantitative evaluation of the segmentation

Method Our Navee Khyati Van Lempt
method method method Method

Error 8% 8% 12% 13,2%
P 80% 80% 75% 65%
R 80% 80% 75% 65%
Concordance 79% 79% 72% 68%
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Figure 4: Precision of our method in term of F-measure

Figure 5: Precision of Navee method in term of F-measure
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Figure 6: Precision of Khiyati method in term of F-measure

Figure 7: Precision of Van lempt method in term of F-measure



Semi-automatic Segmentation of Multiple Sclerosis Lesion 113

This preprocessing enables us to make use of all dynamic range of 256 levels, and
also immune the images from the variation in their intensity. The pixel size was
1mm2, and the slice thickness was 3mm without any gap. For a better evaluation
of the proposed method, we investigated supratentorial FLAIR slices, 20 slices
per patient in average. The selection of slices was based on presence of lesions,
with clear boarders, which enable careful outlining in manual segmentation by our
colleagues, a neurologist and a radiologist. At least five slices from each of four
patients (at least 20 slices), and 12 slices (in average) from each of the rest, 14
patients, were selected. Thus, totally 217 slices were used. We see that the proposed
method is the most ability to detect MS and has the best F-measure score. For each
descriptor we reach the best score for method when Dirichlet prior is integrated.

6 Conclusion

We have presented segmentation method based statistical based appearance priors
for brain MS segmentation. Existing region-based segmentation methods based on
texture features are not suited for MS segmentation as they are not discriminative
enough when the appearance of MS and normal tissue overlap. Using priors on the
brain/MS appearance calculated on a set of clustered features extracted from the
MRI images, we are able to disambiguate the MS lesion from the brain tissue.
We have shown a novel high performance method for the segmentation of MS le-
sions. One of the main features of this scheme is that it can segment different struc-
tures with the same intensity level range. Our scheme also shows some advantages
with respect to automatic methods, because it is fairly stable for the segmentation
of MS lesion and no image-atlas registration is needed, which is usually a perfor-
mance bottleneck in other methods. On the other hand, the whole execution time
is to be increased around one more minute in order take into account the user in-
teraction to train the classifier. The algorithm shows a high accuracy, depending
essentially on the training data-set selected by a medical expert, and it performs re-
ally well using multichannel intensity compared to segmentations carried out with
only one channel, which is a clear advantage for clinical applications. It is useful
for interactive segmentation due to its high performance and the facility to add or
remove training prototypes to improve the results. The applications of this method
go well beyond MS segmentation since it can be used to segment almost every type
of image modalities.
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