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Galerkin Solution of Stochastic Beam Bending on Winkler
Foundations
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Abstract: In this paper, the Askey-Wiener scheme and the Galerkin method are
used to obtain approximate solutions to stochastic beam bending on Winkler foun-
dation. The study addresses Euler-Bernoulli beams with uncertainty in the bending
stiffness modulus and in the stiffness of the foundation. Uncertainties are rep-
resented by parameterized stochastic processes. The random behavior of beam
response is modeled using the Askey-Wiener scheme. One contribution of the pa-
per is a sketch of proof of existence and uniqueness of the solution to problems
involving fourth order operators applied to random fields. From the approximate
Galerkin solution, expected value and variance of beam displacement responses
are derived, and compared with corresponding estimates obtained via Monte Carlo
simulation. Results show very fast convergence and excellent accuracies in com-
parison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented
herein is shown to be a theoretically solid and numerically efficient method for the
solution of stochastic problems in engineering.

Keywords: Euler-Bernoulli beam, Galerkin method, Winkler foundation, Askey-
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1 Introduction

The field of stochastic mechanics has been subject of extensive research and signifi-
cant developments in recent years. Stochastic mechanics incorporates the modeling
of randomness or uncertainty in the mathematical formulation of mechanics prob-
lems. This is in contrast to the more established field of structural reliability, where
uncertainty and randomness are also addressed, but where problem solutions are
obtained mainly based on deterministic mechanics models.
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The analysis of stochastic engineering systems has received new impulse with use
of finite element methods to obtain response statistics. Initially, finite element so-
lutions were combined with the Monte Carlo method, and statistics were obtained
from realizations of system response. This system sampling technique was em-
ployed by Yamazaki, Shinozuka and Dasgupta (1988), who used the Neumann
series to obtain realizations of the system. Hisada and Nakagiri (1981) introduced
the perturbation technique to obtain the statistics of system response. Araújo and
Awruch (1994) used the same technique to obtain response statistics for non-linear
structures subject to static and dynamic loading.

At the end of the 80’s, Spanos and Ghanem (1989) used the Galerkin finite ele-
ment method to solve a stochastic beam bending problem, where Young’s modulus
was modeled as a Gaussian stochastic process. The space of approximate solutions
was built using the finite element method and chaos polynomials. These polyno-

mials form a complete orthonormal system in L2 (Ω,F ,P) = Ψ
L2(Ω,F ,P), where

Ψ = span [{ψi}∞

i=0] is the space generated by the chaos polynomials, and (Ω,F ,P)
is a probability space. The ideas presented in this study were innovative and repre-
sented a new method to solve stochastic problems.

Babuska, Tempone and Zouraris (2005) presented a stochastic version of the Lax-
Milgram lemma. The paper presents a hypothesis which represents limitations to
the modeling of uncertainty via Gaussian processes. For certain problems of me-
chanics, use of Gaussian processes can lead to loss of coercivity of the bi-linear
form associated to the stochastic problem. This difficulty was encountered in a
study by the author (Silva Jr., 2004) and resulted in non-convergence of the so-
lution for the bending of Kirchhoff plates with random parameters. This lack of
convergence was due to the choice of a Gaussian process to represent the uncer-
tainty in some (strictly positive) parameters of the system. This failure to converge
also affects solutions based on perturbation or simulation methods. Despite this
fact, it is easy to find scientific papers published in the 90’s that used stochastic
Gaussian processes to model intrinsically limited or strictly positive properties. In
this line, it is possible to quote: Liu and Liu (1996) studied the spectral response of
concrete structures with uncertainty in material properties and in ambient tempera-
ture; Anders and Hori (1999) applied the method in non-linear problems involving
bodies with elastoplastic behavior and uncertain strength-related mechanical prop-
erties. Elman and Furnival (2007) applied a multiscale strategy to obtain numerical
solutions to the steady state diffusion problem with uncertainty in the diffusion co-
efficient. In this last reference, the Karhunen-Loève expansion is used to model
stochastic diffusion as a Gaussian process. The authors recognize the technical in-
consistency of their approach, but they justify it by some heuristics and by limiting
their examples to small variances of the diffusion coefficient. Such reasoning is not
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sufficient to ensure existence and uniqueness of solutions, following the theorical
results by Babuska and Chatzipantelidis (2002). It is important to mention that with
a suitable choice of parameters it is acceptable to use a beta distribution instead of
a Gaussian distribution with small variance. Such an approach would satisfy the
technical issues of existence, uniqueness and of uncertain representation.

Considering what has been exposed, the present paper introduces an original ap-
plication of the Lax-Milgram lemma to justify the existence and uniqueness of the
solution of an Euler-Bernoulli beam bending problem. The beam is supported on a
Winkler foundation, and uncertainty is considered in beam and foundation stiffness
parameters.

The Askey-Wiener scheme was presented by Xiu et al. (2002). This scheme repre-
sents a family of polynomials which generate dense probability spaces with proba-
bility measures defined on limited support. This enhances the possibilities for un-
certain system parameter modeling. In recent years, much effort is being addressed
at representing uncertainty in stochastic engineering systems via non-Gaussian pro-
cesses.

The stochastic beam bending problem has been studied by several authors. Baker
and Zeitoun (1990) employed the Adomian method to evaluate convergence proper-
ties and estimates of the first and second order moments of the stochastic displace-
ment process for an infinite beam on Winkler foundation. Vanmarcke and Grigo-
riu (1983) studied the bending of Timoshenko beams with random shear modulus.
Elishakoff, Ren and Shinozuka (1995) employed the theory of mean square cal-
culus to construct a solution to the boundary value problem of beam bending with
stochastic bending modulus. Ghanem and Spanos (1991) used the Galerkin method
and the Karhunen-Loeve series to represent uncertainty in the bending modulus by
means of a Gaussian process. Chakraborty and Sarkar (2000) used the Neumann se-
ries and Monte Carlo simulation to obtain statistical moments of the displacements
of curved beams on Winkler foundation, with uncertainty in the elasticity modulus
of the foundation. Singh and Kumar (2008) used finite element and perturbation
methods to obtain the statistics of the transverse displacement of a composite plate
on a non-linear Winkler/Pasternak foundation. The papers cited above presented
numerical solutions to the stochastic beam bending problem, but none addressed
the issue of existence and uniqueness of the solutions.

In this paper, the Galerkin method is used to obtain approximate solutions for the
bending of Euler-Bernoulli beams on Winkler foundation, with uncertain beam and
foundation stiffness. This uncertainty is represented by means of parameterized
stochastic processes (Grigoriu, 1995). The approximated solution space is con-
structed using isomorphism properties between Sobolev and product spaces, using
density between continuous functions and Sobolev spaces and using spaces gener-
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ated by L2 (Ω,F ,P) polynomials of the Askey-Wiener scheme (Xiu et al., 2002).
An additional contribution of this paper is use of the Lax-Milgram lemma, for a
brief study about existence and uniqueness of the solution to stochastic beam bend-
ing on Winkler foundation. Two numerical stochastic beam bending examples are
also presented. To evaluate the performance of the developed technique, expected
value and variance of the transverse displacement processes are determined, and
compared with the corresponding estimates obtained via Monte Carlo Simulation.

2 Problem Definition

Let (Ω,F ,P) be a probability space, where Ω is a sample space, F is an σ−lgebra
and P is a probability measure. The stochastic beam bending on Winkler foundation
problem is defined as:

d2

dx2

(
EI.d2u

dx2

)
+κ.u = f , ∀(x,ω) ∈ (0, l)×Ω;

u(0,ω) = u(l,ω) = 0;
d2u
dx2

∣∣∣
(0,ω)

= d2u
dx2

∣∣∣
(l,ω)

= 0, ∀ω ∈Ω;

(1)

where EI and κ are the beam and foundation stiffness coefficients. Both stiffness
coefficients are assumed uncertain in this paper. For the consideration of existence
and uniqueness of the response, the following hypotheses are required:

H1 :


∃α, ᾱ ∈ R?+\{0} , λ ([α, ᾱ]) < +∞ such that,
P({ω ∈Ω : EI (x,ω) ∈ [α, ᾱ] , ∀x ∈ [0, l]}) = 1;

∃β , β̄ ∈ R?+\{0} , λ

([
β , β̄

])
< +∞ such that,

P
({

ω ∈Ω : κ (x,ω) ∈
[
β , β̄

]
, ∀x ∈ [0, l]

})
= 1;

H2 : f ∈ L2 (
Ω,F ,P;L2 (0, l)

)
.

(2)

where λ (·) is a Borel measure: λ ([a,b]) = b− a, following Bartle (1995). Hy-
pothesis H1 ensures that the beam and foundation stiffness coefficients are positive-
defined and uniformly limited in probability. Hypothesis H2 ensures that the stochas-
tic load process has finite variance. Both hypotheses are necessary in order to
employ the Lax-Milgram lemma and guarantee existence and uniqueness of the
solution, as will be seen in the sequence.

2.1 Existence and uniqueness of the solution

In this section, a sketch of the proof of existence and uniqueness of the solution to
the stochastic beam bending problem with random elastic properties is presented.
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For fourth order stochastic operators, no such proof of existence and uniqueness of
the solution has not been found in the literature.

In order to study existence and uniqueness of the solution, the variational problem
associated to the strong form (Eq. 1) needs to be defined. This variational problem
is defined in V = L2 (Ω,F ,P;Q), where:

Q =
{

u : (0, l)×{ω}→ R
∣∣∣∣u(·,ω) ,

d2u
dx2 (·,ω) ∈ L2 (0, l) ,

u(0,ω) = u(l,ω) = 0 ∧ d2u
dx2

∣∣∣∣
(0,ω)

=
d2u
dx2

∣∣∣∣
(l,ω)

= 0

}
,

(3)

and

V ={u : (0, l)×Ω→ R |u is measurable

and
∫
Ω

l∫
0

[
u2 +

(du
dx

)2
+
(

d2u
dx2

)2
]

dxdP(ω) < ∞

 .
(4)

Expression (4) means that, for fixed ω ∈ Ω, u(·,ω) ∈ Q. Similarly, for x ∈ (0, l)
fixed, u(x, ·)∈L2 (Ω,F ,P). Defining the tensorial product between v∈L2 (Ω,F ,P)
and w ∈ Q as u = v.w (Treves, 1967), one should note that, for fixed ω ∈Ω:

u(·,ω) = v(·) .w(ω) ∈ Q,

whereas for fixed x ∈ (0, l),

u(x, ·) = v(x).w(·) ∈ L2 (Ω,F ,P) .

Hence, one has

V = L2 (Ω,F ,P;Q) ;
L2 (Ω,F ,P;Q)' L2 (Ω,F ,P)⊗Q;

}
⇒V ' L2 (Ω,F ,P)⊗Q.

It is also necessary to redefine the differential operator for the space obtained via
tensorial product. The operator Dη

x : V → L2 (Ω,F ,P)⊗L2 (0, l) acts over an ele-
ment u ∈V the following way (Matthies and Keese, 2005):

Dη
x u :

(
dη v
dxη

)
(x) .w(ω) , (5)

where η ∈ N and V is a Hilbert space, with internal product defined as

(u,v)V =
∫
Ω

l∫
0

(
u.v+D2

xu.D2
xv
)
(x,ω)dxdP(ω). (6)
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The bilinear form a : V ×V → R is defined as,

a(u,v) =
∫
Ω

l∫
0

(
κ.u.v+EI.D2

xu.D2
xv
)
(x,ω)dxdP(ω). (7)

Finally, the variational problem associated to the strong form (Eq. 1) is defined as:{
Findu ∈V such that
a(u,v) = `(v) , ∀v ∈V.

(8)

In Eq. 8, ` : V → R is a linear functional, defined as:

`(v) =
∫
Ω

l∫
0

( f .v)(x,ω)dxdP(ω) . (9)

From the hypotheses of limited probability, one can show that the bi-linear form
has the following properties:

Continuity:

|a(u,v)| ≤
∫
Ω

l∫
0

∣∣ᾱ.u.v+ β̄ .D2
xu.D2

xv
∣∣dxdP

≤C


∫
Ω

 l∫
0

|u|2 dx

1/2 l∫
0

|v|2 dx

1/2

dP

+
∫
Ω

 l∫
0

∣∣D2
xu
∣∣2 dx

1/2 l∫
0

∣∣D2
xv
∣∣2 dx

1/2

dP


≤C‖u‖V ‖v‖V ,

(10)

where C = max
{

α,β
}

.

Coercivity:

a(u,u)≥
∫
Ω

l∫
0

(
α.u2 +β .D2

xu.D2
xu
)

dxdP

≥ c
∫
Ω

l∫
0

(
u2 +D2

xu.D2
xu
)

dxdP

= c.‖u‖2
V ,

(11)
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where c = min
{

α,β
}

.

From the continuity and coercivity of the bilinear form, in light of the Lax-Milgram
lemma, one is ensured that the variational problem defined in Eq. 6 has unique
solution, and continuous dependency on the data (Babuska et al., 2005; Brenner
and Scott, 1994).

3 Uncertainty representation

In most engineering problems, complete statistical information about uncertainties
is not available. Sometimes, the first and second moments are the only informa-
tion available. The probability distribution function is defined based on experience
or heuristically. In this paper, the uncertainties on beam bending and foundation
stiffness are modeled by parameterized stochastic processes, obtained from a linear
combination of deterministic functions and random variables (Grigoriu, 1995),

κ (x,ω) =
N

∑
i=1

φi (x)ξi (ω), (12)

where φi ∈C0 (0, l)∩C1 (0, l) , ∀i∈{1, ...,N} are deterministic functions and {ξi}N
i=1

are random variables. To obtain approximate solutions via the Galerkin method, a
formal mathematical representation of the uncertainty is necessary. The Askey-
Wiener scheme is used to represent uncertainty and to construct the solution space
to the beam bending problem on Winkler foundation.

3.1 The Askey-Wiener scheme

The Askey-Wiener scheme is a generalization of chaos polynomials, also known
as Wiener-chaos. Chaos polynomials were proposed by Wiener (1938) to study
statistical mechanics of gases. Xiu et al. (2002) extended the ideas of Ghanem and
Spanos (1991) and Ogura (1972) for polynomials belonging to the Askey-Wiener
scheme (Askey and Wilson, 1985), for the representation of stochastic processes by
orthogonal polynomials. The Cameron-Martin theorem (1947) shows that Askey-
Wiener polynomials form a base for a dense subspace of second order random
variables L2 (Ω,F ,P).
Let H ⊆L2 (Ω,F ,P) be a separable Gaussian Hilbert space and H ? = span [{ξi}∞

i=1]
be an ortho-normal basis of Gaussian random variables. Let Pn (H ) be the vector
space spanned by all polynomials of order less than n:

Pn (H ) =
{

Γ

(
{ξi}N

i=1

)
: Γ is the polynomial

of degree≤ n; ξi ∈H , ∀i = 1, ...,N; N < ∞} ,
(13)
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with

H :0: = P0 (H ) ,H :n: = Pn (H )∩Pn−1 (H )⊥ , (14)

where Pn is the closure of Pn in L2 (Ω,F ,P). Following Jason (1997), the space
L2 (Ω,Σ(H ) ,P) admits the following orthogonal decomposition:

L2 (Ω,Σ(H ) ,P) =
∞

⊕
n=0

H :n:, (15)

where Σ(H ) is a σÒ-algebra generated by H . Hence, any second order random
variable u ∈ L2 (Ω,Σ(H ) ,P) can be represented by a series expansion:

u(ω) = ∑
ι∈I

uι ψι (ξ (ω)), (16)

where ι is a multi-index, I is a set of natural numbers with compact support,
{ψι}ι∈I are chaos polynomials and {uι}ι∈I are coefficients of a linear combina-
tion. In Eq. 16, polynomials ψι are multi-dimensional Hermite polynomials:

ψι (ξ (ω)) =
∞

∏
m=1

hιm (ξm (ω)) , (17)

where hιm (·) is a Hermite polynomial defined in terms of random variable ξm. The
inner product between polynomials ψi and ψ j in L2(Ω,F,P) is defined as

(ψi,ψ j)L2(Ω,F ,P) =
∫
Ω

(ψi.ψ j)(ξ (ω))dP(ω) , (18)

where dP is a probability measure. These polynomials form a total orthonormal
set (Kreyszig, 1989), with respect to the probability measure, with the following
properties:

ψ0 = 1, (ψi,ψ j)L2(Ω,F ,P) = δi j, ∀ i, j ∈ N. (19)

It is important to observe that in Eq. 19 the polynomials are orthogonal with respect
to the standard Gaussian density function of vector ξ .

The Askey-Wiener scheme represents a family of sub-spaces generated by orthog-
onal polynomials obtained from ordinary differential equations (Xiu and Karni-
adakis, 2002). Among them, the Hermite, Laguerre, Jacobi and Legendre poly-
nomials can be cited. These polynomials form a complete orthonormal set in
L2 (Ω,Σ(H ) ,P).
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The orthogonality between the polynomials is defined with respect to a weight
function, which is identical to the probability density function of a certain random
variable. For example, the Gaussian density function is used as weight function to
obtain the orthogonality between Hermite polynomials. Table 1 shows the corre-
spondence between subsets of polynomials of the Askey-Wiener scheme and the
corresponding probability density functions.

The proposal of the Askey-Wiener scheme is to extend the result presented in
Eq. 16 to other types of polynomials. In analogy to Eq. 13, taking Pn (H) =
span

[
{ψi}N

i=1

]
, with H a separable Hilbert space of finite variance random vari-

ables, one has that ? =
⋃

n∈N
Pn (H) is a family of polynomials of the Askey-Wiener

scheme, also a complete orthonormal set in L2 (Ω,F ,P).

Table 1: Correspondence between some random variables and polynomials of the
Askey-Wiener scheme.

Random variable Polynomial Weight function Support

Gaussian Hermite e−
|ξ |2

2 (−∞,+∞)
Gamma Laguerre 1

Γ(ν+1)ξ νe−ξ [0, +∞)

Beta Jacobi 2−(ν+γ+1)Γ(ν+γ+2)
Γ(ν+1)Γ(γ+1) (1−ξ )ν (1+ξ )γ e−ξ [a,b]

Uniform Legendre 1
b−a [a,b]

4 Galerkin Method

The Galerkin method is used in this paper to solve the stochastic beam bending
problem on Winkler foundation, with uncertainties in beam and foundation stiff-
ness coefficients. It is proposed that approximated solutions to the stochastic dis-
placement response of the beam have the following form

u(x,ω) =
∞

∑
i=1

uiυi (x,ω), (20)

where ui ∈ R, ∀i ∈ N are coefficients and υi ∈ V are the test functions. Numerical
solutions to the variational problem defined in Eq. 8 will be obtained. Hence, it
becomes necessary to define spaces less abstract, than those defined earlier, but
without compromising the existence and uniqueness of the solution. Consider two
total orthonormal sets Φ = span [{ϕi}∞

i=1] and , sequentially dense, such that Φ
Q =

Q and Ψ. Define the tensor product between Φ and Ψ as (Treves, 1967),

(ϕ⊗ψ)i (x,ω) = ϕ j(x).ψk (ω) , with ( j, k) ∈ N2. (21)
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To simplify the notation, we will use υi = (ϕ⊗ψ)i. Since approximated numer-
ical solutions are derived in this paper, the solution space has finite dimensions.
This implies truncation of the total orthonormal sets Φ and Ψ. Hence one has
Φm = span [{ϕi}m

i=1] and Ψn = span [{ψi}n
i=1], which results in VM = Φm⊗Ψn, with

dim(VM) and M = m.n. In this way, υi = (ϕ⊗ψ)i is the ith entry of the tensor prod-
uct between the base elements of two spaces with finite dimensions, (Φm and Ψn).
With the above definitions and results, it is proposed that numerical solutions are
obtained from truncation of the series expressed in Eq. 20 at the Mth term,

uM (x,ω) =
M

∑
i=1

uiυi (x,ω) (22)

Replacing Eq. 22 in Eq. 8, one arrives at the approximated variational problemFind {ui}M
i=1 ∈ RM such that

M
∑

i=1
a(υi,υ j) ui = `(υ j) ,∀υ j ∈VM.

(23)

The approximated variational problem (Eq. 23) consists in finding the coefficients
of the linear combination expressed in Eq. 22. Using a vector-matrix represen-
tation, the system of linear algebraic equations defined in Eq. 23, can be written
as

KU = F, (24)

where K ∈MM (R) is the stiffness matrix, U = {ui}M
i=1 is the displacement vector

and F = { fi}M
i=1 is the loading vector. Elements of the stiffness matrix are defined

as

K = [ki j]M×M ,

ki j =
∫
Ω

l∫
0

(
κ.υi.υ j +EI.D2

xυi.D2
xυ j
)
(x,ω)dxdP(ω).

(25)

The loading vector is given by,

F = { fi}M
i=1 , fi =

∫
Ω

l∫
0

( f .υi)(x,ω)dxdP(ω) . (26)

In the numerical solutions, a family of Legendre polynomials is used to construct
space , defined in four independent, uniform random variables (nrv= 4). Numerical
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solutions are obtained for m =1, m = dim(Φm), and for different orders of chaos
polynomials, with 1,2,3,4,5{}. The size of the chaos polynomial basis becomes ,
since n = (p+nrv)!

p!nrv! . This results in numerical solutions with M ∈ {5,15,35,70,126}
coefficients to determinate. The sparseness of the stiffness matrix for example 1
(to be presented) is shown in Fig. 1. Remember that “p” is the order of chaos
polynomials. The matrix in Fig. 1a has dimension 5 and 13 non-zero elements,
whereas the matrix in Fig. 1b has dimension 126 and 4754 non-zero elements.

 

Figure 1: Sparseness of the stiffness matrix of example 1. a) for m = 1, n = 5, p =
1; b) for m = 1, n = 126, p = 5.

The conditioning numbers (nc) for these two matrixes are nc=610.94 and nc=936.38,
respectively. It can be observed that the conditioning number increases with in-
crease in dimension of the approximation space.

5 Statistical Moments

Numerical solutions to be obtained are defined in VM ⊂ L2 (Ω,F ,P)⊗Q. From
the numerical solutions for the stochastic displacement response, first and second
order statistical moments are to be computed.

The statistical moment of kth order of a random variable u(x, ·) is obtained, for a
fixed point x ∈ [0, l], by taking the kth power of the variable and integrating with
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respect to its probability measure,

µ
k
uM

(x) =
∫
Ω

uk
M (x,ξ (ω))dP(ξ (ω))

=

k times︷ ︸︸ ︷
∑
i1

· · ·∑
ik

ui1×·· ·× uik (ϕi1×·· ·× ϕik)(x)×

×
∫
Ω

(ψi1×·· ·× ψik)(ξ (ω))dP(ξ (ω)).

(27)

The integration term dP(·) is a probability measure defined as,

dP(ξ (ω)) =
N

∏
i=1

ρi (ξi)dξi (ω) , (28)

where ρi : [ai,bi] → R is the probability density function of random variableξi.
From the measure and integration theory (Fernandez, 2002), one knows that the
measure defined in Eq. 28 is the product between probability measure spaces as-
sociated to the random variables ξ (ω) = {ξi (ω)}N

i=1, with ξi : Ω→ [ai,bi]. Fol-
lowing the uncertainty modeling assumptions made in this paper, it follows that
|[ai,bi]|= bi−ai < ∞, ∀i ∈ {1, ...,N}. Hence, from Eq. 27 one has,

µ
k
uM

(x) =

k times︷ ︸︸ ︷
∑
i1, j1

, . . . ∑
ik, jk

(ui1φi1× . . .×uik φik)(x)×≺ ψi1 , · · · ,ψik � (29)

with

≺ ψi1 , · · · ,ψik �=
b1∫

a1

· · ·
bN∫

aN

(ψi1×·· ·×ψik)(ξ (ω))

×ρ1 (ξ1)×·· ·×ρN (ξN)
×dξ1 (ω)×·· ·×dξN (ω) .

(30)

The integrals in Eq. 30 are called iterated integrals. The first order statistical mo-
ment, or expected value, of the stochastic displacement process evaluated at a point
x ∈ [0, l] is

µuM(x) =
m

∑
i=1

u(i−1).n+1ϕi(x). (31)
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The variance of the stochastic displacement process is

σ
2
uM

(x) =
n

∑
i=1

n

∑
j=1

m

∑
k=2

uiku jk (ϕi.ϕ j)(x). (32)

In the numerical examples to follow, the statistical moments defined in Eqs. (31)
and (32) are evaluated and compared with the same moments estimated via Monte
Carlo simulation.

6 Numerical Examples

In this section, two numerical examples of the stochastic Euler-Bernoulli beam
bending problem on Winkler foundation are presented. In both examples, the beam
is simply supported at both ends, has a spam of one meter, (l = 1m), and rectan-
gular cross-section with b = 1

100 m and h = 1
50 m. The load term is deterministic in

both cases and equal to f (x) = 1 KPa/m, ∀x ∈ (0,1). Stiffness coefficients of the
beam and of the foundation have mean values of µEI (x) = 1400 N.m2,∀x ∈ (0,1)
and µκ(x) = 1 KPa.m,∀x ∈ (0,1), respectively. A graphical representation of the
beam bending problem, addressed in the numerical examples, is presented in Fig.
2.

 
Figure 2: a) Simply supported beam subjected to uniform distributed load; b) Beam
cross-section.

Expected value and variance of the numerical solutions obtained via Galerkin method
are compared with the respective estimates obtained via Monte Carlo simulation.
To evaluate the error of the approximated solutions, relative error functions in ex-
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pected value and in variance (εµu and εσ2
u
, respectively), are defined as

εµu(x) =

(100%)×
∣∣∣∣1−( µuM

_
µ u

)
(x)
∣∣∣∣ , ∀ x ∈ (0,1)

0, ∀ x ∈ {0,1} ;

εσ2
u
(x) =

(100%)×
∣∣∣∣1−(σuM

σ̂u

)2
(x)
∣∣∣∣ , ∀ x ∈ (0,1)

0, ∀ x ∈ {0,1} ;

(33)

where µu and σ2
u , are the Galerkin-based expected value and variance, respectively,

and µ̂u and σ̂2
u are the Monte Carlo estimates of the same moments. Numerical

results presented in this paper were obtained in a personal computer, HP-Pavilion
zv 6000, running a MATLAB computational code.

6.1 Example 1: random beam stiffness

In this first example, uncertainty is considered only in the beam bending stiffness.
The foundation stiffness is assumed deterministic and equal to the mean value (µκ).
The uncertain beam stiffness is represented by a parameterized random process of
the form,

EI (x,ω) = µEI +
√

3.σ .
EI

NEI

∑
n=1

[
ξ2.n−1 (ω)cos

(
π

n x
)

+ξ2.n (ω)sin
(

π

n x
)]

, (34)

where µEI is the mean value, σEI is the standard deviation and are orthogonal ran-
dom variables with uniform distribution. In the example, NEI = 2. The Galerkin
method is used to obtain numerical solutions for two cases of beam stiffness stan-
dard deviation: (a) σEI =

( 1
10

)
.µEI and (b) σEI =

(1
5

)
.µEI . Figure 3 shows the co-

variance function of the beams stiffness for case (a), obtained from equation (34).
It can be observed that the process is widely stationary. The covariance function
shown in Fig. 3 is obtained in exact form from Eq. 34 and from the orthogonality
property of random variables {ξn}2.NEI

n=1 .

6.1.1 Results for case (a), σEI =
( 1

10

)
.µEI

Fig. 4 shows realizations of the stochastic displacement process of the beam. Fig.
4a shows all sampled realizations of beam displacement and Fig. 4b shows the
(random variable) displacement at mid-spam, obtained by fixing x = 1

2 .

Fig. 5 shows convergence of Monte Carlo simulation results, for mean value and
standard deviation of u

(1
2 , .
)
, as function of the number of samples N. The figure
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Figure 3: Covariance function of beam stiffness.

shows that convergence of simulation results is achieved for N>1500, and that the
number of samples considered (Ns = 5000) is sufficient.

Fig. 6 shows the expected value of the stochastic displacement process and the rela-
tive error, for Galerkin solutions using chaos polynomials of order p∈{1,2,3,4,5}.
It is observed that, for increasing values of “p” the approximated solution for ex-
pected value approaches simulation results. It is important to note that some of the
curves accumulate over each other (for p≥3), and no difference can be observed be-
tween them. The relative error shown in Fig. 6b is better to illustrate convergence
of the expected value to the Monte Carlo estimate.

In Fig. 7 the variance of stochastic displacement process is shown. Fig. 7a shows
that the variance is well represented by the approximated Galerkin solution for p=
2 or more. Fig. 7b shows the relative error in variance and convergence of this
solution in terms of the polynomial order. The behavior is similar to that observed
for the mean value.

It is important to note that, despite the stochastic beam bending stiffness being a
widely stationary process, the stochastic displacement process is not; this fact can
be observed in Figs. 6a and 7a. This result shows influence of the mathemati-
cal model, Eq.(1), in the propagation of uncertainty from system properties to the
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Figure 4: a) Realizations of the stochastic displacement process; b) random variable
u
(1

2

)
.

 

Figure 5: a) Convergence in expected value for u
(1

2 , ·
)
; b) Convergence in standard

deviation for u
(1

2 , ·
)
.

solution. In this case, the stationarity is not preserved.

6.1.2 Results for case (b), σEI =
(1

5

)
.µEI

Fig. 8 shows convergence of Monte Carlo simulation results as function of number
of samples N, in terms of mean value and standard deviation of u

(1
2 , .
)
, for case (b).

This figure shows convergence of the Monte Carlo statistics for N>4000. Compar-
ing Figs. 5a and 8a, one notes that the expected value of mid-spam displacement
for case (b) is larger than for case (a). The variance (Figs. 5b and 8b) for case (b)
is also larger.

Fig. 9 shows the expected value of the stochastic displacement process (Fig. 9a)
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Figure 6: a) Expected value of the stochastic displacement process; b) Relative
error in expected value.

Figure 7: a) Variance of the stochastic displacement process; b) Relative error in
variance.

and the relative error (Fig. 9b), for Galerkin solutions using chaos polynomials
of order p ∈ {1,2,3,4,5}. It is observed that, for increasing values of “p”, the
approximated expected value converges to the simulation result. Fig. 9b shows that
the relative error in expected value is reduced as the order of approximated solution
polynomials is increased. This behavior is similar to what was observed for case
(a).

Fig. 10 shows variance of the stochastic displacement process. Fig. 10a shows
that the variance, obtained from the approximated solution, accumulates over the
corresponding Monte Carlo statistic for p = 4. Comparing Fig 7b and 10b, similar
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behavior is observed for the relative error in variance, for both cases.

Figure 8: a) Convergence in expected value for u
(1

2 , ·
)
; b) Convergence in standard

deviation for u
(1

2 , ·
)
.

 

Figure 9: a) Expected value of stochastic displacement process; b) Relative error in
expected value.

6.1.3 Summary of results for cases (a) and (b)

Tab. 2 summarizes results of expected value, variance and corresponding relative
errors for the random variable obtained by fixing x = 1

2 m in the stochastic dis-
placement process, for cases (a) and (b) of example 1. Results are presented for
approximated solutions with p ∈ {1,2,3,4,5}. Monte Carlo estimates of expected
value and variance for cases (a) and (b) were obtained as:

µ̂u

(
1
2

)
=−0.00942931964845653 m;
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Figure 10: a) Variance of stochastic displacement process; b) Relative error in
variance.

σ̂
2
u

(
1
2

)
= 1.89469499239802×10−6m2;

and

µ̂u

(
1
2

)
=−0.0101664271222058 m;

σ̂
2
u

(
1
2

)
= 1.32950337865645×10−5m2.

Comparing Monte Carlo estimates for expected value and variance with results
obtained via approximated Galerkin solutions, one notes that approximated results
are smaller in both cases. Table 2 also shows that, for case (a), the expected value
and variance of random variable u

(1
2 , ·
)

is smaller than for case (b). The same
behavior is observed for the Monte Carlo estimates of expected value and variance,
for this random variable.

In this example, it is observed that the statistical moments are well represented by
the approximated solution, for chaos polynomials of order p = 3. The relative error
function for variance, in both cases and for x = 1

2 m, decreases sharply as the order
of polynomial chaos increases.
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Table
2:

Sum
m

ary
of

num
erical

results
for

cases
(a)

and
(b)

of
exam

ple
1:

expected
value,

variance,
relative

errors
in

expected
value

and
variance

forthe
stochastic

displacem
entprocess

atm
id-spam (x

=
12 ).

p(M
)

case
(a)

µ
u

M (
12 )

σ
2u
M (

12 )
ε

µ
u (

12 )
ε

σ
2u (

12 )
1

(5)
-0.00941874489365295

1
.71325528999495

×
10
−

6
0.1149165598530700

10.4025644709826

2
(15)

-0.00942443119453395
1.87624312769187×

10
−

6
0.0546137653324747

1.87885386851441
3

(35)
-0.00942464045330815

1.88638407354279×
10
−

6
0.0523945917209326

1.34851682686812
4

(70)
-0.00942464883037076

1.88695783644589×
10
−

6
0.0523057536000271

1.31851097483937
5

(126)
-0.00942464918385567

1.88698917798115×
10
−

6
0.0523020049188037

1.31687191894457
p(M

)
case

(b)
µ

u
M (

12 )
σ

2u
M (

12 )
ε

µ
u (

12 )
ε

σ
2u (

12 )
1

(5)
-0.0100101240864717

7.74060536291528×
10
−

6
1.583857884720170

43.7970549261655
2

(15)
-0.0101246383965768

1.14205613180607×
10
−

5
0.457992059264072

17.0776508583584
3

(35)
-0.0101463112185796

1.26714743829824×
10
−

5
0.244912230098401

7.99502811973357
4

(70)
-0.0101510485401449

1.30776138143105×
10
−

5
0.198336492536587

5.04613315854419
5

(126)
-0.0101521882209810

1.32094708185086×
10
−

5
0.187131537416978

4.08874654379080
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6.2 Example 2: random foundation stiffness

In this example, uncertainty in the foundation stiffness coefficient is considered.
This uncertainty is modeled by a parameterized stochastic process:

κ (x,ω) = µκ +
√

3.σκ

Nκ

∑
n=1

[
ξ2.n−1 (ω)cos

(
π

n x
)

+ξ2.n (ω)sin
(

π

n x
)]

, (35)

where µκ is the mean value, σκ is the standard deviation and
{ }

are inde-
pendent random variables with uniform distribution. In this example, Nκ = 2 is
used. Numerical solutions are obtained for two cases of standard deviation: (a)
σκ =

( 1
10

)
.µκ and (b) σκ =

(1
5

)
.µκ . As in example 1, the random foundation

stiffness coefficient is widely stationary.

6.2.1 Results for case (a), σκ =
( 1

10

)
.µκ

Fig. 11 shows realizations of the stochastic displacement process of the beam. Fig.
11a shows all sampled realizations of beam displacement and Fig. 11b shows the
(random variable) displacement at mid-spam, obtained by fixing x = 1

2 .

Fig. 12 shows convergence of Monte Carlo simulation results as function of num-
ber of samples N,in terms of mean value and standard deviation of u

(1
2 , ·
)
. Con-

vergence of Monte Carlo estimates can be observed for N > 2000.

Figure 13 shows convergence of Galerkin results in terms of expected value (Fig.
13a) and relative error (Fig. 13b) for polynomial chaos of order p ∈ {1,2,3,4,5}.
It is observed that, for p = 1 or greater, the expected value functions accumulate
over each other, and the curves are indistinguishable.

Comparing Fig 6b and 13b, one notes that the relative error in expected value is
larger for case (a) of example 1, in comparison to case (a) of example 2.

Figure 14 shows the variance and the relative error function for variance of stochas-
tic displacement process. Comparing Figs. 7a and 14a it is observed that the disper-
sion, measured in terms of variance, is smaller for this example than it was observed
for example 1, case (a).

6.2.2 Results for case (b), σκ =
(1

5

)
.µκ

Figure 15 shows convergence of Monte Carlo simulation results as function of num-
ber of samples N,in terms of mean value and standard deviation of u

(1
2 , ·
)
, for case

(b). Comparing Figs. 12a and 15a, it can be observed that the mean values for case
(b) and (a) are close. The standard deviation, however, is larger for case (b). The
figure shows convergence of Monte Carlo statistics for N > 1500.
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Figure 11: a) Realizations of the stochastic displacement process; b) random vari-
able.

 

Figure 12: a) Convergence in expected value for u
(1

2 , ·
)
; b) Convergence in stan-

dard deviation for u
(1

2 , ·
)
.

Figure 16 shows the expected value of random displacement response obtained via
Galerkin method, and the relative error of this result. Fig. 16a shows that, for
different values of “p”, the expected value of beam displacement accumulates over
the Monte Carlo estimate. Fig. 16b emphasizes this result, by showing the relative
error in expected value for p ∈ {1,2,3,4,5}.
Fig. 17 shows variance of the stochastic displacement process and the correspond-
ing relative error. It can be observed that the dispersion, in terms of variance, is
larger for the approximated solutions in comparison to the variance obtained via
simulation. The behavior observed in Fig. 17b is similar to Fig. 16b, where the
results for relative error in variance accumulate over each other for different values
of “p”. It is also observed that the relative error in expected value is smaller than
the relative error in variance.
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Figure 13: a) Expected value of the stochastic displacement process; b) Relative
error in expected value.

 

Figure 14: a) Variance of stochastic displacement process; b) Relative error in
variance.

6.3 Summary of results for cases (a) and (b)

Results of expected value, variance and corresponding relative errors for the ran-
dom variable obtained by fixing x = 1

2 in the stochastic displacement process, for
cases (a) and (b) of example 2, are summarized in Table 3. Results are presented for
approximated solutions with p ∈ {1,2,3,4,5}. Monte Carlo estimates of expected
value and variance for cases (a) and (b) were obtained as:

µ̂u

(
1
2

)
=−0.00923685607734612 m;
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Figure 15: a) Convergence in expected value for u
(1

2 , ·
)
; b) Convergence in stan-

dard deviation for u
(1

2 , ·
)
.

 

Figure 16: a) Expected value of the stochastic displacement process; b) Relative
error in expected value.

σ̂
2
u

(
1
2

)
= 8.908274494156×10−11m2;

and

µ̂u

(
1
2

)
=−0.00923688386180743 m;

σ̂
2
u

(
1
2

)
= 3.45434414766091×10−10m2.
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Figure 17: a) Variance of the stochastic displacement process; b) Relative error in
variance.

In Table 3 it can be observed that the expected value of random variable u
(1

2 , ·
)

increases as the variance of the foundation stiffness coefficient increases. For both
examples, the expected value obtained from the approximated solutions at x = 1

2
is slightly larger than the estimate of the same moment obtained via simulation. It
is observed that, for p = 3 or greater, the relative error functions in expected value
and variance, evaluated at x = 1

2 , do not change. For p = 2 it is observed that error
functions evaluated at x = 1

2 are smaller than the error for other values of “p”. This
shows that for p = 2 the moments evaluated via Galerkin method at x = 1

2 provided
the best approximation to Monte Carlo results. The variance evaluated at x = 1

2 for
problem 2a is smaller that its Monte Carlo estimate, whereas for problem 2b this

variance is larger than the simulation estimate. In example 2b, the best estimates
for expected value and variance of transverse displacements, at x = 1

2 , is obtained
for p = 1. In distinction to what was observed for example 1, in example 2 it is
observed that the relative error functions in expected value and variance increase,
as the polynomial order is increased above p = 1.

6.3.1 Summary of processing time results for examples 1 and 2, cases (a) and (b)

Table 4 summarizes results of CPU processing time for the approximated Galerkin
and Monte Carlo simulation solutions of examples 1 and 2, cases (a) and (b). In in-
terpreting these results, it is important to note that Galerkin solutions were obtained
using symbolic integration in MATLAB. Use of numerical integration would likely
speed up the Galerkin solutions, especially for high polynomial orders.

Results obtained herein show that the rate of convergence is larger for example 1a
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Table
3:

Sum
m

ary
of

num
erical

results
for

cases
(a)

and
(b)

of
exam

ple
2:

expected
value,

variance,
relative

errors
in

expected
value

and
variance

forthe
stochastic

displacem
entprocess

atm
id-spam (x

=
12 ).

p(M
)

case
(a)

µ
u

M (
12 )

σ
2u
M (

12 )
ε

µ
u (

12 )
ε

σ
2u (

12 )
1

(5)
-0.00923685601508401

8.85990994998009×
10
−

11
6.74061695255010×

10
−

7
0.551042972236728

2
(15)

-0.00923685602733075
8.85997186668474×

10
−

11
5.41476086985778×

10
−

7
0.550347981911298

3
(35)

-0.00923685601509934
8.85995242558453×

10
−

11
6.73895732385947×

10
−

7
0.550566200510562

4
(70)

-0.00923685601509934
8.85995241880827×

10
−

11
6.73895732385947×

10
−

7
0.550566276571420

5
(126)

-0.00923685601509934
8.85995242570788×

10
−

11
6.73895732385947×

10
−

7
0.550566199126014

p(M
)

case
(b)

µ
u

M (
12 )

σ
2u
M (

12 )
ε

µ
u (

12 )
ε

σ
2u (

12 )
1

(5)
-0.00923688479093611

3.54398606125908×
10
−

10
1.00843580526973×

10
−

5
2.59770055843298

2
(15)

-0.00923688479118136
3.54405402187884×

10
−

10
1.00870131956034×

10
−

5
2.59966801463726

3
(35)

-0.00923688479118136
3.54405402318379×

10
−

10
1.00870132098173×

10
−

5
2.59966803647427

4
(70)

-0.00923688479118136
3.54405402282752×

10
−

10
1.00870132098173×

10
−

5
2.59966802293038

5
(126)

-0.00923688479118136
3.54405402296312×

10
−

10
1.00870132098173×

10
−

5
2.59966803845165
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in comparison to example 2a. The same is observed for example 1b in comparison
to example 2b. For all cases and examples studied, CPU time to obtain the ap-
proximated solutions for p =3 or higher was larger than the time required to obtain
the Monte Carlo simulation result. However, results show that the relative error in
expected value and variance do not improve considerably for p =3 or higher, hence
approximated solutions with p =2 are sufficiently accurate. In all examples and
cases studied, the relative error in expected value resulted smaller than the relative
error in variance. In all cases, the expected value and variance of beam displace-
ment resulted larger for example 1 in comparison to example 2. The relative error
functions for expected value and variance at x = 1

2 m were also found to be higher
for example 1 than for example 2. Hence, one concludes that propagation of the
uncertainty to the solution is larger for the random beam stiffness in comparison to
the random foundation stiffness.

For all cases studied, the approximated Galerkin solution for expected value was
able to reproduce the observed simulation result. This shows the robustness of the
Galerkin method and chaos polynomials in representing random beam responses
for the different cases of elastic properties of the beam and of the foundation.

7 Conclusions

In this paper, the Galerkin method was applied in the solution of a stochastic Euler-
Bernoulli beam bending problem, with uncertainty in bending and foundation stiff-
ness coefficients. Random stiffness parameters were represented by parameterized
stochastic processes. The approximated solution space was constructed by the ten-
sor product between measure spaces of finite dimensions. Legendre polynomials,
derived from the Askey-Wiener scheme, were used to construct the approximated
solution space. Expected value and variance of transverse beam displacements
were computed from the approximated Galerkin solutions and compared, in two
numerical examples, with the same estimates obtained via Monte Carlo simulation.

In the first example, an uncertain beam bending stiffness was considered. In the
second example, uncertain stiffness of the Winkler foundation was considered. The
examples have shown that propagation of the uncertainty to beam response (trans-
verse displacement) is larger when uncertainty is in the beam bending stiffness. For
the uncertain foundation stiffness, convergence of the Galerkin solution in expected
value and variance of beam displacement is faster, in comparison to the problem
with uncertain beam stiffness. In general, it was observed that the approximated
solutions converge for low orders of polynomial interpolation p. The Galerkin so-
lution yielded very good estimates of the first and second order moments, even at
very low orders. For the uncertain foundation stiffness problem, convergence was
obtained for p = 1. For the uncertain beam stiffness problem with σEI =

( 1
10

)
.µEI ,
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1

(b)
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2

(a)
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10.23
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7104.78
2

(b)
94.30

4.09
25.75

156.23
1025.73

7662.98



Galerkin Solution of Stochastic Beam Bending on Winkler Foundations 147

convergence was obtained for p = 2. For the same problem with σEI =
(1

5

)
.µEI , p

= 3 was required for convergence. For the Galerkin solution, it was shown that CPU
processing time increases drastically with the order of polynomial interpolation.

The Askey-Wiener Galerkin scheme presented herein presented fast convergence
in the approximation of first and second order moments of the random beam dis-
placements. The method is shown to be a theoretically sound and efficient method
for the solution of stochastic problems in engineering.
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