
Copyright © 2010 Tech Science Press CMES, vol.67, no.3, pp.211-237, 2010

Equivalent One-Dimensional Spring-Dashpot System
Representing Impedance Functions of Structural Systems

with Non-Classical Damping

Masato Saitoh1

Abstract: This paper describes the transformation of impedance functions in
general structural systems with non-classical damping into a one-dimensional spring-
dashpot system (1DSD). A transformation procedure based on complex modal
analysis is proposed, where the impedance function is transformed into a 1DSD
comprising units arranged in series. Each unit is a parallel system composed of
a spring, a dashpot, and a unit having a spring and a dashpot arranged in series.
Three application examples are presented to verify the applicability of the proposed
procedure and the accuracy of the 1DSDs. The results indicate that the 1DSDs ac-
curately simulate the impedance functions for a spring-dashpot-mass structure, a
truss frame structure, and a plate structure. The 1DSD transformation offers com-
patibility with complex modal analysis: a large number of units associated with
high modes beyond a target frequency region can be removed from the 1DSDs as
an approximate expression of impedance functions. The accuracy of the approxi-
mated 1DSDs can be improved by incorporating an additional unit associated with
the residual stiffness that compensates for the effect of high modes. A marked de-
crease in the computational domain size and time with the use of the 1DSDs is of
great scientific and engineering importance in diverse technological applications.

Keywords: impedance functions, lumped parameter models, dynamic response,
gyro-mass, residual stiffness, inertia restraint

1 Introduction

Efficient reduction of degrees of freedom (DOFs) in structural systems is of great
importance for solving dynamic problems, as numerous degrees of freedom are typ-
ically used to accurately describe structural systems by using discretized elements
such as mass-spring elements, rod/beam elements, and isoparametric elements. In
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particular, a proper reduction of the DOFs is strongly demanded for solving dy-
namic problems where structural systems interact with dynamic systems having an
extremely large number of DOFs, such as vehicles, industrial machines, and robots.
In such problems, the total number of DOFs is enormous, so the computational do-
main and time tend to be extremely large.

The dynamic stiffness method (DSM) has frequently been used to reduce the DOFs
in structural systems, especially for beam-like structures [e.g., Kolousek (1973),
Hizal and Gürgöze (1998), Barros and Luco (1990), Wolf (1994, 1997), Wu and
Lee (2002)]. Since this method was first developed in the early 1940s by Kolousek
(1941), it has been applied to various vibration analyses and has been apprecia-
bly improved to overcome difficulties in diverse vibration problems. The global
dynamic stiffness generated in the DSM procedure and various improved DSMs
can be used as reduced systems that express the dynamic stiffness or a so-called
impedance function at the structural interface of the contact point with dynamic
systems.

In general, the reduced systems representing impedance functions transformed by
DSMs show a significant decrease in the number of DOFs from the original struc-
tural systems. Most impedance functions are known to show strong frequency-
dependent characteristics: the real part of the impedance functions represents the
stiffness characteristics, whereas the imaginary part represents the damping char-
acteristics. The reduced systems are applicable to interaction problems whenever
the dynamic systems act under linearly elastic conditions. However, the use of re-
duced systems expressed in terms of the excitation frequency has presented serious
problems when nonlinearities such as slippage, separation, cracking, yielding, and
collapse occur in the dynamic systems.

A mechanical representation is one way to break through this problem. Impedance
functions are generally represented using a lumped parameter model (LPM) com-
prising springs, dashpots, and masses. Although each element has a frequency-
independent coefficient, a particular combination of elements allows simulation
of a frequency-dependent impedance characteristic. Thus, LPMs can easily be
incorporated into a conventional numerical analysis in the time domain even un-
der nonlinear conditions in dynamic systems. Hizal and Gürgöze (1998) proposed
an LPM of a longitudinally vibrating elastic rod with a viscous damping element
placed mid-span; LPMs for the interface of three-dimensional wave propagation
continua have been developed (e.g., Barros and Luco (1990), Wolf (1994, 1997),
Wu and Lee (2002), Andersen (2008), and Saitoh (2007)). To the best of the au-
thor’s knowledge, however, the number of studies proposing LPMs for structural
systems is very limited, and LPMs that represent the impedance functions in struc-
tural systems with general damping have never been proposed.
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This study shows that the impedance functions of general structural systems with
non-classical damping can be represented by a one-dimensional spring-dashpot
system (1DSD); a transformation procedure into 1DSDs is proposed based on con-
ventional complex modal analysis. The advantage of this 1DSD representation is
comparable to the advantage of conventional modal analysis: an approximate ex-
pression of the impedance functions can be obtained using 1DSDs with an appre-
ciably reduced number of units associated with related modes in a target frequency
region instead of using a large number of units associated with high modes beyond
the target frequency region.

The objectives of this study are: 1) To propose a procedure for formulating 1DSDs
using complex modal analysis; 2) to verify the accuracy of the transformed 1DSDs
compared with a direct solution using the original structural systems through three
example applications to a mass-spring-dashpot structure, a truss frame structure,
and a plate structure; and 3) to show an example where the number of DOFs in a
1DSD representing the impedance function of a cantilever plate having 240 DOFs
can be significantly reduced.

2 Transformations of Impedance Functions in General Structural Systems
into 1DSDs

2.1 General expressions of impedance functions in structural systems with non-
classical damping based on complex modal analysis

A structural system comprising N DOFs is considered. The equations of motion of
the original structural systems with damping can be generally described by

[M] {ü}+[C] {u̇}+[K] {u}= {p} , (1)

where [M], [C], and [K] are the mass matrix, damping matrix, and stiffness matrix,
respectively, of the original structural systems. Each matrix has the order N×N;
{u} and {p} are the response displacements and the external forces at the nodes,
respectively, and each vector has the order N. The dots denote partial derivatives
with respect to time t. In Eq. 1, the mass matrix [M] is symmetric and positive
definite; the damping matrix [C] and the stiffness matrix [K] are symmetric and
non-negative definite, respectively.

In this study, the damping matrix [C] is assumed to be based on non-classical damp-
ing. Therefore, Eq. 1 cannot be decoupled using the undamped modal vectors of
the structural system. In the following, therefore, a well-known procedure based
on complex modal analysis (e.g., Foss (1958)) is applied to obtain the impedance
function of the systems. Nagamatsu (1985) described detailed procedures for ob-
taining the general form of the admittance functions (the inverse of the impedance
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functions) of the structural systems based on complex modal analysis. Therefore,
in the following, the general impedance function in structural systems is derived
according to his procedure.

In complex modal analysis, the following 2N first-order equations are considered
instead of N second-order equations of Eq. 1:

[R] {ż}+[S] {z}= { f} , (2)

where

[R] =
[
[C] [M]
[M] [0]

]
, [S] =

[
[K] [0]
[0] − [M]

]
, {z}=

{
{u}
{u̇}

}
, { f}=

{
{p}
{0}

}
.

To obtain the homogeneous solution of Eq. 2, let

{z}= eλ t {Φ} . (3)

This yields

(λ [R]+ [S] ) {Φ}= {0} . (4)

The solution of Eq. 4 will yield 2N eigenvalues and eigenvectors λn and {Φn} ={
{φn}

λn {φn}

}
, n = 1, 2, · · · , 2N.

For a stable system, each λn is either real and negative (this is associated with an
over-damped mode) or complex with a negative real part (this is associated with
an under-damped mode). Each complex eigenvalue λn is known to have an eigen-
value λ̄n that is the complex conjugate of λn; the corresponding vector {φn} has
a vector

{
φ̄n
}

whose components are complex conjugates of those of {φn}. The
eigenvectors {Φn} are also known to satisfy the following orthogonality relations:

{Φm}T [R] {Φn}= 0, when m 6= n (5)

{Φm}T [S] {Φn}= 0, when m 6= n. (6)

The eigenvectors are assembled compactly into a matrix using diagonal matrices
[Ω] and

[
Ω̄
]

comprising the eigenvalues λn and λ̄n, respectively, as

[Ψ] =
[

[φ ]
[
φ̄
]

[φ ] [Ω]
[
φ̄
] [

Ω̄
]] , (7)

where

[φ ] =
[
{φ1} {φ2} · · · {φN}

]
,
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[
φ̄
]
=
[{

φ̄1
} {

φ̄2
}
· · ·

{
φ̄N
}]

,

[Ω] = [diagλn] , n = 1, 2, · · · , N,

[
Ω̄
]
=
[
diag λ̄n

]
, n = 1, 2, · · · , N.

The matrix [Ψ] is called the modal matrix. Non-homogeneous solutions of Eq. 2
can be expressed using a modal series based on the orthogonality relations:

{z(t)}= [Ψ] {ξ (t)} . (8)

Here, the new coordinates {ξ (t)} are called the modal coordinates. Substituting
Eq. 8 into Eq. 2 and premultiplying the equation by [Ψ]T yields

[Ψ]T [R] [Ψ]
{

ξ̇

}
+[Ψ]T [S] [Ψ] {ξ}= [Ψ]T { f} . (9)

The orthogonality relations, Eqs. 5 and 6, indicate that [Ψ]T [R] [Ψ] and [Ψ]T [S] [Ψ]
are diagonal matrices. The upper N components of the matrices are denoted as αn

and βn, respectively; the lower N components are complex conjugates of αn and
βn, respectively, denoted as ᾱn and β̄n. These diagonal matrices [Ψ]T [R] [Ψ] and
[Ψ]T [S] [Ψ] are denoted as [α] and [β ], respectively.

Substituting Eqs. 3 and 8 into the homogeneous equation of Eq. 2 and premulti-
plying the result by [Ψ]T clearly yields

λn =−βn/αn, (10)

λ̄n =−β̄n/ᾱn. (11)

In general, the eigenvalues λn and λ̄n can be replaced by the expressions

λn = σn + iωdn, (12)

λ̄n = σn− iωdn, (13)

where σn is the n-th modal decay rate and ωdn is the n-th damped natural circular
frequency.
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To obtain the impedance functions in structural systems, the harmonic external
force and harmonic response function are assumed to be

{ f}= {F} eiω t or {p}= {P} eiω t , (14)

{z}= {Z} eiω t or {u}= {U} eiω t , (15)

where ω is the circular frequency and {F}, {P}, {Z}, and {U} are time-independent
vectors. In this case, the modal coordinates {ξ (t)} in Eq. 8 can be written in the
form

{ξ (t)}= {Ξ} eiω t , (16)

where {Ξ} is a time-independent vector.

Substituting Eqs. 14, 15, and 16 into Eq. 2 and premultiplying the result by [Ψ]T

yields

(iω [α]+ [β ] ) {Ξ}= [Ψ]T {F} . (17)

Substituting {Ξ} of Eq. 17 into Eq. 16 and the resultant modal coordinates {ξ (t)}
into Eq. 8 yields

{Z}= [Ψ] (iω [α]+ [β ] )−1 [Ψ]T {F} . (18)

Eq. 18 can be rewritten using Eq. 7 as{
{U}
{U} [Ω]

}
=
[

[φ ]
[
φ̄
]

[φ ] [Ω] [φ ]
[
Ω̄
]] [[γ] [0]

[0] [γ̄]

] [
[φ ]T [Ω] [φ ]T[
φ̄
]T [

Ω̄
] [

φ̄
]T
]{
{P}
{0}

}
. (19)

Here, [γ] and [γ̄] are diagonal matrices comprising the diagonal components 1/(iωαn +βn)
and 1/

(
iωᾱn + β̄n

)
, respectively. The upper N equations are extracted as follows:

{U}=
(

[φ ] [γ] [φ ]T +
[
φ̄
]
[γ̄] [φ ]T

)
{P} . (20)

On the basis of Eq. 20, the admittance function HIJ , defined as the ratio of the
amplitude of the displacement response UI at the I-th DOF to a force PJ applied at
the J-th DOF, is expressed as

HIJ =
UI

PJ
=

N

∑
n=1

(
φnIφnJ

iωαn +βn
+

φ̄nI φ̄nJ

iωᾱn + β̄n

)
, (21)
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where φnI and φnJ are the components of the n-th eigenvector at the I-th and J-th
DOFs, respectively; φ̄nI and φ̄nJ are the complex conjugates of the components φnI

and φnJ , respectively.

Substituting Eqs. 10–13 into Eq. 21 yields

HIJ =
N

∑
n=1

(
Gn + iRn

i (ω−ωdn)+σn
+

Gn− iRn

i (ω +ωdn)+σn

)
, (22)

where Gn + iRn = φnIφnJ
αn

and Gn− iRn = φ̄nI φ̄nJ
ᾱn

.

Accordingly, the impedance function SIJ , defined as the ratio of the displacement
response UI to the external force PJ , is expressed by the inverse of Eq. 22 as

SIJ =
PJ

UI
=

1
HIJ

=
1

N
∑

n=1

(
Gn+iRn

i(ω−ωdn)+σn
+ Gn−iRn

i(ω+ωdn)+σn

) . (23)

2.2 Exact procedure for transforming impedance functions into 1DSDs

To the best of the author’s knowledge, an exact mechanical representation of the
impedance functions expressed by Eq. 23 has never been reported in the literature.
In this section, an exact procedure for transforming impedance functions into an
equivalent 1DSD is proposed.

Instead of dealing with Eq. 23 directly, consider a renewed form comprising cou-
pled terms, each created by the combination of the n-th two terms of the denomi-
nator in Eq. 23:

SIJ =
1

N
∑

n=1

2(σnGn−ωdnRn)+2iωGn

(σ2
n +ω2

dn)−ω2+2iωσn

. (24)

The above form can be rewritten as

SIJ =
1

N
∑

n=1

1
KnIJ

, (25)

where

KnIJ =

(
σ2

n +ω2
dn

)
−ω2 +2iωσn

2(σnGn−ωdnRn)+2iωGn
. (26)

Eq. 25 implies that the impedance functions expressed by Eq. 24 could be trans-
formed into a set of units arranged in series, where each unit has an impedance
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function expressed by Eq. 26. Note that a mechanical unit exactly representing
the impedance function expressed by Eq. 26 could be found serendipitously by
changing the configurations of the mechanical components.
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Figure 1: (a) One-dimensional lumped parameter model with spring and dashpot
elements (1DSDs) for simulating the impedance function SIJ (ω) = pJ/uI in gen-
eral structural systems. (b) Unit associated with under-damped mode and (c) unit
associated with over-damped mode.

In this study, the following mechanical representation for Eq. 26 is proposed: a
parallel system comprising a spring kT n, a dashpot cT n, and a unit having a spring
kn and a dashpot cn arranged in series as shown in Fig. 1. The impedance function
of the proposed system is described by

Kn =
knkT n
cncT n
−ω2 + iω

(
kn

cT n
+ kT n

cT n
+ kn

cn

)
kn

cncT n
+ iω

cT n

. (27)

The mathematical form of Eq. 27 is analogous to that of Eq. 26. The equivalency
of each term of Eq. 26 with those of Eq. 27 yields

knkT n/cncT n = σ
2
n +ω

2
dn, (28)
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kn

cT n
+

kT n

cT n
+

kn

cn
= 2σn, (29)

kn/cncT n = 2(σnGn−ωdnRn) , (30)

1/cT n = 2Gn. (31)

Solving the simultaneous equations of Eqs. 28–31 for the springs kn, kT n and the
dashpots cn, cT n yields

kT n =
σ2

n +ω2
dn

2 (Gnσn−Rnωdn)
, (32)

cT n =
1

2Gn
, (33)

kn =
−
(
G2

n +R2
n
)

ω2
dn

2G2
n (Gnσn−Rnωdn)

, (34)

cn =
−
(
G2

n +R2
n
)

ω2
dn

2Gn (Gnσn−Rnωdn)
2 . (35)

The above results indicate that the properties of the mechanical elements of the
units can be determined from the modal quantities σn, ωdn, Gn, and Rn obtained by
a one-time complex modal analysis calculation. Fig. 1 shows a 1DSD representing
the impedance functions of general structural systems.

2.3 Transformations of impedance functions into 1DSDs with real eigenvalues
λn (over-damped modes)

Eigenvalues λn are real and negative when over-damped modes appear. In this
case, Eqs. 32–35 cannot be used to construct a mechanical unit of impedance
functions. When an eigenvalue λn is real and negative, the second term of the
denominator associated with the complex conjugates φ̄nI φ̄nJ in Eq. 23 does not
exist. In addition, the imaginary part of the eigenvalue is found to be zero, whereas
the imaginary part of the eigenvectors φIn and φJn also becomes zero, which results
in Rn = 0. Therefore, the impedance function associated with over-damped modes
is expressed as follows:

KnIJ =
1
Gn

iω+σn

=
iω +σn

Gn
. (36)

Accordingly, the following spring kT n and dashpot cT n comprise a Kelvin–Voigt
unit, as shown in Fig. 1c for an over-damped mode.

kT n =
σn

Gn
(37)
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cT n =
1

Gn
(38)

Note that over-damped modes generally appear with even numbers 2m in 2N modes,
so the total unit number N in Eq. 25 changes to N′ (= N +m) when over-damped
modes exist.

2.4 Transformations of impedance functions in structural systems with classi-
cal damping

Classical damping (proportional damping) is a specific damping system wherein
the damping matrix is proportional to the stiffness matrix, the mass matrix, or both.
In transforming the impedance functions of structural systems with classical damp-
ing, Eq. 1 can be decoupled using the undamped modal vectors of the structural
systems. The decoupling of Eq. 1 by using undamped modal vectors shows that Gn

in Eq. 26 becomes zero (c.f. Nagamatsu (1985)); hence, Eq. 26 becomes

KnIJ =

(
σ2

n +ω2
dn

)
−ω2 +2iωσn

−2ωdnRn
. (39)

The mathematical form of Eq. 39 is incompatible with that of Eq. 27. This implies
that the 1DSD proposed here is limited to structural systems with non-classical
damping. In addition, a damping system that is mostly classical but partially non-
classical due to additional dashpots, for instance, may generate the particular modes
associated with proportional damping. In this case, the proposed 1DSDs are un-
available for the units corresponding to the modes.

A possible technique to transform the systems into a one-dimensional equivalent
mechanical system would be to change Eq. 39 into the following form:

KnIJ =−m̄gn ω
2 + icgnω + kgn, (40)

where

m̄gn =− 1
2ωdnRn

, (41)

cgn =− σn

ωd nRn
, (42)

kgn =−
σ2

n +ω2
d n

2ωd nRn
. (43)

Eq. 40 indicates that a unit associated with classical damping can be considered as a
parallel system consisting of a spring kgn, a dashpot cgn, and an element m̄gn having
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the same dimensions as ordinary mass. Herein, the element m̄gn should generate
a reaction force proportional to the relative acceleration of the two nodes between
which it is placed. This element is termed “gyro mass,” and was first proposed and
initially used for expressing frequency-dependent impedance functions by Saitoh
(2007). Although the use of the gyro mass in structural systems with classical
damping is beyond the scope of this study, this description could be valuable in
further studies to solve this problem.

2.5 Matrix expressions of 1DSDs for numerical computations

In the matrix representation of 1DSDs proposed above, which is convenient for
numerical computations, the relationship between the displacements (we

n−1, we
n, and

ve
n) and the external forces ( f e

n−1, f e
n , and ge

n) at both ends and at the internal node
of a unit associated with the n-th mode, as shown in Fig. 1b, can be written as

{Fe}n = [Ce] n
{

Ẇ e}
n +[Ke] n {W e} n, (44)

where

{Fe}n =
{

f e
n−1 ge

n f e
n
} T , (45)

{W e}n =
{

we
n−1 ve

n we
n
} T , (46)

[Ke] n =

 kn −kn 0
−kn kn 0

0 0 0

 +

 kT n 0 −kT n

0 0 0
−kT n 0 kT n

 , (47)

[Ce] n =

0 0 0
0 cn −cn

0 −cn cn

 +

 cT n 0 −cT n

0 0 0
−cT n 0 cT n

 . (48)

[Ke] n and [Ce] n are the stiffness matrix and damping matrix, respectively, of a unit
associated with the n-th mode. Superimposing the stiffness matrices and damping
matrices of all units gives the simultaneous equations of motion of a 1DSD ex-
pressed as a matrix. When over-damped modes appear in the systems, a DOF for
the internal node in the unit and the two connected elements kn and cn are removed,
as shown in Fig. 1c.

3 Example Applications

3.1 Example 1: One-dimensional mass-spring-dashpot system

Fig. 2 shows a one-dimensional four-DOF mass-spring-damper system. The four
masses are connected with seven springs and seven dampers as shown in the figure.
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The numbers in the figure indicate the nodal numbers of this structural model. The
properties of the masses are: m1 = m2 = m3 = m4 = 1.0ton, where mi is defined as
the mass at the i-th node. The spring constants are k12 =8.0×103 kN/m, k23 = k34 =
k45 =4.0×103 kN/m, k24 =3.0×103 kN/m, k14 =2.0×103 kN/m, and k15 =1.0×
103 kN/m. The damping coefficients of the dashpots are c12 = c23 = c34 = c24 =
c14 =2.0 kN-sec/m and c45 = c15 =4.0 kN-sec/m. Here, ki j and ci j are the constants
of a spring and a dashpot, respectively, placed between the i-th and j-th nodes. The
fifth node is fixed in the horizontal direction. The equations of motion for the mass-
spring-dashpot system (Eq. 1) can be constructed using conventional techniques
(c.f. Weaver, Timoshenko, and Young (1990)).

Table 1 shows the properties of the elements in the 1DSDs obtained by the pro-
cedure described above. This example investigates the impedance functions as-
sociated with the displacement response at nodes 1, 2, 3, and 4 when node 1 is
excited. The results of modal analysis indicate that no over-damped mode exists in
the system. Thus, four units comprise the 1DSDs, as shown in Table 1 for this case.

Fig. 3 shows the impedance functions of the 1DSDs and the impedance functions
evaluated directly from Eq. 1 of the original four-DOF mass-spring-dashpot sys-
tem. Fig. 3 indicates that the impedance functions of the 1DSDs are identical to
those evaluated from the original mass-spring-dashpot system.

Consider a mass-spring-dashpot system showing over-damped modes as a possi-
ble case in practical applications. The same system is used here except that the
damping coefficient in the dashpot, c34 =2.0 kN-sec/m, is changed to 2.0× 102

kN-sec/m. The results of modal analysis indicate that the third and eighth modes
in 2N (= 8) vibrating modes become over-damped modes where the eigenvalues
are real and negative, whereas the eigenvalues of the other six modes become three
sets of complex conjugates. Hence, a total of five units comprise the 1DSDs rep-
resenting the impedance functions in the mass-spring-dashpot system, as shown in
Fig. 2c. Table 2 shows the properties of the elements in the 1DSDs.

Fig. 4 shows the impedance functions of the 1DSDs with over-damped modes and
the impedance functions evaluated directly from Eq. 1 of the original system. The
impedance functions of the 1DSDs are compatible with those evaluated from the
original system.

3.2 Example 2: Two-dimensional truss frame system with damping

Fig. 5 shows a two-dimensional truss frame system with six DOFs with damping.
The fourth and fifth nodes are fixed in the vertical and horizontal directions. The
structural model comprises seven rod elements. Each rod has a cross-sectional area
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Figure 2: (a) One-dimensional mass-spring-dashpot system with four DOFs.
(b) One-dimensional lumped parameter model with spring and dashpot elements
(1DSD) for simulating the impedance function SI1 (ω) = p1/uI . (c) 1DSD contain-
ing over-damped modes.

At = 0.01m2 and elastic modulus Et = 1.00×106 kN/m2; the mass density of rods
3 and 4 is ρt = 4.00 ton/m3, and that of the other five rods is ρt = 2.00 ton/m3. In
the system, a conventional rod element is used with a consistent mass that can carry
only axial loads (c.f. Weaver, Timoshenko, and Young (1990)). In this example,
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Figure 3: Impedance functions of a one-dimensional mass-spring-dashpot system
using 1DSDs [(a) real part and (b) imaginary part]. Results obtained from the
original mass-spring-dashpot system are shown for comparison.
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Figure 4: Impedance functions of a one-dimensional mass-spring-dashpot system
using 1DSDs with over-damped modes [(a) real part and (b) imaginary part]. Re-
sults obtained from the original mass-spring-dashpot system are shown for com-
parison.

the damping matrix for each rod element is constructed on the basis of

[C]k = βk [K]k , (49)

where

βk =
2ζk

ω1
, (50)

where [C]k and [K]k are the damping matrix and stiffness matrix, respectively, of
the k-th rod element; the parameter ζk is the damping ratio of the k-th rod at the
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Figure 5: (a) Truss frame system with six DOFs with damping. (b) One-
dimensional lumped parameter model with spring and dashpot elements (1DSD)
for simulating the impedance function SI1 (ω) = p1/uI .
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Figure 6: Impedance functions of a two-dimensional truss frame system using
1DSDs [(a) real part and (b) imaginary part]. Results obtained from the original
truss frame system are shown for comparison.
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fundamental natural frequency of the structural system, and ω1 is the fundamental
natural circular frequency of the undamped system. In this example, the damping
ratio of rods 1, 6, and 7 is 0.02, whereas that of rods 2, 3, 4, and 5 is 0.01. ω1
(= 212.1 rad/sec) is estimated using conventional modal analysis without damping.

Table 3 shows the properties of the elements in the 1DSDs obtained by the pro-
posed procedure. In this example, the impedance functions associated with the
displacement response at nodes 1, 2, and 3 in the horizontal direction when node 1
is excited in the same direction are discussed. No over-damped modes exist in this
system. Table 3 shows that extremely large coefficients for certain elements exist in
the 1DSDs, which is caused by the markedly small φnIφnJ and φ̄nI φ̄nJ components
of the eigenvectors. In this case, the displacements of these units are considered to
be negligibly small in the 1DSDs. Therefore, reduced 1DSDs consisting of units
excluding the shaded units are used to approximately express the impedance func-
tions. In this example, the above reduction of units is attributed mainly to the sym-
metry in the shape and material properties of the structural system. In particular,
nodes located on the line of symmetry of the system tend to show extremely small
components of the eigenvectors for particular modes. Therefore, it is conceivable
that the above reduction may not be generally expected in realistic structural sys-
tems having asymmetric shapes and properties.

Fig. 6 compares the impedance functions from the 1DSDs and those evaluated
directly from Eq. 1 for the truss frame system. It is clear that they are in close
agreement.

3.3 Example 3: Two-dimensional cantilever plate system with damping

Fig. 7 shows a two-dimensional plate system with eight DOFs with damping.
Nodes 5, 6, 7, and 8 are fixed in the vertical and horizontal directions. The struc-
tural system comprises three conventional rectangular isoparametric elements (c.f.
Weaver, Timoshenko, and Young (1990)), where each element is 1.0 m × 1.0 m
and has a Poisson’s ratio of νp = 0.20 and mass density ρp = 7.00 ton/m3. The
elastic modulus of elements 1 and 2 is Ep = 1.00×107 kN/m2; that of element 3 is
Ep = 0.50×107 kN/m2. The damping ratios are ζ1 = ζ3 = 0.008 and ζ2 = 0.004.
In this example, Eqs. 49 and 50, which were used in the previous example, are
applied to construct the system’s damping matrix.

Here, the impedance functions associated with the displacement response at nodes
1, 2, and 3 in the horizontal direction when node 1 is excited in the same direction
are discussed. Table 4 shows the properties of the elements in the 1DSDs trans-
formed by the proposed procedure. Table 4 indicates that no unit is removable in
the 1DSDs because the material properties of the system are asymmetric, so φnIφnJ
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Figure 7: (a) Two-dimensional plate system with 8 DOFs. (b) One-dimensional
lumped parameter model with spring and dashpot elements (1DSD) for simulating
the impedance function SI1 (ω) = p1/uI .

and φ̄nI φ̄nJ in the eigenvectors are not extremely small.

Fig. 8 compares the impedance functions for the 1DSDs and the impedance func-
tions evaluated directly from Eq. 1 for the original plate system, which are in
agreement.

4 Advantages of Proposed Transformation into One-Dimensional Spring-
Dashpot Systems

Modal analysis has frequently been applied to solving various dynamic problems
because a small set of modes from the lowest order can appropriately express the
dynamic characteristics of structural systems without using all the modes. This ad-
vantage may also be an advantage of the proposed 1DSDs. It is apparent that the
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Figure 8: Impedance functions of a two-dimensional plate system using 1DSDs [(a)
real part and (b) imaginary part]. Results obtained from the original plate system
are shown for comparison.
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Figure 9: Two-dimensional cantilever plate system with 100 elements.

number of DOFs in the 1DSDs after the transformation is twice that of the original
structural systems except for the specific reduction owing to the system’s symme-
try, as shown in the examples. In fact, the specific reduction is rarely expected to
exist in real structural systems because of the asymmetry in general structural sys-
tems and the arbitrariness of the nodes selected. This implies that, in general, the
computational domain size and time of 1DSDs are larger than those of the orig-
inal structural systems. In actuality, a great advantage of the 1DSDs is that the
units comprising the 1DSDs are associated with the vibration modes of the origi-
nal structural system. Therefore, because of the advantage of conventional modal
analysis, a small set of units associated with modes from the lowest order can ap-
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Figure 10: Impedance functions of a two-dimensional cantilever plate system (100
elements) with damping using a 1DSD with 13 units and a 1DSD with the residual
stiffness (RS) for a target frequency range from 0 Hz to 300 Hz [(a) real part and
(b) imaginary part]. Results obtained from the original cantilever plate system are
shown for comparison.
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Figure 11: 1DSDs with residual stiffness for approximating impedance functions
in general structural systems with damping.

propriately express the dynamic characteristics of structural systems without using
all the units. In the following discussion, we attempt to reconstruct 1DSDs where
units associated with high-order modes in the high-frequency region are removed.

Fig. 9 shows a two-dimensional cantilever plate system of 126 nodes and 100 el-
ements with damping. The structural system comprises eight rectangular isopara-
metric elements; each element is 1.0 m × 1.0 m in size and has an elastic modulus
Ep = 1.00× 107 kN/m2, Poisson’s ratio νp = 0.30, and mass density ρp = 1.00
ton/m3. A damping ratio of ζk = 0.002 is assumed for shaded elements, whereas
a damping ratio of ζk = 0.001 is assumed for the others. In this system, six nodes
on the left side of the system are fixed in the horizontal and vertical directions. Ac-
cordingly, this structural system has 240 DOFs; 240 units with 480 DOFs comprise
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Figure 12: Comparison of the displacement response of a two-dimensional can-
tilever plate system (of 100 elements) with damping using a 1DSD with 13 units
and a 1DSD with residual stiffness (RS) when subjected to an impulse force. Re-
sults obtained from the original cantilever plate system are shown for comparison.

the corresponding 1DSD. In this example, the impedance functions associated with
the displacement response at node B in the horizontal direction when node A is
excited in the horizontal direction are discussed. Modal analysis shows that the
fundamental natural frequency and the highest natural frequency of the original
cantilever system with damping are 6.498 Hz and 2309 Hz, respectively. In addi-
tion, no units associated with over-damped modes and no removable units having
extremely large properties appear in the system.
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Fig. 10 compares the impedance functions evaluated using the original cantilever
plate system and a 1DSD consisting of only 13 units associated with 26 modes
from the lowest order ranging from 0 Hz to 300 Hz. Fig. 10 indicates that the
impedance functions of the 1DSD show relatively close agreement with those of
the original system below 250 Hz, whereas the local minima and maxima in the
impedance functions around 65 Hz and 150 Hz show discrepancies in their ampli-
tudes. The approximate representation of the impedance functions by the 1DSD
without higher modes above 300 Hz is attributable to these discrepancies.

To improve the accuracy of the 1DSD, a mechanical element associated with a
so-called residual stiffness is incorporated. The residual stiffness has often been
applied to approximate expressions of structural systems in conventional modal
analysis. It can be defined as the remaining stiffness after removing terms asso-
ciated with ω from Eqs. 25 and 26, as the effect of target frequency ω could be
neglected at high frequencies. Thus, the residual stiffness representing the stiffness
of high-frequency modes is expressed as

1
RIJ

=
N′

∑
n=l+1

1
K̄nIJ

=
1

K̄l+1 IJ
+

1
K̄l+2 IJ

+ · · ·+ 1
K̄N′ IJ

, (51)

where

For under-damped modes: K̄nIJ =
σ2

n +ω2
dn

2(σnGn−ωdnRn)
; (52)

For over-damped modes: K̄nIJ =
σn

Gn
, (53)

where l is the maximum mode number considered in the 1DSDs without residual
stiffness.

The residual stiffness RIJ is incorporated into an approximate expression of the
impedance functions SIJ (ω) as follows:

SIJ (ω) =
1

l
∑

n=1

1
K∗nIJ

+ 1
RIJ

. (54)

Therefore, the residual stiffness RIJ can be incorporated into the 1DSDs as a me-
chanical element arranged in series with the 1DSDs, as shown in Fig. 11.

Fig. 10 also shows the impedance functions evaluated using the 1DSDs with the
residual stiffness RIJ . An appreciable improvement in the match between the am-
plitudes at the local minima and maxima in the impedance functions is achieved
using this technique, as shown in the figure.
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To verify the accuracy of the transient response of the 1DSDs, a unit impulse force
is applied at the end of the 1DSDs. The duration of the excitation is assumed to
be 0.002 s, as shown in Fig. 12. The excitation begins at 5.000 s. Fig. 12 shows
the time histories of the displacement evaluated using the 1DSDs and the original
structural system where the displacement response at node B is directly computed
by exciting node A with the impulse force. In this example, Newmark’s average
acceleration method (Newmark (1959)) is used in the numerical computations. Fig.
12 shows that the time histories of the 1DSDs are in close agreement with that of
the original structural system.

5 Conclusions

This paper presents a one-dimensional LPM that represents the impedance func-
tion between two nodes arbitrarily selected in general structural systems with non-
classical damping. The impedance function was transformed into an equivalent
LPM consisting of units arranged in series. Each unit is a parallel system com-
posed of a spring, a dashpot, and a unit having a spring and a dashpot arranged in
series. The properties of the elements comprising the 1DSDs were derived from a
proposed procedure based on complex modal analysis.

The applicability of the proposed transformation procedure and the accuracy of the
impedance functions of the proposed 1DSDs were verified with three examples of
structural systems. The results of the proposed transformation were compared with
those evaluated directly from the original structural systems. In the transformation
procedure, the number of elements and DOFs in 1DSDs could be reduced because
of the symmetry in the shape and material properties of the structural systems. The
results show that the impedance functions using the 1DSDs are in agreement with
those evaluated from the original structural systems.

A large number of units associated with high-order modes in the high-frequency
region can be removed from the proposed 1DSDs as an approximate expression
of impedance functions in a target frequency region. The accuracy of the approxi-
mated 1DSDs is improved by incorporating an additional unit associated with resid-
ual stiffness. This approximation can significantly reduce the DOFs of the 1DSDs,
so a marked decrease in the computational domain size and time can be expected
when solving dynamic problems.
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