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A Comprehensive Finite Element Model for Tapered
Composite Wing Structures

Chyanbin Hwu1,2 and Mengchun Yu1

Abstract: A comprehensive finite element model incorporating the features of
comprehensive wing model and finite element method is developed in this paper.
This new model extends the applicability of comprehensive wing model from uni-
form composite wings to tapered composite wings. It preserves the simplicity of
one-dimensional finite element but performs like three-dimensional finite element
for wing structural analysis. To verify its accuracy and show its efficiency, this
model which is applicable to the general dynamic analysis is reduced to two simple
cases: static analysis and free vibration analysis. Based upon the reduction results
for static and free vibration cases, several numerical examples of composite wing
structures are presented such as tapered wings subjected to end load or uniform
pressure, and free vibration of tapered wings. The numerical results show that the
proposed model is much more efficient than the conventional finite element, and
their differences are within 12% in all cases of composite wing structures.

1 Introduction

To study the mechanical behavior of composite wing structures, several differ-
ent structural models have been proposed in the literatures such as the classical
beam model [Bisplinghoff, Asheley, and Halfman (1955); Megson (1990); Vinod,
Gopalakrishnan, and Ganguli (2006)], the box beam model [Weisshaar and Foist
(1985); Chandra, Stemple, and Chopra (1990); Banerjee and Williams (1995)], the
refined model considering the warping restraint [Crawley and Dugundji (1980);
Lottati (1985); Librescu and Khdeir (1988); Oyibo and Bentson (1990)] and/or
transverse shear deformation [Librescu and Song (1992)] and/or shell bending strain
[Volovoi and Hodges (2002); Volovoi and Hodges (2000)] and/or cross-sectional
materials and geometries [Yu, Volovoi, Hodges, and Hong (2002); Yu, Hodges,
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Volovoi, and Cesnik (2002); Sapountzakis and Tsiatas (2007)], and the compre-
hensive wing model considering the shape of airfoil [Hwu and Tsai (2002); Hwu
and Gai (2003)]. However, due to the mathematical complexity, most of the wing
models assume that the cross section of the wing is uniform in spanwise direction,
and therefore cannot be applied to study the tapered wings. Only the simple models
such as the box beam model [Weisshaar (1980)] and the refined model [Librescu
and Simovich (1988); Vadiraja and Sahasrabudhe (2008)] considered the taper ef-
fects.

In order to preserve the essential features of the comprehensive wing models and
to avoid the mathematical complexity raised by the taper effects, a comprehensive
finite element model (CFEM) is proposed in this paper. To build a good connection
between the analytical model and finite element model, the matrix form compre-
hensive wing model proposed in [Hwu and Gai (2003)] is re-derived in this paper
by using the Hamilton’s principle [Reddy (1993)]. In this re-derivation, all the
basic functions are unknowns and will be determined by solving the ordinary dif-
ferential equation together with its associated boundary and initial conditions. With
the concept of finite element method, the unknown basic functions were assumed
to have unknown values only at the nodal points of each element. By combining
this assumption for finite element method, the comprehensive wing model is then
extended to be CFEM.

CFEM combines the merits of analytical models and numerical models. In con-
ventional finite element model only displacements and/or rotations are selected as
nodal displacements, whereas in CFEM the nodal displacements include all the
basic functions of the comprehensive wing model [Hwu and Tsai (2002); Hwu
and Gai (2003)], i.e., the vertical deflection, the displacement in spanwise direc-
tion, the twist angle, the rotation angle, and the rate of angle change. With the
enhancement of the nodal degree of freedom, CFEM still preserves the simplicity
of one-dimensional finite element but performs like three-dimensional finite ele-
ment for wing structural analysis. Moreover, since CFEM is developed based upon
the comprehensive wing model, in this paper it has been shown to be more effi-
cient than the conventional finite element model. Its accuracy is verified through
the comparison with the analytical solutions for uniform wings and the numerical
solutions obtained by the commercial finite element software ANSYS.

2 Comprehensive Wing Model

In the previous studies of our co-workers [Hwu and Tsai (2002); Hwu and Gai
(2003)], a matrix form comprehensive analytical model was developed to analyze
the composite wing structures. In that model, the entire wing structure is simu-
lated by a composite sandwich plate with variable thickness. The wing skin made
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of composite laminates together with stringers and spar flanges are simulated as
the faces resisting the in-plane force and bending moment, whereas the spar webs
and ribs are simulated as the core resisting the transverse shear force. According
to the chordwise-rigid postulation [Megson (1990)], the displacement field of the
composite wings is assumed as [Hwu and Tsai (2002)]

u(x,y,z, t) = zθ(y, t),
v(x,y,z, t) = v0(y, t)+ z{β f (y, t)+ xβr(y, t)},
w(x,y,z, t) = w f (y, t)− xθ(y, t),

(1)

where u, v, w are the displacement components in the directions of x (chordwise),
y (spanwise) , and z (thicknesswise), respectively (see Fig. 1). t denotes the time
variable. v0 is the mid-plane displacements in y direction. w f denotes the vertical
deflection (positive upward) measured at the line of the reference axis; θ is the rota-
tion angle with respect to x-axis due to the twist around the reference axis (positive
nose up), i.e., βx = θ . β f denotes the rotation angle with respect to y axis measured
at the reference axis and βr stands for the rate of angle change in the x-direction.
Thus, βy = β f + xβr.

According to the postulation in Eq. (1), the basic functions describing the deforma-
tion of the stiffened composite wing structures become v0, w f , θ , β f , and βr. With
these five basic functions, the equations of motion governing composite wings can

 

Figure 1: Tapered composite wings.
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be written as [Hwu and Gai (2003)]

K2∆∆∆
′′(y, t)+(K1−KT

1 )∆∆∆′(y, t)−K0∆∆∆(y, t)+p(y, t) = I0∆̈∆∆(y, t). (2)

In Eq. (2), the prime •′ means differentiation with respect to y; the overdot •̇
denotes the time derivative; the superscript T stands for the transpose of a matrix;
∆∆∆ and p are, respectively, the generalized displacement and load vector; K0, K1 and
K2 are three stiffness matrices, I0 is an inertia matrix related to the mass, center of
gravity, and moment of inertia, which are defined as

∆∆∆ =


v0
w f

θ

β f

βr

 , p =


p̃y

p̃
m̃x− p̃∗

m̃y

m̃∗y

 , (3a)

K0 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 Ã44 Ã∗44
0 0 0 Ã∗44 D̃66 + Ã∗∗44

 , K1 =


0 0 0 0 B̃26
0 0 0 Ã44 Ã∗44
0 0 0 −Ã∗44 D̃66− Ã∗∗44
0 0 0 0 D̃26
0 0 0 0 λ D̃∗26

 , (3b)

K2 =


Ã22 0 B̃26 B̃22 λ B̃∗22
0 Ã44 −Ã∗44 0 0

B̃26 −Ã∗44 D̃66 + Ã∗∗44 D̃26 λ D̃∗26
B̃22 0 D̃26 D̃22 λ D̃∗22

λ B̃∗22 0 λ D̃∗26 λ D̃∗22 λ D̃∗∗22

 ,

I0 =


m 0 0 mzc Ixz

0 m −mxc 0 0
0 −mxc Iy 0 0

mzc 0 0 Ix Ixz2

Ixz 0 0 Ixz2 Ix2z2

 .

(3c)

In the above, p̃y, p̃, (m̃x− p̃∗), m̃y, and m̃∗y are the forces corresponding to v0, w f ,
θ , β f , and βr; Ãi j, B̃i j, D̃i j, Ã∗i j, B̃∗i j, D̃∗i j, Ã∗∗i j , B̃∗∗i j , D̃∗∗i j , i, j = 1,2, ...,6 are the
resultant stiffnesses related to the extensional stiffness Ai j, coupling stiffness Bi j,
and bending stiffness Di j of the composite wings; m is the mass per unit spanwise
length; (xc,zc) is the coordinate of the center of gravity of cross section whose
y=constant; and Ix, Iy, Ixz, Ixz2 , and Ix2z2 stand for the mass moment of inertia in
different directions; λ is a tracer used to identify the warping effect, i.e., λ = 0
for free warping condition and λ = 1 means that the warping restraint is implied.
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For the convenience of readers’ reference, detailed definitions of these symbols are
provided in Appendix A.

Although the Eq. (2) derived by our co-workers [Hwu and Gai (2003)] is a result of
comprehensive wing model which considers several effects such as bending-torsion
coupling, warping restraint, transverse shear deformation, shape of airfoil, rotary
inertia, etc., it cannot be applied to the tapered wings because in this model the
wing cross section is considered to be independent of y (spanwise direction). In
other words, in Eq. (2) the stiffness and inertia matrices, K0, K1, K2, and I0 are
all constant matrices, which is not true for tapered wings. In order to extend the
comprehensive wing model to tapered wings or more general wing cases, a con-
cept like finite element model is adopted in this paper. That is, the tapered wing
is cut into several elements and each element is approximated by a uniform wing
section. Since the finite element formulation can be established by minimizing the
Lagrangian function [Reddy (1993)], to have a smooth transition from the compre-
hensive wing model to comprehensive finite element wing model, we now re-derive
Eq. (2) through the use of Hamilton’s principle. It states that the motion of a con-
tinuum acted on by conservative forces between two arbitrary instants of time t1
and t2 is such that the line integral over the Lagrangian function is an extremum
for the path motion [Reddy (1993)]. The Lagrangian function is the difference be-
tween kinetic and total potential energies, and the total potential energy is the sum
of the strain energy and potential energy of external forces. Thus, the Hamilton’s
principle can be expressed by

δ

∫ t2

t1
(Π−T )dt = 0 (4)

where δ is the variational operator, t1 and t2 are the integration limits of time. Π is
the total potential energy and T is the kinetic energy, which can be written as

Π =
∫

V
(W − fiui)dV −

∫
Sσ

t̂iuidS, T =
1
2

∫
V

ρ u̇iu̇idV, (5)

where W , fi, ui, and t̂i are, respectively, the strain energy density, body forces, dis-
placements, and prescribed surface tractions; V and Sσ are the regions for volume
and surface integrals, respectively. By performing the integration of the potential
and kinetic energy in the sequence of thickness direction (z), chordwise direction
(x), and spanwise direction (y), and expressing the results in matrix form, we get
(please refer to Appendix B for the details of integration)

Π−T =
1
2

∫
y
{FT

∆∆∆
′+FT

0 ∆∆∆−2pT
∆∆∆− ∆̇∆∆

T I0∆̇∆∆}dy− [F̂T
∆∆∆]y2

y1
, (6a)
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where F and F0 are force vectors defined by

F =


Ñy

Q̃y

M̃xy− Q̃∗y
M̃y

M̃∗y

 , F0 =


0
0
0

Q̃y

M̃xy + Q̃∗y

 . (6b)

In the above, F̂ denotes the prescribed value of F on the boundary y = y1 or y = y2,
which is the integration limits of y, and [ f ]y2

y1 = f (y2)− f (y1); Ñy, Q̃y, M̃xy, M̃y, Q̃∗y ,
M̃∗y are the resultant forces whose detailed definitions are given in Appendix A.

From the constitutive relations for laminated composite sandwiches, we know that
the force vectors F and F0 are related to the displacement vector ∆∆∆ by [Hwu and
Gai (2003)]

F = K1∆∆∆+K2∆∆∆
′, F0 = K0∆∆∆+KT

1 ∆∆∆
′. (7)

Substituting Eq. (8) into Eq. (10), we get

Π−T =
1
2

∫
y
{2∆∆∆

T KT
1 ∆∆∆
′+∆∆∆

′T K2∆∆∆
′+∆∆∆

T K0∆∆∆− ∆̇∆∆
T I0∆̇∆∆−2pT

∆∆∆}dy− [F̂T
∆∆∆]y2

y1
(8)

With the result of Eq. (11), the first variation of the Lagrangian, Π− T , can be
obtained as (see Appendix C for the details of variation operation)

δ (Π−T ) =
∫

y
(δ∆∆∆

T )[(KT
1 −K1)∆∆∆′−K2∆∆∆

′′+K0∆∆∆+ I0∆̈∆∆−p]dy

+(δ∆∆∆
T )[K1∆∆∆+K2∆∆∆

′− F̂]y2
y1
− ∂

∂ t

∫
y
(δ∆∆∆

T )I0∆∆∆dy.
(9)

With the result obtained in Eq. (9), the Hamilton’s principle Eq. (4) can then
provide the governing equation and boundary conditions as follows,

K2∆∆∆
′′+
(
K1−KT

1
)

∆∆∆
′−K0∆∆∆+p = I0∆̈∆∆, for all y,

∆∆∆ = ∆̂∆∆ or K1∆∆∆+K2∆∆∆
′ = F̂, on y = yr and y = yt .

(10)

where y = yt or y = yr, which are the locations of wing tip or wing root. Equation
(10) is the same as that shown in Eq. (2) derived by different approach in [Hwu and
Gai (2003)].
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3 Comprehensive Finite Element Model

As stated previously in the paragraph between Eqns.(3c) and (4), the comprehen-
sive wing model cannot be applied to the tapered wings directly. In order to extend
its applicability to the case of tapered wings, a comprehensive dynamic finite el-
ement model is introduced in this section. By this new model, the tapered wings
will be divided into a series of elements which are connected at a finite number
of nodal points. The cross section is assumed to be uniform in spanwise direction
(y-direction) within each element as shown in Fig. 2. Since the cross section can
be different for different element, general wing shapes including tapered wings can
be handled through this new model.

 
 

 
 

y y 

Figure 2: Discretization of the tapered wings.

In the finite element displacement method, the displacement is assumed to have
unknown values only at the nodal points, so that the variation within any element is
described in terms of the nodal values by means of interpolation function. With this
understanding, within each element the generalized displacement vector ∆∆∆ com-
posed of five basic functions v0, w f , θ , β f , and βr is now assumed as

∆∆∆ = g(t)N(y)ue, (11)

where, ue is a 15×1 vector of nodal displacements of the element, N(y) is a 5×15
matrix containing a set of shape functions, and g(t) is a time function assumed to
be the same for all degrees of freedom.

In this paper, each element is assumed to have three nodal points as shown in Fig. 3
and each basic function is assumed to be interpolated by the same shape functions
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Figure 3: Finite element discretization and element local coordinate.

within element. Thus, ue and N(y) can be written in a partition form as

ue =


∆∆∆1
∆∆∆2
∆∆∆3

 , ∆∆∆i =


v0
w f

θ

β f

βr


i

,

N(y) =
[
N1(ξ ) N2(ξ ) N3(ξ )

]
, Ni(ξ ) = Ni(ξ )I, i = 1,2,3,

(12a)

where ∆∆∆i, i = 1,2,3, are the sub-vectors of nodal displacements corresponding to
the three points within the element, I is a 5×5 unit matrix and Ni(ξ ), i = 1,2,3,are
quadratic interpolation functions defined by

N1(ξ ) = 2(ξ −1)(ξ − 1
2
), N2(ξ ) =−4ξ (ξ −1), N3(ξ ) = 2ξ (ξ − 1

2
),

0 ≤ ξ =
ye

`e
≤ 1, (12b)

in which `e is the length of the element and ξ is the natural local non-dimensional
coordinate starting from node 1 of the element denoted in Fig. 3.

Substituting Eq. (11) into Eq. (8), we get the Lagrangian function in single element

Π−T =
1
2

uT
e [g2(t)Ke− ġ2(t)Je]ue−g(t)uT

e fe, (13a)
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where Ke, Je, and fe are, respectively, the element stiffness matrix, element inertia
matrix, and element force vector, and are defined as

Ke =
∫ 1

0

{
NT (ξ )K0N(ξ )+2NT (ξ )KT

1 N′(ξ )+N′T (ξ )K2N′(ξ )
}

`edξ ,

Je =
∫ 1

0

{
NT (ξ )I0N(ξ )

}
`edξ ,

fe =
∫ 1

0

{
NT (ξ )p(ξ )

}
`edξ +[NT (ξ )F̂(ξ )]10.

(13b)

By substituting Eq. (12) into Eq. (13b) and assuming uniform pressure with con-
stant load vector p within each element, the explicit forms of the element stiffness
matrix, inertia matrix, and element force vector can be obtained as

Ke =`e

 2
15 K0

1
15 K0 − 1

30 K0
1

15 K0
8
15 K0

1
15 K0

− 1
30 K0

1
15 K0

2
15 K0

+

−1
2 KT

1
2
3 KT

1 −1
6 KT

1
−2

3 KT
1 0KT

1
2
3 KT

1
1
6 KT

1 −2
3 KT

1
1
2 KT

1


+

1
`e

 7
3 K2 −8

3 K2
1
3 K2

−8
3 K2

16
3 K2 −8

3 K2
1
3 K2 −8

3 K2
7
3 K2



Je = `e

 2
15 I0

1
15 I0 − 1

30 I0
1
15 I0

8
15 I0

1
15 I0

− 1
30 I0

1
15 I0

2
15 I0

 , fe = `e


1
6 p
2
3 p
1
6 p

+


−F̂(0)

0
F̂(1)

 . (14)

Note that Ke, Je, and fe calculated from Eq. (14) will have different values for
different elements if a tapered wing is considered, since K0, K1, K2, and I0 defined
in Eq. (3b,c) are related to the chord length of element which is a function of span-
wise location, i.e., c = c(y). And the dimensions of Ke, Je, and fe are, respectively,
15×15, 15×15, and 15×1.

4 Static Analysis

The foregoing model is general enough to deal with both static and dynamic anal-
ysis in tapered composite wings. If we only consider the static model, the function
g(t) should be independent of time and can be set as g(t) = 1. With this substitu-
tion, Eq. (13) can be rewritten as

Π =
1
2

uT
e Keue−uT

e fe. (15)
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By taking the first variation of the total potential energy Π to be zero, the equilib-
rium equation within a single element can be obtained as

1
2
(
Ke +KT

e
)

ue = fe. (16)

Once we divide the wing into n elements, there are 2n+1 nodes in structure. Be-
cause there is a common node shared by two adjacent elements, the total number of
the common nodes of the wing structure will be n-1. As every nodal displacement
sub-vector ∆∆∆i contains five components (v0, w f , θ , β f , and βr), the dimension of
the global nodal displacement vector ug becomes (10n+5) ×1. The global stiff-
ness matrix Kg is a (10n+5) × (10n+5) matrix and the global force vector fg is a
(10n+5)× 1 vector. With the concept of finite element method, we can move all the
element stiffness and force vectors into the corresponding position in global ones.
The portions related to the common nodes between two elements will overlap. The
global stiffness matrices Kg and force vector fg are further fulfilled by superimpos-
ing all the values of the element stiffness matrices and force vectors, and finally the
equilibrium equation for the entire wing structures can be written as follows

1
2
(
Kg +KT

g
)

ug = fg. (17)

Equation (17) is a standard form of the system of linear algebraic equations. With
the known values of Kg and the prescribed values of fg or ug set for the problems,
all the unknowns ug or fg can be solved in principle. Typical numerical examples
using the present model for static analysis will be shown in Section 6.

5 Free Vibration

In this section, free vibration of the tapered wing structure is considered. The
pressure p and nodal force F̂ are both set to be zero, and hence the element force
vector fe = 0. A harmonic motion is assumed for free vibration analysis, i.e., g(t) =
eiωt where ω is the natural frequency. With these assumptions, the Lagrangian
function in Eq. (13) can be reduced to

Π−T =
e2iωt

2
uT

e [Ke +ω
2Je]ue. (18)

By taking the first variation of the Lagrangian function Π−T to be zero, the equa-
tion of motion for a single element can be derived as

1
2
[(

Ke +KT
e
)
+ω

2 (Je +JT
e
)]

ue = 0. (19)
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Following the standard procedure for element assembly, the global stiffness matrix
Kg, the global inertia matrix Jg, and global force vector fg can be obtained, and the
equation of motion for the entire wing structures can be written as

1
2
[(

Kg +KT
g
)
+ω

2 (Jg +JT
g
)]

ug = 0. (20)

Equation (20) is a typical form of eigenvalue problem which contains (10n+5)
eigenvalue equations where ω2 and ug are eigenvalues and eigenvectors, respec-
tively. After embedding the boundary conditions, the system of equations (20) will
be reduced. The natural frequency ω can then be solved by letting the determinant
of the reduced coefficient matrix of ug be zero. The mode shape ug corresponding
to the natural frequency ω is obtained via Eq. (20).

6 Numerical Results and Discussion

In order to investigate the correctness, efficiency, and applicability of the proposed
comprehensive finite element model, several numerical examples of composite
wing structures are presented in this section. They are: (1) uniform wings subjected
to end load, (2) tapered wings subjected to end load, (3) tapered wings subjected
to uniform pressure, (4) free vibration of uniform wings, and (5) free vibration of
tapered wings. The convergence test and its related comparison of computational
efficiency between the present model and the finite element software ANSYS are
presented through the first example for static analysis. Further comparison with
ANSYS is done in example 4 for free vibration analysis, and the accuracy of the
present model is verified through the analytical solution for uniform wing struc-
tures. The applicability to tapered wings is then shown in examples 2 and 3 for
static case and example 5 for free vibration analysis. The taper effect is studied by
varying the tapered ratio rt defined as rt = ct/cr, where ct and cr are, respectively,
the chord length at wing tip and wing root. The uniform wings in our examples
mean that the wing cross section is uniform in the spanwise direction, i.e., the
chord length c(y) which is supposed to be a function of y for tapered wings is now
a constant for uniform wings.

All the examples in our studies consider the composite wing structure with NACA
2412 airfoil. From the data given in [Hunsaker (1949)], the shape of airfoil is
approximated by a 9th-order polynomial as

fu(x̄)/c = 0.0719−0.0588x̄−0.0769x̄2−0.767x̄3−2.599x̄4 +15.382x̄5

+18.536x̄6−92.174x̄7−45.673x̄8 +186.078x̄9,

fu(x̄)/c =−0.0329+0.0405x̄−0.0239x̄2 +0.675x̄3 +1.815x̄4−12.310x̄5

−13.870x̄6 +73.449x̄7 +36.096x̄8−149.862x̄9, x̄ = x/c,

(21)
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where fu(x̄) and fl(x̄) are respectively the approximate functions for the upper and
lower surfaces of the airfoil in which the coordinate origin is located at the mid-
point of the chord line. The chordwise length c=0.1m at wing root and varies
linearly along the spanwise direction according to the tapered ratio. The wing span-
wise length is fixed at L=0.4m for all examples unless stated otherwise. The wing
skin is made of graphite/epoxy fiber-reinforced composite whose mechanical prop-
erties are: EL= 200 GPa, ET = 5 GPa, νLT = 0.25, GLT = 2.5GPa, ρ = 1.9 g / cm3,
and ply thickness t = 0.025 mm. The laminate layup is [90 / - 45 / 45 / 0] for upper
skin and [0 / 45 / - 45 / 90] for lower skin. Two wing spars made of isotropic ma-
terials with shear modulus G = 8 GPa and thickness 0.6 mm are located at ±0.25c
from the mid-chord line. Eight stringers and two ribs, made of Aluminum with
material properties E = 69 GPa, ν = 0.33, G = 26 GPa, and ρ = 2.8 g / cm3, are
equally-spaced on the wing. The thickness of the pseudolamina constructed by
stringers and ribs was set as 1.5 mm.

Example 1: uniform wings subjected to end load

In this case, the taper ratio is set to be unit, and a concentrated load Q̃y = 500 N is
applied at the wing tip. The wing is modeled as a cantilever with fixed end at wing
root, and is meshed into several elements like that shown in Fig. 3. To show the
convergence rate of the present model and the other existing finite element model
such as ANSYS, the deflection w f at wing tip versus number of elements is shown
in Tab. 1. In the modeling process of ANSYS, SHELL91 element is used to con-
struct the wing skins and a series of solid elements such as SOLID185, SOLID95,
and SOLID187 are chosen to model the core of the wing. From Tab. 1 we see that
the differences of the convergent values between the present model and those of
ANSYS are within 10%. Only 4 elements are used to get the convergent results of
the present model, while more than 582 elements are needed for ANSYS. This case
is carried out by the Intel(R) Core(TM)2 Duo E8500 (3.16GHz) personal computer
within 9 seconds using the present model, while 113 seconds with ANSYS, which
leads to 92% saving of the computational time.

Since the convergent study has been presented in this example, without further
statements in the following examples all the results are shown with the convergent
values. Moreover, since in ANSYS the performance of SHELL91 plus SOLID95
is better than the others for wing analysis, when we mention the results analyzed
by ANSYS in the following examples it means that the comparison results were
implemented by ANSYS with SHELL91 for wing skins and SOLID95 elements
for wing cores.

Example 2: tapered wings subjected to end load

To see the applicability of the present model to tapered composite wings, the taper
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Table 1: Convergence test of finite element modeling

Present
Number of Elements 1 2 4 8 40 100 200
Wing tip deflection, m 0.1583 0.1913 0.1968 0.1974 0.1974 0.1974 0.1974

ANSYS, SOLID 185
Number of Elements 907 2180 4001 6456 9574 17656 23418
Wing tip deflection, m 0.0898 0.1582 0.2137 0.2310 0.2296 0.2244 0.2202

ANSYS, SOLID 95
Number of Elements 101 234 582 904 2175 7686 25109
Wing tip deflection, m 0.2081 0.1959 0.1839 0.1844 0.1822 0.1843 0.1838

ANSYS, SOLID 187
Number of Elements 904 2175 4003 6456 7711 10255 25094
Wing tip deflection, m 0.1022 0.1501 0.1649 0.1741 0.1765 0.1802 0.1837
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Figure 4: Wing tip deflection vs. taper ratio for the case of end load.
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ratio of example 1 is now varied from 0.1 to 1. The convergent results of wing tip
deflection versus taper ratio are presented in Fig. 4, which show that the deflection
w f decreases when the taper ratio increases. From this figure we see that the differ-
ences between the present model and those of ANSYS are within 11%, which are
acceptable.
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Figure 5: Wing tip deflection vs. taper ratio for the case of uniform pressure.

Example 3: tapered wings subjected to uniform pressure

From the last equation of (14) we know that the element force vector fe is related
to both of the nodal force F̂ and the pressure p. To show that the present model
can also deal with the wings subjected to distributed pressure on wing skins, in this
example a uniform pressure p̃ of 1250 N/m is applied on the upper skin of the wing.
Fig. 5 shows the trend of the deflection w f versus taper ratio is similar to that of
end load considered in Example 2.

Example 4: free vibration of uniform wings

The analytical solution of natural frequencies for composite wings was obtained in
our previous work [Hwu and Gai (2003)], which is valid only for uniform wings.
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Figure 6: Mode shapes of the first five vibration modes 
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Figure 6: Mode shapes of the first five vibration modes.

To check the correctness of the present comprehensive finite element model, the
natural frequencies of uniform wings are calculated by using the present model, the
analytical solution, and ANSYS. Tab. 2 shows the comparison of natural frequen-
cies. Their associated mode shapes are plotted in Fig. 6. All these results show
that they well agree with each other, and their differences are within 12%. Like the
convergent studies presented in Example 1, by the Intel(R) Core(TM)2 Duo E8500
(3.16GHz) personal computer this case is carried out within 55 seconds using the
present model, while 690 seconds using analytical solutions, and 910 seconds with
ANSYS. In other words, the calculating time of the present model is only 8% and
6% of the time consumed by the analytical model and ANSYS, respectively.

Example 5: free vibration of tapered wings

In this example, the taper ratio is varied from 0.2 to 1. The results and comparison
of the fundamental natural frequencies versus taper ratio are shown in Fig. 7, and
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Figure 7: Fundamental natural frequency vs. taper ratio.

the natural frequencies of the first five modes are shown in Fig. 8. The comparison
with ANSYS presented in Fig. 7 shows that most of the results agree well each
other, except the range for rt = 0.2-0.3, which may come from the inappropriate
mesh process induced by the abruptly change of geometric variation. From Fig. 7
and Fig. 8 we see that most of the natural frequencies increase when the taper ratio
rt is reduced.

7 Conclusions

By Hamilton’s principle, the matrix form comprehensive wing model is re-derived
in this paper. With the aid of finite element technique, the comprehensive wing
model is further extended to the comprehensive finite element model and is ap-
plicable to the tapered composite wing structures. The present model is a one-
dimensional model and thus is like a beam element, but it contains 5 degrees of
freedom in each node and performs like a solid element. Through the numerical
studies of static and free vibration cases shown in Section 6, it has been shown that
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Figure 8: Natural frequencies of the first five modes vs. taper ratio.

Table 2: Natural frequencies of uniform wings

Frequency, Hz
Method Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Span Length, L = 0.4m
Present 16.12 95.33 108.40 248.00 325.03
Analytical[Hwu and Gai (2003)] 16.15 96.45 110.34 252.45 333.85
ANSYS 16.66 99.72 118.57 264.31 357.92

Span Length, L = 0.3m
Present 28.45 142.83 164.19 399.78 439.08
Analytical[Hwu and Gai (2003)] 28.51 148.04 164.83 414.21 450.71
ANSYS 27.90 154.10 160.47 403.10 459.12

Span Length, L = 0.2m
Present 62.72 215.30 330.37 645.01 765.02
Analytical[Hwu and Gai (2003)] 62.97 225.69 335.69 690.42 788.67
ANSYS 61.88 233.57 326.95 686.14 765.56
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the present model is really accurate and efficient. The results for tapered wings
show that the larger the taper ratio the smaller the vertical deflection and natural
frequencies.

Acknowledgement: The authors would like to thank the support by National
Science Council through grant NSC 96-2221-E-006-174.

Appendix A: Definition of some symbols used in this paper

(i) Applied loads p̃y, p̃, m̃x− p̃∗, m̃y, m̃∗y :

p̃y =
∫ c/2

−c/2
pydx, p̃ =

∫ c/2

−c/2
pdx, m̃x =

∫ c/2

−c/2
mxdx, m̃y =

∫ c/2

−c/2
mydx,

p̃∗ =
∫ c/2

−c/2
pxdx, m̃∗y =

∫ c/2

−c/2
myxdx,

(A1)

where py, p and mx,my are the distributed loads of y, z direction and moments of x,
y direction applied on the upper and/or lower surfaces of the composite wings.

(ii) Resultant forces Ñy, Q̃y, M̃xy, M̃y, Q̃∗y , M̃∗y :

Ñy =
∫ c/2

−c/2
Nydx, Q̃y =

∫ c/2

−c/2
Qydx, M̃xy =

∫ c/2

−c/2
Mxydx, M̃y =

∫ c/2

−c/2
Mydx,

Q̃∗y =
∫ c/2

−c/2
Qyxdx, M̃∗y =

∫ c/2

−c/2
Myxdx,

(A2)

where Ny,Qy and Mxy,My are the stress resultants defined by
Nx

Ny

Nxy

=
∫ h/2

−h/2


σx

σy

τxy

dz,


Mx

My

Mxy

=
∫ h/2

−h/2


σx

σy

τxy

zdz,
{

Qx

Qy

}
=
∫ h/2

−h/2

{
τxz

τyz

}
dz.

(A3)

(iii) Mass m, center of gravity (xc,zc) and moment of inertia Ix, Iy, Ixz, Ixz2 , and Ix2z2 :

m =
∫

A
ρdA, mxc =

∫
A

ρxdA, mzc =
∫

A
ρzdA,

Ix =
∫

A
ρz2dA, Iy =

∫
A

ρ(x2 + z2)dA,

Ixz =
∫

A
ρxzdA, Ixz2 =

∫
A

ρxz2dA, Ix2z2 =
∫

A
ρx2z2dA,

(A4)
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where ρ is the mass density and A is the area of chordwise cross section.

(iv) Resultant stiffness Ãi j, B̃i j, D̃i j, Ã∗i j, B̃
∗
i j, D̃

∗
i j, Ã

∗∗
i j , B̃∗∗i j , D̃∗∗i j :

Ãi j =
∫ c/2

−c/2
Ai jdx, B̃i j =

∫ c/2

−c/2
Bi jdx, D̃i j =

∫ c/2

−c/2
Di jdx,

Ã∗i j =
∫ c/2

−c/2
Ai jxdx, B̃∗i j =

∫ c/2

−c/2
Bi jxdx, D̃∗i j =

∫ c/2

−c/2
Di jxdx,

Ã∗∗i j =
∫ c/2

−c/2
Ai jx2dx, B̃∗∗i j =

∫ c/2

−c/2
Bi jx2dx, D̃∗∗i j =

∫ c/2

−c/2
Di jx2dx, i, j = 1,2, ...,6,

(A5)

where the integration limits ±c/2 are the two ends of chord whose length is c. Ai j,
Bi j and Di j are, respectively, the extensional, coupling, and bending stiffnesses of
the composite wings which are defined by

A44 = αhGyz, Ai j =
n

∑
k=1

(Qi j)k(zk− zk−1),

Bi j =
1
2

n

∑
k=1

(Qi j)k(z2
k− z2

k−1), Di j =
1
3

n

∑
k=1

(Qi j)k(z3
k− z3

k−1), i, j = 1,2,6.

(A6)

In the above, his the thickness of the wing cross-section and is a function of x; Gyz

is the transverse shear modulus in y− z plane; α is the transverse shear correction
factor and is selected to be 5/6 for the present case [Cowper (1966)]. (Qi j)k are the
transformed reduced stiffnesses of the kth lamina; zk and zk−1 denote, respectively,
the location of the bottom and top surfaces of the kth lamina.

Note that in the calculation of Ai j, Bi j, and Di j, not only the composite laminates of
the faces are counted but also the stringers and spar flanges which are considered to
be the fibers of a pseudo-lamina. The equivalent material properties of this pseudo-
lamina can be found by the rule of mixture as [Hwu and Tsai (2002)]

EL = Es
As

Ap
+E f

A f

Ap
, νLT = νs

As

Ap
+ν f

A f

Ap
, ET = 0, GLT = 0, (A7)

where E, ν , G, and A denote, respectively, the Young’s modulus, Poisson’s ratio,
shear modulus, and cross-section area. The subscript L, T , s, and f denote the
longitudinal direction, transverse direction, stringer, and spar flange, respectively.
Ap stands for the cross section area of pseudo-lamina.

In order to find a proper transverse shear modulus Gyz that may represent the shear
resistance of the multicellular wing structures, the arrangement of the wing spar
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webs and ribs can be treated like a sandwich honeycomb core. By assuming uni-
form transverse shear strain over the wing cross section, the equivalent transverse
shear modulus Gyz can be estimated by [Hwu and Tsai (2002)]

Gyz =
ns

∑
k=1

GkAk/Aw (A8)

where Gk and Ak denote the shear modulus and section area of the kth spar web, Aw

is the wing cross section area and ns is the number of the wing spars.

Appendix B: Integration of potential and kinetic energy

If the integral is performed in the sequence of thickness direction (z), chordwise
direction (x), and spanwise direction (y), each term of the potential and kinetic
energy shown in Eq. (5) can be integrated as follows.

∫
V

WdV

=
1
2

∫
V

σi jεi jdV

=
1
2

∫
A
{Nxεx0 +Nyεy0 +Nxyγxy0 +Mxκx +Myκy +Mxyκxy +Qxγxz +Qyγyz}dxdy

=
1
2

∫
A
{Ny(v′0)+My(β ′f + xβ

′
r)+Mxy(βr +θ

′)+Qy[β f +w′f + x(βr−θ
′)]}dxdy

=
1
2

∫
y
{Ñyv′0 + M̃yβ

′
f + M̃∗y β

′
r + M̃xy(βr +θ

′)+ Q̃y(β f +w′f )+ Q̃∗y(βr−θ
′)}dy

=
1
2

∫
y
{FT

∆∆∆
′+FT

0 ∆∆∆}dy

(B1)

∫
V

fiuidV =
∫

A
{pxu+ pyv+ pw}dxdy

=
∫

A
{px(zθ)+ py[v0 + z(β f + xβr)]+ p(w f − xθ)}dxdy

=
∫

A
{mxθ + pyv0 +my(β f + xβr)+ p(w f − xθ)}dxdy

=
∫

y
{m̃xθ + p̃yv0 + m̃yβ f + m̃∗yβr + p̃w f − p̃∗θ}dy

=
∫

y
{pT

∆∆∆}dy

(B2)
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∫
Sσ

t̂iuidS =
[∫

x
{M̂xyθ + N̂yv0 + M̂y(β f + xβr)+ Q̂y(w f − xθ)}dx

]yt

yr

=
[

ˆ̃Mxyθ + ˆ̃Nyv0 + ˆ̃Myβ f + ˆ̃M∗y βr + ˆ̃Qyw f − ˆ̃Q∗yθ

]yt

yr

= [F̂T
∆∆∆]yt

yr

(B3)

1
2

∫
V

ρ u̇iu̇idV =
1
2

∫
V

ρ{u̇2 + v̇2 + ẇ2}dV

=
1
2

∫
V

ρ{(zθ̇)2 +(v̇0 + zβ̇ f + zxβ̇r)2 +(ẇ f − xθ̇)2}dzdxdy

=
1
2

∫
y
{Ix(θ̇ 2 + β̇

2
f )+ Izθ̇

2 +2Ixzv̇0β̇r +2Ixz2 β̇ f β̇r + Ix2z2 β̇
2
r

+m(v̇2
0 + ẇ2

f )−2mxcẇ f θ̇ +2mzcv̇0β̇ f }dy

=
1
2

∫
V
{∆̇∆∆T I0∆̇∆∆}dV

(B4)

In Eq. (B1), (εx0 ,εy0 ,γxy0) and (κx,κy, κxy) are the mid-plane strains and curvatures,
and (γxz,γyz) are the transverse shear strain. With the displacement assumed in Eq.
(1), we know that they are related to the basic functions v0, w f , θ , β f , and βr by

εx0 = 0, εy0 = v′0, γxy0 = 0

κx = 0, κy = β
′
f + xβ

′
r , κxy = βr +θ

′,

γxz = 0, γyz = β f +w′f + x(βr−θ
′).

(B5)

Appendix C: Variational operation

The variation of each term of Eq. (8) can be derived as follows.

δ

∫
y
∆∆∆

T KT
1 ∆∆∆
′dy =

∫
y
δ{∆∆∆T KT

1 ∆∆∆
′}dy =

∫
y
{(δ∆∆∆

T )KT
1 ∆∆∆
′+∆∆∆

T KT
1 δ (∆∆∆′)}dy (C1)

in which the second term of the last equality can be rewritten as∫
y
∆∆∆

T KT
1 δ (∆∆∆′)dy =

∫
y
∆∆∆

T KT
1 (δ∆∆∆)′dy =

∫
y
{(∆∆∆T KT

1 δ∆∆∆)′− (∆∆∆′T KT
1 δ∆∆∆)}dy

= [∆∆∆T KT
1 δ∆∆∆]yt

yr
−
∫

y
∆∆∆
′T KT

1 δ∆∆∆dy = [∆∆∆T KT
1 δ∆∆∆]yt

yr
−
∫

y
(δ∆∆∆

T )K1∆∆∆
′dy.

(C2)

Therefore,

δ

∫
y
∆∆∆

T KT
1 ∆∆∆
′dy =

∫
y
(δ∆∆∆

T )(KT
1 −K1)∆∆∆′dy+[(δ∆∆∆)T K1∆∆∆]yt

yr
. (C3)
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Similarly,

δ

∫
y
∆∆∆
′T K2∆∆∆

′dy =−2
∫

y
(δ∆∆∆

T )K2∆∆∆
′′dy+2[(δ∆∆∆

T )K2∆∆∆
′]yt

yr
,

δ

∫
y
∆∆∆

T K0∆∆∆dy = 2
∫

y
(δ∆∆∆

T )K0∆∆∆dy,

δ

∫
y
∆̇∆∆

T I0∆̇∆∆dy =−2
∫

y
(δ∆∆∆

T )I0∆̈∆∆dy+2
∂

∂ t

∫
y
(δ∆∆∆

T )I0∆∆∆dy.

(C4)
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