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Towards an Analysis of Shear Suspension Flows Using
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Abstract: In this paper, radial basis functions are utilised for numerical predic-
tion of the bulk properties of particulate suspensions under simple shear conditions.
The suspending fluid is Newtonian and the suspended particles are rigid. Results
obtained are compared well with those based on finite elements in the literature.
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1 Introduction

Particulate suspensions, which involve transport of rigid particles suspended in a
fluid medium, occur in many industrial processes such as slurries, colloids, flu-
idised beds, etc. Due to their great structural and physical variety, the use of ex-
periments to determine the macroscopic rheological properties of these multiphase
materials was seen to be impractical [Phan-Thien and Kim (1994)]. However, it
may be possible to employ numerical simulations to predict the bulk properties
of multiphase materials. Various numerical models have been proposed. Among
them, direct numerical simulations (DNSs), which consist in solving the funda-
mental equations for particles (Newton-Euler equation) and a fluid (Navier-Stokes
equation) in a direct and fully-coupled manner, have received a great deal of atten-
tion. Two main advantages of DNSs are that (i) they can handle particles of differ-
ent shapes and sizes as well as any type of fluid and (ii) hydrodynamic forces and
moments can be calculated directly from the fluid flow. Difficulties faced by DNSs
include (i) a very large number of particles is typically required for a proper simu-
lation and (ii) the fluid domain is of very complex shape due to the presence of par-
ticles and the change of their positions with time. Based on the fluid-phase solver
employed, DNSs can be classified into two categories. In the first category, a mesh
follows the movement of the particles, i.e. a moving mesh is used. Methods based
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on the arbitrary Lagrangian-Eulerian (ALE) moving mesh approach proposed by
Hu, Joseph, and Crochet (1992) are widely used, e.g. [Hu (1995); Huang, Feng,
Hu, and Joseph (1997); Huang, Hu, and Joseph (1998)]. In the second category, a
mesh covers the whole domain and is independent of the position of particles, i.e.
a fixed mesh is used. Methods based on the fictitious domain approach proposed
by Glowinski, Pan, and Periaux (1998) are widely employed, e.g. [Hwang, Hulsen,
and Meijer (2004); Patankar, Singh, Joseph, Glowinski, and Pan (2000); Singh,
Joseph, Hesla, Glowinski, and Pan (2000)]. Hwang, Hulsen, and Meijer (2004)
incorporated sliding bi-periodic frames, introduced by Lees and Edwards (1972)
for molecular dynamics, into the simulation of particulate flows. This concept al-
lows the modelling of suspension systems with infinite numbers of particles to be
conducted through a small number of particles in a representative reference sliding
frame. The computational fluid domain is thus small with bi-periodic conditions
on the frame and no-slip conditions on the surfaces of the particles.

Over the last two decades, radial basis functions (RBFs), proven to be universal
approximators, have been developed and applied to solve different types of differ-
ential problems encountered in applied mathematics, science and engineering, e.g.
[Fasshauer (2007); Kansa (1990); Le-Cao, Mai-Duy, and Tran-Cong (2009); Sarler
(2005)] and the references therein. RBF-based methods are extremely easy to im-
plement and capable of achieving a high level of accuracy using a relatively-small
number of nodes. One can construct RBF-based approximations through differenti-
ation or integration. Since integration is a smoothing operator, the latter has higher
approximation power than the former especially in the representation of derivative
functions, e.g. [Le-Cao, Mai-Duy, and Tran-Cong (2009); Mai-Duy and Tran-Cong
(2001); Mai-Duy and Tran-Cong (2003)].

In this paper, integrated RBFs (IRBFs) and point collocation are utilised in the
context of boundary fitted Cartesian grids and sliding bi-periodic frames for the
direct simulation of flows of Newtonian-based particulate systems. The remainder
of the paper is organised as follows. Section 2 gives a brief review of the governing
equations and the concept of sliding frames. In Section 3, the proposed numerical
procedure is described. Numerical results are presented in Section 4. Section 5
concludes the paper.

2 Governing equations and sliding frames concept

2.1 Governing equations

Let Π be the entire computational domain, including the interior regions occupied
by the particles. Let Pi(t) and ∂Pi(t) be the region and its boundary of the ith
particle of time t, where i = (1,2, · · · ,N) and N is the number of particles (Figure
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1).

Figure 1: A particle-fluid system

Fluid motion: The laws of mass and momentum conservation for an incompress-
ible fluid lead to

∇∇∇.u = 0, (1)

ρ f
Du
Dt

= ∇∇∇.σσσ , (2)

where u is the velocity vector; ρ f the density of the fluid; σσσ the total stress tensor;
and D[.]/Dt the material derivative defined as

D[.]
Dt

=
∂ [.]
∂ t

+(u.∇)[.]. (3)

For a Newtonian fluid, the total stress tensor is given by

σσσ =−pI+2ηD, (4)
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where p is the hydrodynamic pressure; I the unit tensor; η the viscosity; and D the
strain rate tensor defined as

D =
1
2
[∇u+(∇u)T ]. (5)

In the case of 2D problems, the stream function - vorticity formulation has been
widely employed because of its simplicity. The governing equations (1), (2) and
(4) can be rewritten as follows.

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 = ω, (6)

∂ω

∂ t
+u

∂ω

∂x
+ v

∂ω

∂y
=

1
Re

(
∂ 2ω

∂x2 +
∂ 2ω

∂y2

)
, (7)

where ψ is the stream function; ω the vorticity; Re the Reynolds number; and u
and v the components of u, which are defined in terms of the stream function as

u =
∂ψ

∂y
, v =−∂ψ

∂x
.

The given velocity boundary conditions, u and v, can be transformed into two
boundary conditions on the stream function and its normal derivative

ψ = γ,
∂ψ

∂n
= ξ ,

where n is the direction normal to the boundary, and γ and ξ prescribed functions.

Particle motion: Consider an ith particle. The motion of the particle can be de-
scribed by the Newton-Euler equations

Mi
dUi

dt
= Fi, (8)

Ii
dΩΩΩi

dt
= Ti, (9)

where Mi,Ii,Ui and ΩΩΩi are the mass, inertia tensor, translational velocity vector of
the mass centre and angular velocity vector of the ith particle, respectively; and Fi

and Ti the force and torque vectors acting on the ith particle.

The force and torque vectors can be computed from the fluid flow as

Fi =
∮

∂Pi(t)
σσσ .nds, (10)

Ti =
∮

∂Pi(t)
r× (σσσ .n)ds, (11)
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where r is the position vector; n the outward unit vector normal to the boundary
∂Pi and ds the length of an infinitesimal part of ∂Pi.

Non-slip boundary conditions on the interface between the fluid and the ith particle
are given by

u = Ui +ΩΩΩi× r, (12)

where

Ui =
dXi

dt
,

ΩΩΩi =
dΘΘΘi

dt
,

in which Xi is the position vector of the mass center and ΘΘΘi the orientation of the
ith particle. In terms of the stream function, (12) becomes

∂ψ

∂y
= Ui−Ωiy (13)

∂ψ

∂x
=−Vi−Ωix, (14)

where Ui and Vi are the two components of U and Ωi the magnitude of ΩΩΩi.

2.2 Sliding bi-periodic frames concept

Consider a particulate flow of very large domain under simple shear conditions
in the x direction. One possible way to make such a large problem tractable is to
simplify it using the concept of sliding bi-periodic frames. The problem domain can
be divided into a set of identical sliding frames of width L and height H (Figure 2).
Each frame translates along the shear direction at its own average velocity. Rows of
frames slide relatively to one another by an amount ∆ = γ̇Ht, where γ̇ is the given
shear rate, H height of the frame and t shear time [Hwang, Hulsen, and Meijer
(2004)].

Because frames have similar solutions, we consider only one frame. If particles in
a frame are ignored, it can be seen that the velocity profile is linear

u = u0 + γ̇y, (15)

v = 0, (16)

where the origin of the x−y coordinate system is located at the centre of the frame;
u0 the translation velocity of the frame and −H/2 ≤ y ≤ H/2. With the presence
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Figure 2: Shear bi-periodic frames.

of particles, one has

u = û+u0 + γ̇y, (17)

v = v̂, (18)

where û and v̂ are the perturbations from the linear profile.

Since the solution is continuous across sliding frames, the following bi-periodic
boundary conditions for the velocity u and the traction τττ can be applied to each
frame

u(−L/2,y, t) = u(L/2,y, t), −H/2≤ y≤ H/2, (19)

τττ(−L/2,y, t) = τττ(L/2,y, t), −H/2≤ y≤ H/2, (20)
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for the two vertical faces, and

u(x,−H/2, t) = u(x+ γ̇Ht,H/2, t)+(γ̇H,0)T , −L/2≤ x≤ L/2, (21)

τττ(x,−H/2, t) = τττ(x+ γ̇Ht,H/2, t), −L/2≤ x≤ L/2, (22)

for the two horizontal faces.

3 Proposed technique

In this study, we propose a numerical procedure based on IRBFs and sliding frames
for the simulation of particulate suspensions under simple shear conditions. The
fluid domain in a reference frame is simply discretised using a Cartesian grid
nx × ny. Let Γ1,Γ2,Γ3 and Γ4 be the sides of the reference frame (Figure 3).
IRBFs are employed on each grid line to represent the field variables ψ and ω

(one-dimensional IRBFs). Sliding bi-periodic boundary conditions are presently
implemented by means of point collocation rather than the Lagrange multipliers
used in [Hwang, Hulsen, and Meijer (2004)]. The proposed procedure combines
strengths of three approaches, namely IRBFs (high-order accuracy), Cartesian grids
(easy preprocessing) and the sliding bi-periodic frames concept (infinite number of
particles). To our best knowledge, this is a first attempt to use RBFs for the anal-
ysis of shear particulate flows. In the following, details are presented for the three
constituent components of the proposed procedure. 1D-IRBFs are first described.
Sliding bi-periodic boundary conditions are then expressed in terms of the stream
function and implemented with IRBFs and point collocation. Finally, suitable for-
mulas and their IRBF implementation are presented for computing the boundary
values on the particles.

3.1 1D-IRBFs

Consider a grid line that can be bounded by two faces of the frame, the boundaries
of two particles, or the boundary of the particle and the frame. Assume a grid line
in the x direction and let f be the field variable. We use IRBFs to approximate f .
The construction procedure is as follows.

Second-order derivative of f along a grid line can be decomposed into RBFs

∂ 2 f (x)
∂x2 =

m

∑
i=1

wigi(x) =
m

∑
i=1

wiI
(2)
i (x), (23)

where m is the number of RBFs; {gi(x)}m
i=1≡

{
I(2)
i (x)

}m

i=1
the set of RBFs; {wi}m

i=1

the set of weights to be found and f represents ψ and ω . Approximate expressions
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Γ1

Γ2

Γ3

Γ4

Figure 3: A reference frame and its typical Cartesian-grid discretisation.

for the first-order derivative and the field variable are then obtained through inte-
gration

∂ f (x)
∂x

=
m

∑
i=1

wiI
(1)
i (x)+ c1, (24)

f (x) =
m

∑
i=1

wiI
(0)
i (x)+ c1x+ c2, (25)

where I(1)
i (x) =

∫
I(2)
i (x)dx and I(0)

i (x) =
∫

I(1)
i (x)dx. In this study, IRBFs are im-
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plemented with the multiquadric (MQ) function and one thus has

I(2)
i (x) =

√
(x− ci)2 +a2

i , (26)

I(1)
i (x) =

(x− ci)
2

A+
a2

i

2
B, (27)

I(0)
i (x) =

(−a2
i

3
+

(x− ci)2

6

)
A+

a2
i (x− ci)

2
B, (28)

where ci and ai are the centre and the width of the ith MQ, respectively; A =√
(x− ci)2 +a2

i ; and B = ln
(

(x− ci)+
√

(x− ci)2 +a2
i

)
. We choose the grid size

h as the RBF width ai. The set of collocation points {xi}m
i=1 is taken to be the same

as the set of centres {ci}m
i=1.

x1 x2 xq

xb1 xb2

Figure 4: Nodal points on a grid line consisting of interior points xi (◦) and bound-
ary points xbi (�).

As shown in Figure 4, a grid line contains two sets of nodal points. The first set
consists of q interior points that are also the grid nodes (regular nodes). The func-
tion values at the interior points ({xi}q

i=1) are unknown. The second set consists of
the two nodes xb1 and xb2 which are generated by the intersection of the grid line
and the boundaries.

Collocating (25) at the nodal points yields

 f̂
f (xb1)
f (xb2)

= Î (0)

 ŵ
c1
c2

 , (29)
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where

f̂ = ( f (x1), f (x2), · · · , f (xq))
T ,

ŵ = (w1,w2, · · · ,wm)T ,

Î (0) =



I(0)
1 (x1) I(0)

2 (x1) · · · I(0)
m (x1) x1 1

I(0)
1 (x2) I(0)

2 (x2) · · · I(0)
m (x2) x2 1

...
...

. . .
...

...
...

I(0)
1 (xq) I(0)

2 (xq) · · · I(0)
m (xq) xq 1

I(0)
1 (xb1) I(0)

2 (xb1) · · · I(0)
m (xb1) xb1 1

I(0)
1 (xb2) I(0)

2 (xb2) · · · I(0)
m (xb2) xb2 1


,

m = q+2.

Solving (29) for the coefficient vector, including the two integration constants, re-
sults in ŵ

c1
c2

=
(
Î (0)

)−1

 f̂
f (xb1)
f (xb2)

 , (30)

where
(
Î (0)

)−1
is the generalised inverse.

Making use of (30), the values of the first and second derivatives of f at the interior
points are computed in terms of nodal variable values


∂ f (x1)

∂x
∂ f (x2)

∂x
...

∂ f (xq)
∂x

= Î (1)
(
Î (0)

)−1

 f̂
f (xb1)
f (xb2)

 , (31)

and
∂ 2 f (x1)

∂x2

∂ 2 f (x2)
∂x2

...
∂ 2 f (xq)

∂x2

= Î (2)
(
Î (0)

)−1

 f̂
f (xb1)
f (xb2)

 , (32)
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where

Î (1) =


I(1)
1 (x1) I(1)

2 (x1) · · · I(1)
m (x1) 1 0

I(1)
1 (x2) I(1)

2 (x2) · · · I(1)
m (x2) 1 0

...
...

. . .
...

...
...

I(1)
1 (xq) I(1)

2 (xq) · · · I(1)
m (xq) 1 0

 ,

and

Î (2) =


g1(x1) g2(x1) · · · gm(x1) 0 0
g1(x2) g2(x2) · · · gm(x2) 0 0

...
...

. . .
...

...
...

g1(xq) g2(xq) · · · gm(xq) 0 0

 .

It can be seen from (31) and (32) that Dirichlet conditions at xb1 and xb2 are incor-
porated into the IRBFN approximations. Depending on how a grid line is bounded,
the boundary points xb1 and xb2 have particular locations. For example, one has
(xb1 ∈ Γ2 and xb2 ∈ Γ4) if a grid line is bounded by the two vertical faces of the
frame, and (xb1 ∈ Γ2 and xb2 ∈ ∂Pi) if the boundary surfaces are the left face and
the ith particle boundary.

In the same manner, one can obtain the IRBFN expressions for an y grid line.

3.2 Sliding bi-periodic boundary conditions

The continuity of the stream function and the vorticity across two adjacent sliding
frames leads to the following periodic boundary conditions [Anderson, Keestra,
and Hulsen (2006)]

ψ(−L/2,y, t) = ψ(L/2,y, t), −H/2≤ y≤ H/2, (33)
∂ψ

∂x
(−L/2,y, t) =

∂ψ

∂x
(L/2,y, t), −H/2≤ y≤ H/2, (34)

ω(−L/2,y, t) = ω(L/2,y, t), −H/2≤ y≤ H/2, (35)
∂ω

∂x
(−L/2,y, t) =

∂ω

∂x
(L/2,y, t), −H/2≤ y≤ H/2, (36)

for the two vertical faces and

ψ(x,−H/2, t) = ψ(x+ γ̇Ht,H/2, t), −L/2≤ x≤ L/2, (37)
∂ψ

∂y
(x,−H/2, t) =

∂ψ

∂y
(x+ γ̇Ht,H/2, t)+ γ̇H, −L/2≤ x≤ L/2, (38)

ω(x,−H/2, t) = ω(x+ γ̇Ht,H/2, t), −L/2≤ x≤ L/2, (39)
∂ω

∂y
(x,−H/2, t) =

∂ω

∂y
(x+ γ̇Ht,H/2, t), −L/2≤ x≤ L/2, (40)
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for the two horizontal faces.

Consider the stream function ψ . The values of ψ are unknown not only at the
interior points (xi,y j) with 2≤ i≤ nx−1 and 2≤ j≤ ny−1 but also at the boundary
points of the reference frame (−L/2,y j), (L/2,y j), (xi,−H/2) and (xi,H/2) with
1 ≤ j ≤ ny and 2 ≤ i ≤ nx− 1. There are 2ny + 2(nx− 2) unknowns for the latter,
leading to nip + 2ny + 2(nx − 2) unknowns in total, where nip is the number of
interior points. Apart from collocating the governing equation for ψ at the interior
points, one also needs to generate 2ny + 2(nx− 2) extra equations which can be
achieved by using the bi-periodic boundary conditions (33), (34), (37) and (38).
Details are as follows.

ψ(−L/2,y j)−ψ(L/2,y j) = 0, 1≤ j ≤ ny, (41)
∂ψ

∂x
(−L/2,y j)−

∂ψ

∂x
(L/2,y j) = 0, 1≤ j ≤ ny, (42)

ψ(xi,−H/2)−ψ(xi + γ̇Ht,H/2) = 0, 2≤ i≤ nx−1, (43)
∂ψ

∂y
(xi,−H/2)− ∂ψ

∂y
(xi + γ̇Ht,H/2)− γ̇H = 0, 2≤ i≤ nx−1, (44)

where the time variable t is left out for the sake of simplicity.

In (41)-(44), one needs to express ∂ψ(L/2,y j)/∂x, ∂ψ(−L/2,y j)/∂x, ∂ψ(xi,−H/2)/∂y,
ψ(xi + γ̇Ht,H/2) and ∂ψ(xi + γ̇Ht,H/2)/∂y in terms of nodal values of ψ .

For ∂ψ(±L/2,y j)/∂x, the following IRBF expressions are obtained by collocating
(24) at x =±L/2 and then making use of (30)

∂ψ

∂x
(L/2,y j) = [I(1)

1 (L/2), · · · , I(1)
m (L/2),1,0]

(
Î (0)

)−1

 ψ̂

ψ(xb1,y j)
ψ(L/2,y j)

 , (45)

∂ψ

∂x
(−L/2,y j) = [I(1)

1 (−L/2), · · · , I(1)
m (−L/2),1,0]

(
Î (0)

)−1

 ψ̂

ψ(−L/2,y j)
ψ(xb2,y j)

 .

(46)

Similarly, one can obtain

∂ψ

∂y
(xi,−H/2)= [I(1)

1 (−H/2), · · · , I(1)
m (−H/2),1,0]

(
Î (0)

)−1

 ψ̂

ψ(xi,−H/2)
ψ(xi,yb2)

 .

(47)

For ψ(xi + γ̇Ht,H/2), collocating (25) at xi + γ̇Ht and then making use of (30) lead
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to

ψ(x̄,H/2) = [I(0)
1 (x̄i), · · · , I(0)

m (x̄i), x̄i,1]
(
Î (0)

)−1

 ψ̂

ψ(−L/2,H/2)
ψ(L/2,H/2)

 , (48)

where x̄i = xi + γ̇Ht. The process of deriving the IRBF expression for ∂ψ(xi +
γ̇Ht,H/2)/∂y is similar to that for ψ(xi + γ̇Ht,H/2).
Sliding bi-periodic boundary conditions for the vorticity are also obtained in a sim-
ilar fashion.

3.3 Boundary conditions on the particles’ boundaries

3.3.1 Boundary conditions for the stream function

The values of the stream function ψ on the boundary of each particle Pi are constant
because of u(x).n = 0 where x∈ ∂Pi and n is the outward unit vector normal to ∂Pi.
Particles have their own boundary values of ψ which are unknown. To find these
unknowns, Lewis (1979) suggested using the condition that the pressure is a single-
valued function on the boundary of a particle. This condition can be mathematically
described as∮

∂Pi

∂ p
∂ s

ds =
∮

∂Pi

∇p ·d~s = 0, (49)

where p is the pressure and s the arc length. In the Cartesian coordinate system,
(49) becomes∮

∂ p
∂x

dx+
∮

∂ p
∂y

dy = 0. (50)

The pressure gradient ∇p can be obtained from the momentum equations in the
primitive variable form. By replacing u = ∂ψ/∂y and v = −∂ψ/∂x, one can ex-
press the components of ∇p in terms of the stream function and its derivatives.

3.3.2 Boundary conditions for the vorticity

The values of the vorticity on ∂Pi can be computed via

ω =
∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 , x ∈ ∂Pi. (51)

The handling of (51) thus involves the evaluation of second-order derivatives of
the stream function in both x and y directions. Unfortunately, the boundary points
on ∂Pi do not generally coincide with the grid nodes and hence they lie on either
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x or y grid lines. In [Le-Cao, Mai-Duy, and Tran-Cong (2009)], we proposed the
following formulae

ω =

[
1+
(

tx
ty

)2
]

∂ 2ψ

∂x2 −
tx
t2
y

∂ 2ψ

∂x∂ s
+

1
ty

∂ 2ψ

∂y∂ s
, x ∈ ∂Pi, (52)

for the x grid lines, and

ω =

[
1+
(

ty
tx

)2
]

∂ 2ψ

∂y2 −
ty
t2
x

∂ 2ψ

∂y∂ s
+

1
tx

∂ 2ψ

∂x∂ s
, x ∈ ∂Pi, (53)

for the y grid lines. In (52) and (53), tx and ty are the x and y components of the unit
tangential vector and ∂ (.)/∂ s represents the derivative of (.) on ∂Pi which is known
(Figure 5). The boundary conditions for the vorticity are thus written in terms of
the second derivative of ψ with respect to x or y only.

Figure 5: A curved boundary of the particle: arclength, and unit normal and tan-
gential vectors.

In the case that the ith particle is of circular shape of radius Ri and rotates about the
centre of the reference frame at the angular velocity Ωi. Expressions for computing
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tx, ty, ∂ 2ψ/∂x∂ s and ∂ 2ψ/∂y∂ s become

tx =
−y√

x2 + y2
, (54)

ty =
x√

x2 + y2
, (55)

∂ 2ψ

∂x∂ s
=

1
Ri

Ωiy, (56)

∂ 2ψ

∂y∂ s
=− 1

Ri
Ωix. (57)

Substitution of (54)-(57) into (52) and (53) yields

ω =
[

1+
(y

x

)2
]

∂ 2ψ

∂x2 +
[(y

x

)2
−1
]

Ωi, x ∈ ∂Pi, (58)

ω =

[
1+
(

x
y

)2
]

∂ 2ψ

∂y2 +

[(
x
y

)2

−1

]
Ωi, x ∈ ∂Pi. (59)

The IRBF implementation of (50) is straightforward, while special treatments are
required in handling (52)-(53) and (58)-(59). For the latter, normal derivative
boundary conditions for the stream function, i.e. ∂ψ/∂n, need be incorporated
into expressions (52), (53), (58) and (59). Since ψ and ∂ψ/∂n are known from
the previous iteration, one can easily obtain the values of ∂ψ/∂x and ∂ψ/∂y on
∂Pi. The proposed procedure imposes ∂ψ/∂n, i.e. ∂ψ/∂x and ∂ψ/∂y, using the
constants of integration. On an x grid line, one needs to incorporate ∂ψ/∂x into
∂ 2ψ/∂x2, while on an y grid line, ∂ψ/∂y is incorporated into ∂ 2ψ/∂y2. Because
these two processes are similar, details are given here for an x grid line only, e.g.
the one with xb1 ∈ Γ2 and xb2 ∈ ∂Pi. The system for the conversion of the RBF
space into the physical space (29) now takes the form


ψ̂

ψ(xb1)
ψ(xb2)
∂ψ

∂x (xb2)

=
(

Î (0)

B

)  ŵ
c1
c2

 , (60)

where the conversion matrix is of dimensions (m+1)× (m+2) and

B =
[
I(1)
1 (xb2), I

(1)
2 (xb2), · · · , I(1)

m (xb2),1,0
]
.
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Using (60), one obtains the following from (23) (in which f ≡ ψ and x≡ xb2)

∂ 2ψ

∂x2 (xb2) = [g1(xb2),g2(xb2), · · · ,gm(xb2),0,0]
(

Î (0)

B

)−1


ψ̂

ψ(xb1)
ψ(xb2)
∂ψ

∂x (xb2)

 . (61)

Since the conversion matrix in (60) is not over-determined, the IRBFN approxi-
mation for ∂ 2ψ(xb2)/∂x2 satisfies ∂ψ/∂x at x = xb2 identically. This imposition
shows a clear advantage of IRBFs over the usual differentiated approximations.
Substituting (61) into (52), one is able to obtain the boundary conditions on ∂Pi for
the vorticity equation. It is noted that given ∂ψ/∂x and ∂ψ/∂y on ∂Pi, the terms
∂ 2ψ/∂x∂ s and ∂ 2ψ/∂y∂ s in (52) and (53) are known.

4 Numerical examples

In this section, the proposed procedure is validated through three examples. The
first example examines the performance of the present technique in the implemen-
tation of sliding bi-periodic boundary conditions of the frame. The second exam-
ple investigates the accuracy of the present technique in the handling of boundary
conditions that are similar to those on the particles’ boundaries. In the third ex-
ample, the proposed method is applied to simulate a shear flow of a Newtonian-
based particulate system, which is modelled by one particle suspended in a slid-
ing rectangular frame. For all numerical examples, the problem domain is discre-
tised using a uniform Cartesian grid. The interior points that fall very close to the
curved/irregular boundary (within a distance of h/8, h - the grid size) are removed
from the set of nodal points.

4.1 Example 1: Sliding bi-periodic boundary conditions

In this example, the 1D-IRBF implementation of shear bi-periodic boundary con-
ditions is validated. The test problem is governed by

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 = b(x,y). (62)

The domain of interest is the region lying between a circle of radius 1/4 and a
square of dimensions 1×1 which are both centered at the origin. The exact solution
is

ψ(x,y) = sin(π(x− γ̇yt))sin(πy), (63)
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from which the driving function b(x,y) in (62) and the Dirichlet boundary condi-
tions on the hole can be easily derived. The value of γ̇ is set to 1. This problem is
taken from [Anderson, Keestra, and Hulsen (2006)].

The accuracy of an approximation scheme is measured by means of the discrete
relative L2 error defined as

Ne =

√
∑

M
i=1(ψe

i −ψi)2√
∑

M
i=1(ψe

i )2
, (64)

where M is the number of unknown nodal values of ψ , and ψe and ψ are the
exact and approximate solutions, respectively. Another important measure is the
convergence rate of the solution with respect to the grid refinement

Ne(h)≈ γhα = O(hα), (65)

in which α and γ are exponential model’s parameters. Given a set of observations,
these parameters can be found by the general linear least squares technique.

A number of grids, namely (12× 12,22× 22, · · · ,62× 62), are employed for the
convergence study. Results concerning the condition number of the system matrix,
denoted by cond(A), and the error Ne at t = 0 are listed in Table 1. It can be
seen that the present system matrix has relatively-low condition numbers and the
solution converges fast at the rate of 2.94.

Table 1: Example 1: Errors of the solution and condition numbers of the system
matrix. It is noted that a(b) represents a×10b.

Grid Ne Cond(A)
12×12 3.11(-3) 1.6(3)
22×22 4.96(-4) 5.1(3)
32×32 1.52(-4) 1.8(4)
42×42 6.65(-5) 2.2(4)
52×52 3.65(-5) 5.2(4)
62×62 1.98(-5) 5.9(4)

Contour plots for ψ at different values of the shear time t, namely (0,0.5,0.75,1),
using a grid of 42× 42 are shown in Figure 6. Exact solutions are also included.
The two solutions are indistinguishable.
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Figure 6: Example 1: Contour plots of the approximate and exact solutions at
different time values.

4.2 Example 2: A rotating circular cylinder

In this test problem, the 1D-IRBF implementation of boundary conditions of par-
ticles is validated through the simulation of the flow of a Newtonian fluid shown
in Figure 7. The inner cylinder rotates at a unit angular velocity while the outer
cylinder is stationary. The value of ψ on the outer wall is simply set to zero, while
the value of ψ on the inner wall is considered as an unknown, denoted by ψwall .
The flow is governed by (6) and (7) and subject to the boundary conditions

ψ =
∂ψ

∂x
=

∂ψ

∂y
= 0,
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Figure 7: Example 2 (rotating cylinder): geometry.

on the outer cylinder and

ψ = ψwall,
∂ψ

∂x
=−x,

∂ψ

∂y
=−y,

on the inner cylinder. Using (58) and (59) with Ω = 1, the vorticity boundary values
on the rotating cylinder can be computed by

ω =
[

1+
(y

x

)2
]

∂ 2ψ

∂x2 +
[(y

x

)2
−1
]
,

ω =

[
1+
(

x
y

)2
]

∂ 2ψ

∂y2 +

[(
x
y

)2

−1

]
.

The value of ψwall is found using the single-valued pressure condition as discussed
earlier.

The flow is simulated with R = 0.25 and L = 1.0 using a uniform grid of 36×36.
Different values of the Reynolds number, namely (1, 100, 500, 700, 1000), are
considered. Results concerning ψwall obtained by the proposed technique and the
finite-difference technique [Lewis (1979)] are presented in Table 2, showing a good
agreement. Plots for the velocity vector and vorticity fields for the case of Re =
(1,700) are given in Figure 8.
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Figure 8: Example 2: Velocity vector field (left) and vorticity field (right) for the
flow at Re = 1 and Re = 700.

4.3 Example 3: Shear suspension flow

In this example, a single particle of radius R is suspended freely at the center of
the reference sliding bi-periodic frame of dimensions 1× 1. The fluid domain is
the region lying between the particle and the frame (Figure 9). The fluid is New-
tonian and moves under a shear rate γ̇ = 1. This configuration can represent the
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Table 2: Example 2 (rotating cylinder): Comparison of the stream-function value at
the inner cylinder, ψwall , between the present technique (grid of 36×36) and finite
difference technique for different values of Re.

Re 100 500 1000
ψwall

Present 0.4637 0.4550 0.4511
[Lewis (1979)] 0.4577 0.4465 0.4375

system of an infinite number of particles as described in Figure 10. It can be seen
that the initial configuration is reproduced after the time period K = 1/γ̇ . The
inertia of the particle and fluid are ignored. This problem was studied using the
fictitious-domain/finite-element method in [Hwang, Hulsen, and Meijer (2004)].
The governing equations for the motion of a fluid thus reduce to

∂ 2ψ

∂x2 +
∂ 2ψ

∂y2 = ω, (66)

∂ 2ω

∂x2 +
∂ 2ω

∂y2 = 0. (67)

The boundary conditions of the frame are bi-periodic and determined through (33)-
(40), while the boundary conditions of the particle are computed using (50), (58)
and (59). However, owing to only one particle considered, the value of ψ on ∂P is
simply set to 0. The stress tensor can be written in terms of the stream function and
pressure as

σσσ =

 (−p+2 ∂ 2ψ

∂x∂y

) (
∂ 2ψ

∂y2 − ∂ 2ψ

∂x2

)(
∂ 2ψ

∂y2 − ∂ 2ψ

∂x2

) (
−p+2 ∂ 2ψ

∂x∂y

)  . (68)

Conventionally, the interacting hydrodynamic force and moment are first calculated
from the fluid flow, and the movement of the particle is then determined from these
force and moment using the Newton-Euler equations. Because the inertia of the
particle is neglected and there is no external force acting on the particle, the hydro-
dynamic force and torque are zero (force free and torque free). It can be seen that
the particle rotates about the frame centre at the angular velocity Ω and does not
translate relative to the frame, i.e. U = 0 and V = 0. One thus only needs to use the
torque-free condition to determine the value of Ω

T =
∫

∂P
r× (σσσ .n)ds = 0. (69)
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Figure 9: Example 3: A reference frame (top) and its discretisation (bottom).

The reader is referred to [Hwang, Hulsen, and Meijer (2004)] for further details.
Substitution of (68) into (69) yields∮

(x2− y2)
(

∂ 2ψ

∂y2 −
∂ 2ψ

∂x2

)
ds = 0. (70)
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t = 0 t = K/2

(a) (b)

Figure 10: Example 3: Problem description with two instances during a period of
shearing.

In this study, we propose a new way of obtaining Ω. On the particle boundary
(Figure 5), one can have

∂ f
∂ s

=
∂ f
∂x

tx +
∂ f
∂y

ty, (71)

where f is a generic function, and s, tx and ty are defined as before. By replacing
f = ∂ψ/∂x, (71) becomes

∂ 2ψ

∂ s∂x
=

∂ 2ψ

∂x2 tx +
∂ 2ψ

∂y∂x
ty. (72)

Since U = 0 and V = 0, (13) and (14) reduce to

∂ψ

∂y
=−Ωy, (73)

∂ψ

∂x
=−Ωx. (74)

Substituting (73) and (74) into (72) and making use of tx =−y/R and ty = x/R give

Ω =−∂ 2ψ

∂x2 . (75)

Similarly, by replacing f = ∂ψ/∂y, one has

Ω =−∂ 2ψ

∂y2 . (76)
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Figure 11: Example 3: Profile of the angular velocity over the period K.

These conditions (75) and (76) can be used as an alternative to (70). In practice,
(75) and (76) are applied to the boundary points of the particle on the x and y grid
lines, respectively, from which the angular velocity is derived in an average sense.

For each shear interval, the solution procedure is as follows.

1. Guess the distribution of ω and ψ .

2. Discretise (66) and (67) using 1D-IRBFNs. The two system matrices aris-
ing from the discretisation of the Laplace operator are identical and remain
unchanged during the iteration process.

3. Impose the sliding bi-periodic boundary conditions for ψ and ω on the frame.

4. Derive computational boundary conditions for ω on ∂P.

5. Solve (66) for ω and (67) for ψ .
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Figure 12: Example 3: Streamlines and iso-vorticity lines at the shear time of 0.3.

6. Compute Ω from (75) and (76).

7. Check the following convergence measure

CM =

√
∑

nip
i=1

(
ψ

(k)
i −ψ

(k−1)
i

)2

√
∑

nip
i=1

(
ψ

(k)
i

)2
< ε,

where nip is the number of interior points, k the current iteration and ε the
tolerance. In this study, ε is taken to be 10−12.

8. If not, relax the field solution

ψ
(k)
i = αψ

(k)
i +(1−α)ψ(k−1)

i ,

where α is a given number (0 < α < 1), and repeat from step 4. Otherwise,
stop the computation and save the results.

The particle’s radius R is considered in the range of 0.15 to 0.42. Simulations are
carried out using Cartesian grids whose densities vary from 50× 50 to 72× 72.
Denser grids are used for larger values of R.

Figure 11 shows the variation of Ω with respect to the shear time for some different
values of R over the period K. It can be seen that the profile of Ω is symmetric
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Figure 13: Example 3: Variations of the bulk shear and normal stresses over the
period K.
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Figure 14: Example 3: Computed bulk viscosity. Analytic results for the dilute
case are also included.

about the vertical line t = K/2. The largest value of Ω occurs when the frames line
up in the vertical direction (Figure 10a). Furthermore, the fluctuation of Ω is an
increasing function of R. In Figure 12, the distribution of ψ and ω over a reference
frame are multiplied to produce the ψ and ω fields on the original large domain,
where the sliding bi-periodic boundary conditions are clearly observed.

Prediction of the bulk material properties
Following the work of Hwang, Hulsen, and Meijer (2004), the bulk stress can be
computed by

〈σσσ〉= 1
A

∫
Γ

xτττ
T ds, (77)

where Γ = Γ1∩Γ2∩Γ3∩Γ4 and A is the area of the frame domain, x the position
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vector and τττ the traction vector. In terms of ψ , (77) takes the form

〈σxy〉=
1
A

∫
Γ

ytxds =
∫

Γ1

(
∂ 2ψ

∂y2 −
∂ 2ψ

∂x2

)
dy, (78)

〈σxx〉=
1
A

∫
Γ

xtxds =
∫

Γ2

(
−p+

∂ 2ψ

∂x∂y

)
dy+

∫
Γ3

x
(

∂ 2ψ

∂y2 −
∂ 2ψ

∂x2

)
dx

−
∫

Γ1

x
(

∂ 2ψ

∂y2 −
∂ 2ψ

∂x2

)
dx, (79)

〈σyy〉=
1
A

∫
Γ

ytyds =
1
2

∫
Γ3

(
−p+

∂ 2ψ

∂x∂y

)
dx− 1

2

∫
Γ1

(
−p+

∂ 2ψ

∂x∂y

)
dx, (80)

where the pressure on Γ2 and Γ1 are computed using

p =
∫

Γ2

∂ p
∂y

dy =−
∫

Γ2

(
∂ 3ψ

∂x3 +
∂ 3ψ

∂y2∂x

)
dy,

p =
∫

Γ1

∂ p
∂x

dx =
∫

Γ1

(
∂ 3ψ

∂y3 +
∂ 3ψ

∂x2∂y

)
dx,

and the pressure on Γ3 is derived from the pressure on Γ1 and the sliding periodic
condition.

Results for the bulk shear stress 〈σxy〉 and the normal stresses 〈σxx−σyy〉 are plot-
ted in Figure 13. When the distance between the particles in the sliding frames
is maximum (Figure 10b), the bulk shear stress becomes maximum and the bulk
normal stress becomes minimum. Both the bulk shear and normal stresses become
larger when the particle radius increases and they oscillate with the period K.

The bulk shear viscosity can be obtained by taking the time average of the bulk
shear stress over the period K [Hwang, Hulsen, and Meijer (2004)],

〈η〉
η

=
1
K

∫ K

0
〈σxy〉dt. (81)

In Figure 14, 〈η〉/η is plotted against the solid area fraction φ (φ = πR2). In the
case of dilute suspensions with circular disks, the bulk shear viscosity can be com-
puted by 〈η〉 = (1 + 2φ)η [Hwang, Hulsen, and Meijer (2004)]. The dilute sus-
pension results are also plotted in Figure 14. It can be seen that the present model
produces larger values of 〈η〉/η than the dilute model. This looks reasonable as
the present simulations take the interaction between the particles into account.

The observations presented above are similar to those reported in [Hwang, Hulsen,
and Meijer (2004)]. Since the finite-element results were presented in graph, we are
not able to reproduce them here. However, numerical results by the two techniques
appear to be of comparable values, judging from the graphical presentations.
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5 Concluding remarks

In this article, a new collocation method based on 1D-IRBFs is developed for
the simulation of 2D particulate flows under simple shear conditions. Sliding bi-
periodic frames are applied to reduce the large domain to a small one. For the fluid
component, the governing equations are taken in the stream function - vorticity for-
mulation and the multiply-connected domain is simply discretised using a Cartesian
grid. For the particle component, a new efficient way, based on direct point-wise
calculations rather than line/surface integrals, is proposed to compute the angular
velocity. Three examples concerning sliding bi-periodic conditions, particle-like
boundary conditions and shear particulate suspensions modelled by one particle in
each frame are simulated successfully. The presently predicted bulk properties are
in good agreement with those by the fictitious-domain/finite-element method.
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