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A New Multiscale Computational Method for Mechanical
Analysis of Closed Liquid Cell Materials

H.W. Zhang1,2, J. Lv1 and Y.G. Zheng1

Abstract: A new multiscale computational method named as extended multi-
scale finite element method is proposed for the mechanical analysis of closed liq-
uid cell materials. The numerical base functions for both the displacement field
and the pressure of the incompressible fluid within the closed cells are employed
to establish the relationship between the macroscopic deformation and the micro-
scopic variables such as deformation, stress, strain and fluid pressure. The results
show that the extended multiscale finite element method constructed with the con-
ventional four-node quadrilateral coarse-grid elements sometimes will have strong
boundary effects and cannot predict well the fluid pressure in the closed cells. Thus
more reasonable higher order coarse-grid elements which can characterize more ac-
curately the structural deformation of the closed cells are introduced. Furthermore,
inspired by the periodic boundary conditions used in the homogenization method,
the generalized periodic boundary conditions are proposed for the construction of
the numerical base functions of the higher order elements. Numerical results indi-
cate that the extended multiscale finite element method with higher order elements
can be successfully used for the mechanical analysis of closed liquid cell materials.
Particularly, combining with the periodic boundary conditions, the extended mul-
tiscale finite element method with higher order elements can give more accurate
results.

Keywords: closed liquid cell materials, extended multiscale finite element method,
higher order element, periodic boundary condition

1 Introduction

Over the past few years, there has been growing interest in the modeling of closed
cell materials due to their important applications in material engineering, especially
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in technology of fabrication of synthetic cellular materials, foam materials and in-
telligent materials, and in the mechanics of biological tissues. For instance, the
closed liquid cell materials, which are common in roots, stems, and branches of
plants, enable the plants to perform localized movement due to a biological process
called nastic motion in specialized closed liquid cells. These cells can be consid-
ered as the muscles of biological systems and the driving units of the nastic motion.
Inspired by the nastic movements, artificial nastic actuators, which allow for sig-
nificant deformation through the mechanism of controlled charge and fluid across
the cell membrane, have been utilized in the design of advanced actuators in re-
cent years [Sundaresan and Leo (2005); Freeman and Weiland (2009); Piyasena,
Newby, Miller, Shapiro and Smela, (2009)].

In the practical applications, due to the small scale of the component of the closed
liquid cell materials, such as the biological membrane in nastic materials, these
materials generally consist of a large number of microcapsules, as schematically
shown in Fig. 1. The behavior of the closed liquid cell materials is influenced by
the physical phenomena which take place on each scale and by the interaction of the
phenomena across scales. In this context, even with the help of high-speed modern
computers, the precise analysis of such kind of media with a large number of het-
erogeneities is extremely difficult for the standard finite element method (FEM). To
overcome this difficulty, an effective way is to develop multiscale algorithms that
are suitable for the numerical simulation of the closed liquid cell materials.

 
Figure 1: Structure diagram of nastic material for smart actuators [Sundaresan and
Leo (2005)]



A New Multiscale Computational Method 57

In recent years, a considerable number of multiscale methods have been devel-
oped and successfully applied to the heterogeneous problems [Schrefler, (2005);
Yang and Becker (2004); Kanoute, Boso, Chaboche and Schrefler (2009)]. Notable
among them are numerical homogenization methods, such as asymptotic computa-
tional homogenization method [Babuska, (1976); Benssousan, Lions and Papani-
coulau (1978); Paumelle, Hassim and Lene (1991); Miehe and Bayreuther (2007),
Yuan and Fish (2008)] and representative volume element (RVE) method [Suquet
(1987); Okada, Fukui and Kumazawa (2004); Berger, Kari, Gabbert, Rodriguez-
Ramos, Guinovart, Otero and Bravo-Castillero (2005); Wang and Yao (2005); Dang
and Sankar (2008)]. In these methods, the FEM is applied to compute the homoge-
nized material parameters as well as to evaluate the microscopic variables from the
macroscopic response.

Despite their overall success, the numerical homogenization methods still have
some challenges. Besides the local periodicity hypothesis, these methods request
that the ratio between the small-scale length and the large-scale length is very small.
These methods still require tremendous computational efforts in the downscaling
computation and solving nonlinear problems [Fish, Shek, Pandheeradi and Shep-
hard (1997); Terada and Kikuchi (2001); Zhang, Boso and Schrefler (2003)]. More-
over, the closed cells enclosing incompressible fluid make the problem much more
difficult, requiring more extensive computational efforts by using the traditional
homogenization methods.

The multiscale finite element method (MsFEM) can be traced back to the work
presented by Babuska and Osborn (1983); Babuska, Caloz and Osborn (1994). It
has been further extended by Hou and Wu (1997); Hou, Wu and Cai (1999) for
numerically solving second order elliptic boundary value problems with high os-
cillating coefficients. The main idea of MsFEM is to construct the multiscale base
functions (shape functions) that are adaptive to the local property of differential
operator. The small-scale information is then brought to the large scale through
the coupling of the global stiffness matrix, and the effect of the small scale on
the large scale is effectively captured. The MsFEM has been generalized and suc-
cessfully used for numerical simulation of two-phase flow in heterogeneous porous
media [Hou (2005); Efendiev, Ginting, Hou and Ewing (2006); Aarnes (2006);
Aarnes, Krogstad and Lie (2006)] and extended to solve nonlinear partial differen-
tial equations [Efendiev, Hou and Ginting (2004)]. At the same time, several other
multiscale methods have also been developed, such as the multiscale finite volume
method [Jenny, Lee and Tchelepi (2003)] and the finite volume multiscale finite el-
ement method [He and Ren (2005)]. Markovic and Ibrahimbegovic (2004) reported
somewhat similar strategies of coupling meso (micro) and macro scales of material
behaviors. In their work, the finite element method is used on both scales which
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are strongly coupled. The coupling of the scales is obtained through the framework
of localized Lagrangian multipliers.

A coupled multiscale finite element method was developed by Zhang, Fu and Wu
(2009) for solving the coupling problems of consolidation of heterogeneous satu-
rated porous media under external loading conditions. The extended multiscale fi-
nite element method (EMsFEM) was then developed by Zhang, Wu and Fu (2009)
for the multiscale analysis of periodic lattice truss materials. In the EMsFEM, the
coupled additional terms of base functions for the interpolation of the displacement
field are introduced to consider the coupled effect among different directions in the
multi-dimensional problems. Numerical tests show that the introduction of these
terms significantly improves the accuracy of the multiscale method. In the spirit of
the work [Zhang, Wu and Fu (2009)], the EMsFEM was successfully introduced to
solve the elastic-plastic problems of periodic lattice truss materials [Zhang, Wu and
Fu (2010)]. Furthermore, Zhang and his coworkers [Zhang, Wu, Lv and Fu (2010)]
constructed the EMsFEM for solving the mechanical problems of heterogeneous
continuum materials in elasticity. Their results show that the EMsFEM can execute
the downscaling computation easily and the actual micro stress and strain within the
unit cells can be obtained simultaneously in the multiscale computation. Thus, the
EMsFEM has great potential for the strength analysis of heterogeneous materials.

The goal of this study is to develop an EMsFEM for the multiscale computation of
the closed liquid cell materials. Different from the previous work, in the current
approach, the incompressible feature of the fluid needs to be taken into account in
the computational algorithm. Meanwhile, the distension and shrinkage processes
of the cells need also to be treated. Thus, the concept of the pressure base functions
is proposed to resolve the fluid pressure caused by the deformation of the structure.
The effects of the volume expansion of the fluid in the closed cells of the structure
are treated as the combination of the effects of the macroscopic equivalent forces on
the full structure and the local response of the volume expansion on the unit cells.
The macroscopic displacement field is solved under the macroscopic equivalent
forces, and the local response is calculated on the fine-scale mesh of the unit cell
under the volume expansion of the fluid. Based on these strategies, a good coinci-
dence between the mechanical response of the closed cell structure obtained by the
EMsFEM and the standard FEM is achieved. However, the numerical results also
show that the EMsFEM constructed with the conventional four-node quadrilateral
coarse-grid elements sometimes will induce strong boundary effects and cannot
predict accurately the fluid pressure in the closed cells. Therefore, a more reason-
able higher order coarse-grid element which can characterize more accurately the
structural deformation of the closed liquid cell materials is proposed.

As pointed out by many researchers [Hou and Wu (1997); Efendiev, Hou and Gint-
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ing (2004); Efendiev, Ginting, Hou and Ewing (2006); Zhang, Fu and Wu (2009);
Zhang, Wu, and Fu (2009); Zhang, Wu, Liu and Fu (2010); Zhang, Wu, Lv and Fu
(2010)], the boundary conditions for the construction of the numerical base func-
tions of the MsFEM have big influence on capturing the small-scale information.
As a consequence, by a judicious choice of appropriate boundary conditions, the
accuracy of the EMsFEM can be significantly improved. Motivated by the periodic
boundary conditions used in the conventional homogenization method, a novel ap-
proach for the construction of the numerical base functions of the unit cell is pro-
posed by means of the periodic conditions [Zhang, Wu, Lv and Fu (2010)]. The
results show that the periodic boundary conditions can give much improvement in
accuracy compared with the linear boundary conditions and the oversampling tech-
nique developed in the early work. Therefore, in this paper, the periodic boundary
conditions are introduced to construct the base functions of the closed liquid cell.
Furthermore, the generalized periodic boundary conditions are developed to con-
struct the numerical base functions of the higher order element. The numerical
results indicate that the EMsFEM with the higher order elements can be success-
fully used to deal with the problems of the closed liquid cell materials. It could be
also observed that the higher order elements with the periodic boundary conditions
have more advantages than the conventional lower order elements.

The organization of the present paper is as follows. In Section 2, we briefly review
the basic theories of the EMsFEM. In Section 3, the construction of the multiscale
base functions for the closed liquid cell materials is presented. The equivalence
technique of the volume expansion of the fluid in the closed cell is carried out in
detail. Then a higher order coarse-grid element for the EMsFEM is introduced. In
Section 4, we start out by introduce the periodic boundary conditions for the con-
struction of the base functions of the closed liquid cell modeled by the conventional
four-node quadrilateral elements. Then the generalized periodic boundary condi-
tions for the higher order elements are introduced. The corresponding numerical
results are presented in Section 5. Finally, some remarks are concluded.

2 Basic theories of the EMsFEM

2.1 Baisc equations of the EMsFEM

In this section, we first briefly review the principal idea of the EMsFEM developed
in [Zhang, Wu, Lv and Fu (2010)]. The EMsFEM is proposed for solving a class
of vector field problems in solid mechanics which contain many spatial scales that
are intractable using the direct methods. The central goal of the approach is to
obtain the large-scale solutions on a coarse-scale mesh accurately and efficiently
without resolving small-scale details. Its main idea is to incorporate the small-scale
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information into numerical basis functions and capture their effects on the large
scale via finite element computations. The ways to construct the base functions
are the main differences between the standard FEM and the EMsFEM. For the
standard FEM, the base functions are interpolation functions of the nodal point
values of the elements. Thus, the parameters, such as elastic modulus, conductivity
and permeability, should be constant in each element. On the other hand, the base
functions of the EMsFEM are constructed numerically and can take into account the
heterogeneities of the media in each coarse-grid element. Then, the finite element
computation only needs to be handled on the coarse-scale mesh, which reduces the
degrees of freedom of the computational model significantly.

u

 T

 

Figure 2: Schematic description of the EMsFEM

Let’s consider a two-dimensional heterogeneous structure occupying a region Ω

and having a boundary Γ as shown in Fig. 2. On part of the boundary Γσ , act
traction T. Also, the boundary is constrained in region Γu, where displacements
are specified as u . Then, the equilibrium equations and boundary conditions can
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be expressed as

div(D : E(u)) = f in Ω

nσσσ = T on Γσ

u = u on Γu

(1)

where D is the fourth-order elasticity tensor representing material properties, E(u)
is the strain tensor given as

E(u) =
1
2

(
∇u+(∇u)T

)
(2)

and u is the displacement vector, σ is the stress vector which has three independent
components, σ =

[
σx σy τxy

]T, f is the body force vector, f =
[

f x f y
]T, n is

the transformation matrix given as

n =
[

nx 0 ny

0 ny nx

]
(3)

There are two important computational steps which need to be implemented in the
EMsFEM. One is a micro-scale computation in which the multiscale base functions
of each coarse-grid element are constructed by solving local equilibrium equations
on the sub-grid mesh (see Fig. 2) and then the equivalent stiffness matrices of the
coarse-grid elements are derived. The other is the macro-scale computation. In
this step, the FEM is handled on the coarse meshes since the coarse-grid elements’
equivalent stiffness matrices have been obtained.

2.2 Micro-scale computation

2.2.1 The construction of the base functions

In the EMsFEM, the main work is to construct numerically the base functions of
the unit cells. Take one of the coarse-grid elements shown in Fig. 2 for example,
the element occupying a region K, K ⊂ Ω. The base functions are constructed by
solving the equilibrium equations in the region K with some specified boundary
conditions. From Eqs. 1 and 2, the general expression for solving of the base
functions Ni of a two-dimensional scalar field problem can be given as follows

LNi = 0 in K
Ni(x) affined on ∂K
i = 1,2, ......,d

(4)
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where, L is the elasticity operator which satisfies Lu = div
(

D : 1
2

(
∇u+(∇u)T

))
,

d is the number of nodes of the coarse-grid element.

For the vector field problems in solid mechanics, the multiscale base functions
used for the displacement interpolation in different directions are no longer the
same for the coarse-grid element with heterogeneous materials. The base functions
must be constructed separately for each coordinate direction in order to consider
the heterogeneities in a coarse-grid element, which is different from the multiscale
base functions constructed for the scalar field problem.

Consider a two-dimensional vector field problem, as shown in Fig. 2. Two kinds
of base functions for the interpolation of displacement field need to be constructed,
in which one is used for the displacement interpolation in x-direction (Nx), and the
other is used for the y-direction (Ny). Moreover, the deformations in different di-
rections of a coarse-grid element depend upon each other due to the small-scale
heterogeneous features within the coarse-grid element and the Poisson’s effects.
For this purpose, additional coupled terms (Nyx,Nxy) are introduced in the multi-
scale base functions to consider the coupled effect among different directions in the
multi-dimensional vector field problem [Zhang, Wu and Fu (2009); Zhang, Wu, Liu
and Fu (2010)]. Consequently, the displacement interpolations of the coarse-grid
element have the following forms

u =
d
∑

i=1
Nixu′i +

d
∑

i=1
Niyxv′i

v =
d
∑

i=1
Niyv′i +

d
∑

i=1
Nixyu′i

(5)

i.e.

u = Nu′E (6)

where, Nix| j = δi j, Niy| j = δi j, (i, j = 1,2, · · · ,d), δ is the Kronecker delta. Niyx

means the displacement field in the y-direction within the element induced by a
unit displacement of node i in the x-direction. u is the displacement vector of
the nodes in the fine-scale mesh, N is the base function matrix of the coarse-grid
element, and u′E represents the displacement vector of nodes in macro level. They
can be expressed as

u =
[
u1 v1 u2 v2 · · · · · · un vn

]T
N =

[
RT

1 RT
2 · · · RT

n
]T (7)
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u′E =
[
u′1 v′1 u′2 v′2 u′3 v′3 u′4 v′4

]T
where

Ri =
[

N1x(i) N1xy(i) N2x(i) N2xy(i) N3x(i) N3xy(i) N4x(i) N4xy(i)
N1yx(i) N1y(i) N2yx(i) N2y(i) N3yx(i) N3y(i) N4yx(i) N4y(i)

]
i = 1,2, ......,n (8)

and n is the number of the nodes in the sub-grid mesh.

It can be verified that the base functions constructed above satisfy
d
∑

i=1
Nix = 1,

d
∑

i=1
Niy = 1

d
∑

i=1
Niyx = 0,

d
∑

i=1
Nixy = 0

(9)

which ensures the rigid displacement of the coarse-grid element and the compati-
bility between the neighboring elements.

2.2.2 Equivalent stiffness matrix of coarse-grid element

Using the base functions constructed above, the equivalent stiffness matrix of a
coarse-grid element can be given as [Zhang, Wu, Liu and Fu (2010);Zhang, Wu,
Lv and Fu (2010)]

KE =
m

∑
e=1

K′e, K′e = GT
e KeGe (10)

where Ke is element stiffness matrix of an arbitrary fine-grid element e within the
coarse-grid element shown in Fig. 2. m is the total number of the elements within
the sub-grid mesh. Ge, the transition matrix which denotes the mapping relations
between the displacement vectors of micro-scale nodes and macro-scale nodes, can
be expressed as

Ge =
[
RT

e1 RT
e2 . . . RT

ed

]T (11)

2.3 Macro-scale computation

Once the equivalent element stiffness matrices of all the coarse-grid elements are
derived, the standard FEM is then able to be carried out on the coarse-scale mesh.
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The global stiffness matrix of the overall structure is obtained as follows [Zhang,
Wu, Liu and Fu (2010); Zhang, Wu, Lv and Fu (2010)]

K = AM
i=1Ki

E (12)

where AM
i=1 is a matrix assembled operator, and M is the total number of the coarse-

grid elements. Ki
E can be obtained from Eq.10.

Thus, a classical finite element analysis is implemented on the coarse-scale mesh,
and the macroscopic displacement vector is given by

KU = Fext (13)

where Fext is a vector of external forces subjected to the structure.

3 EMsFEM for Closed Liquid Cell Materials

3.1 Construction of the numerical base functions

Different from the general heterogeneous materials, the closed liquid cell materials
are multiphase materials, which have closed inclusions fully filled with incompress-
ible fluid. In order to fully capture and bring the small-scale information of both the
solid structure and the fluid to the large scale, not only the numerical base functions
for the displacement field are needed, but also the appropriate functions need to be
constructed for the interpolation of the pressure field of the fluid phase. It should
be remarked here that in the current study we assume that there will be no cavi-
tation when a closed liquid cell is under tension state. Consequently, two sets of
base functions are constructed respectively for each coarse-grid element. One set
is used for the interpolation of the displacement field of the solid matrix, while the
other is used for the interpolation of the fluid pressure caused by the deformation
of the solid matrix. Thus, the complex coupling problems can be effectively solved
on the coarse-scale mesh with great saving of computational efforts. Meanwhile,
based on these two types of numerical base functions, the EMsFEM can execute
easily the downscaling computation of the closed liquid cell materials.

Firstly, we describe the construction procedure of the multiscale base functions
based on the four-node quadrilateral coarse-grid elements for the unit cell of the
closed liquid cell materials. The more reasonable higher order element will be
introduced in Section 3.4. As illustrated in Fig. 3, the green region within the
unit cell represents a liquid inclusion. The numerical base functions with coupled
additional terms for the interpolation of the displacement field of the closed liquid
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Figure 3: Linear boundary conditions for the construction of base functions N1x of
the four-node quadrilateral element

cell can be expressed as
u =

4
∑

i=1
Nixu′i +

4
∑

i=1
Niyxv′i

v =
4
∑

i=1
Niyv′i +

4
∑

i=1
Nixyu′i

(14)

As the fluid inside the cell is incompressible, the volume of the cell satisfies the
following condition

V0−V (uk,vk) = 0 on ∂Ωin (15)

where V and V0 are the current and initial volumes of the fluid cell, respectively.
Both V and V0 can be calculated from the actual positions of the nodal points at the
solid-liquid interface ∂Ωin.

The condition of incompressibility of Eq.15 can be incorporated in the potential
energy expression by using the Lagrange multiplier method

Π
∗ = Π−λ (V −V0) (16)

where Π is the potential energy expression of the structure without the fluid inclu-
sion, Π∗ is the modified potential energy expression, λ is the Lagrange multiplier.
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As pointed out by Ken-ichiro, Kozo and Masanori (1991), the hydrostatic pressure
(P) of the fluid coincides with the Lagrange multiplier, i.e.

P = λ (17)

Using the numerical base functions for the fluid pressure field, the pressure P inside
the closed liquid cell can be expressed as

P =
4

∑
i=1

Npxiu′i +
4

∑
i=1

Npyiv′i (18)

where Npxi and Npyi are the numerical pressure base functions, which mean the
fluid pressures within the unit closed liquid cell induced by the unit displacements
of node i in the x- and y-directions, respectively.

3.2 Linear boundary conditions

The linear boundary conditions, where Ni(x) varies linearly along ∂K (Eq.4) just
as that in the standard bilinear base functions, are generally used in the MsFEM.
Zhang et al. (2009) introduced simple linear boundary conditions for the construc-
tion of the base functions of solid skeleton of the heterogeneous saturated porous
media. Furthermore, modified linear boundary conditions were proposed by Zhang,
Wu and Fu (2010); Zhang, Wu, Lv and Fu (2010)] for the general vector field prob-
lems of heterogeneous media. In what follows, firstly, we will choose the modi-
fied linear boundary conditions to construct the numerical base functions for the
analysis of the closed liquid cell materials. A type of more reasonable boundary
conditions will be introduced in Section 4.

Fig. 3 gives illustration for the construction of N1x, N1xyand Npx1. For the linear
boundary conditions, a unit displacement is applied on node 1 in the x-direction
and the values vary linearly along boundaries 14 and 12, just as the bilinear shape
functions in the standard FEM. At the same time, the nodes on boundaries 34 and
23 are fixed in the x-direction. The displacements of all boundary nodes in the
sub-grid mesh are constrained in the y-direction. Using the boundary conditions
mentioned above and by Eq.16, the internal displacement field of the unit cell and
the pressure of fluid inside the cell can be solved directly on the sub-grid mesh
by the standard FEM, thus the numerical base functions N1x, N1xy and Npx1 can be
obtained. The rest of the base functions of the unit cell can be constructed in a
similar numerical procedure.
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It can be verified that the above constructed numerical base functions satisfy

4
∑

i=1
Nix = 1,

4
∑

i=1
Niy = 1

4
∑

i=1
Nixy = 0,

4
∑

i=1
Niyx = 0

4
∑

i=1
Npxi = 0,

4
∑

i=1
Npyi = 0

(19)

which guarantee the rigid body displacements of the coarse-grid element.

3.3 Treatment of volume expansion of the fluid in the unit cell

In the step of macro-scale computation as discussed in Section 2.3, the finite ele-
ment analysis is performed on the coarse-scale mesh. Thus, all the external forces
Fext must be applied on the macroscopic nodes. However, in the real application
of the closed liquid cell materials, some external forces act within the unit cells.
Specially, the volume expansion, which can be considered as the driving forces for
the closed liquid cells, acts on the fluid within the unit cells, as shown in Fig. 4. In
what follows, the treatment of volume expansions of the fluid in the unit cells will
be discussed.

 
(a)                         (b) 

 Figure 4: Closed liquid cells structures: (a) Initial state and (b) after local actuation

As shown in Fig. 5, a volume expansion ∆Vfluid is applied on the fluid within a
unit cell. The main objective here is to determine how the volume expansion can
be equivalently transformed to the macroscopic nodal forces. These macroscopic
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ΔVfluid

1 2

34

 

Figure 5: Closed liquid cell with volume expansion ∆Vfluid

equivalent forces are applied on the nodes in the coarse-scale mesh of the closed
liquid cell materials.

 
  (a)                       (b) 

 Figure 6: Equivalence of volume expansion of the fluid in the unit cell depicted in
Fig. 5. (a) Macroscopic equivalent forces and (b) the boundary conditions for the
calculation of the local response of the volume expansion
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Figure 7: Approach to calculate macroscopic equivalent forces of the four-node
quadrilateral element

 
(a)                   (b) 

 

Figure 8: Eight-node quadrilateral coarse-grid element in the EMsFEM: (a) Initial
state and (b) deformed state

The effects of the volume expansion of the fluid in the cells are treated as the com-
bination of the effects of the macroscopic equivalent forces on the full structure
and the local response of the volume expansion on the unit cell, as illustrated in
Fig. 6. The macroscopic displacement field is solved under the macroscopic equiv-
alent forces (see Fig. 6a), and the local response is calculated on the sub-grid of
the unit cell under volume expansion with appropriate boundary conditions (see
Fig. 6b). Due to the complexity of the closed liquid cell materials, there seems to
be no analytical solution for the macroscopic equivalent forces. Consequently, a
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Figure 9: Boundary conditions for the construction of the base functions: (a) N1x

and (b) N5xof the eight-node quadrilateral element
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Figure 10: Approach to calculate macroscopic equivalent forces of the eight-node
quadrilateral element

numerical method is used to derive the macroscopic equivalent forces. When the
linear boundary conditions are adopted to construct the base functions, the overall
procedure of the method can be divided into three steps:

Step1: The nodes at all the boundaries of the unit cell are constrained. Meantime,



A New Multiscale Computational Method 71

a unit volume expansion ∆Vfluid is applied on the fluid in the unit cell. With these
boundary and loading conditions, the nodal forces fn at the boundary nodes, as
illustrated in Fig. 7, can be calculated by solving the equilibrium equation (i.e.,
Eq.1) on the sub-gird mesh with the standard FEM.

Step2: It is intuitive that the macroscopic equivalent forces will act on all four nodes
of the corresponding coarse-grid element. The nodal forces fn at the boundary
nodes are the distributed form of the macroscopic equivalent forces and can be
converted to the corresponding equivalent forces (FEix,n,FEiy,n) at the corner nodes
of the unit cell by [Zhang, Wu and Fu (2010)]

[
FEix,n FEiy,n

]
=
[

fnx fny
] [Nn

ix Nn
iyx

Nn
ixy Nn

iy

]
(20)

where, i = 1, 2, 3, 4.

Step3: Based on the equivalent forces, the macroscopic equivalent forces can be
calculated by

F =− ∑
n∈∂Ωe

FE,n (21)

Now, let’s discuss the solution for the local effects of the volume expansion of the
fluid in the unit cell. With the linear boundary conditions, the local effects can be
calculated by constraining the boundary nodes in the sub-grid in both the x- and
y-directions, as shown in Fig. 7. Thus, the local effects (i.e. displacement, stress,
strain and pressure of the unit cell) of the volume expansion can be obtained by
the standard FEM on the sub-grid mesh with the boundary conditions mentioned
above.

3.4 Higher order element for the EMsFEM

As indicated by the numerical experiments (see the results given in Section 5), the
EMsFEM with the four-node quadrilateral coarse-grid elements sometimes will in-
duce strong boundary effects and cannot predict accurately the fluid pressure in the
closed cells. The reason is that the linear boundary conditions for the construction
of the numerical base functions in the EMsFEM impose too strong restriction on the
boundary layer deformation of the coarse-grid element. To reduce the boundary ef-
fects, the oversampling techniques [Hou and Wu (1997); Hou, Wu and Cai (1999);
Zhang, Wu and Fu (2009); Zhang, Wu, Liu and Fu (2010)] were generally proposed
to introduce oscillatory boundary conditions for constructing the more reliable base
functions in both the MsFEM and the EMsFEM. These oversampling techniques
provide an effective approach to remove the resonance effect between the mesh
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scale and the physical scale of the general heterogeneous problems. However, from
our numerical experiences, it is found that there would be some difficulties when
the oversampling techniques are extended to deal with the problems in the closed
liquid cell materials.

To overcome these difficulties, in the current study, a more reasonable higher order
element corresponding to the coarse-grid element is proposed for the EMsFEM to
reduce the boundary effects. This type of element consists of eight nodes (see Fig.
8), which are all located on the boundaries of the unit cell. The procedure for the
construction of the numerical base functions can be defined as follows.

Unlike the four-node quadrilateral coarse-grid element mentioned above, there are
more than two nodes located on each edge of the eight-node quadrilateral coarse-
grid element. Thus, the linear boundary conditions can not be applied on the unit
cell to construct the numerical base functions. In contrast, quadratic boundary
conditions are introduced, just as that used in the construction of the base functions
of the eight-node quadrilateral element in the standard FEM.

Without loss of generality, take a unit closed liquid cell as an example (see Fig.
9), Ni denotes the base function of node i, Si represent the corresponding boundary
conditions for the construction of Ni. Our task is to define an appropriate Si to re-
solve the base function Ni, which satisfies Nix

∣∣ j = δi j,(i, j = 1∼ 8). In accordance
with thechoice of quadratic base functions of the higher order element in the stan-
dard FEM, the boundary conditions Si for the construction of the numerical base
functions of the eight-node quadrilateral coarse-grid element need to follow the
quadratic form. Taking the construction of N1x for example, we note that N1x = 1
at node 1 and N1x = 0 at other nodes. In addition, N1x has to vanish along the edges
43 and 23. Consequently, the corresponding quadratic boundary condition for all
the edges in the x-direction can be expressed as

s1x =−1
4

(
1− x

a

)(
1− y

b

)(
1+

x
a

+
y
b

)
(22)

Meanwhile, the boundary nodes in the sub-grid mesh are all constrained in the
y-direction, as shown in Fig. 9a. Using all the conditions mentioned above, the
internal displacement field of the coarse-grid element and the pressure of the fluid
within the unit cell can be calculated by the standard finite element analysis on the
sub-grid mesh of the unit cell. Thus the numerical base functions N1x, N1xy and
Npx1 are obtained.

The other base functions (N2, N3 and N4) at the corner nodes of the coarse-grid
element can be constructed in a similar way, while there is a little difference for
constructing the base functions N5, N6, N7 and N8 at the midpoints. For instance,
N5x vanishes along the edges 43, 23 and 14, as shown in Fig. 9b. The quadratic
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boundary condition for N5x thus has to be of the form

s5x =
1
2

(
1−
( x

a

)2
)(

1− y
b

)
(23)

It can be verified that the base functions constructed above satisfy

8
∑

i=1
Nix = 1,

8
∑

i=1
Niy = 1

8
∑

i=1
Nixy = 0,

8
∑

i=1
Niyx = 0

8
∑

i=1
Npxi = 0,

8
∑

i=1
Npyi = 0

(24)

which ensure the rigid displacement of the coarse-grid element and the compatibil-
ity between the neighboring elements.

Once the base functions are constructed, the displacement field and the pressure of
the fluid within the unit closed liquid cell can be expressed as

u =
8
∑

i=1
Nixu′i +

8
∑

i=1
Niyxv′i

v =
8
∑

i=1
Niyv′i +

8
∑

i=1
Nixyu′i

P =
8
∑

i=1
Npxiu′i +

8
∑

i=1
Npyiv′i

(25)

For the eight-node quadrilateral coarse-grid element, the macroscopic equivalent
forces which are used to substitute the volume expansion of the fluid will be not
only applied on the corner nodes, but also act on the middle nodes of the higher or-
der coarse-grid element, as illustrated in Fig. 10. The solution of the macroscopic
equivalent forces and the local effects of the volume expansions can be performed
in a similar way as those for the four-node quadrilateral coarse-grid element men-
tioned before.

4 Periodic boundary conditions

Numerical experiments have shown that the EMsFEM with the higher order ele-
ment and oversampling technique could generate better results than the conven-
tional EMsFEM. However, it was also found that the EMsFEM with higher order
element technique and oversampling technique sometimes will still have low accu-
racy when the coarse mesh scale is close to the physical scale.
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Figure 11: Periodic boundary conditions for the construction of the base function
N1x of the four-node quadrilateral element

To alleviate these difficulties, a novel approach based on the periodic boundary con-
ditions is introduced to construct the numerical base functions. Firstly, the treat-
ment is explained with the conventional four-node quadrilateral element [Zhang,
Wu, Lv and Fu (2010)]. Then, the periodic boundary conditions are developed for
the construction of the numerical base functions of the higher order element in the
EMsFEM.

4.1 Periodic boundary conditions for the four-node quadrilateral element

Let us consider a structure consisting of a periodic array of RVEs. Since the pe-
riodic array represents a continuous physical body, two continuities (displacement
and traction distributions) must be satisfied at the boundaries between the neigh-
boring RVEs. Based on these continuities, the unified periodic boundary conditions
have been developed in the conventional homogenization method to predict the me-
chanical response of composites materials. Motivated by this concept, Zhang and
his coworkers [Zhang, Wu, Lv and Fu (2010)] assume that the local periodicity of
the morphology is still applicable in the EMsFEM for the analysis of the periodic
structures. Thus, a novel approach based on the periodic boundary conditions was
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Figure 12: Periodic boundary conditions for the calculation of the macroscopic
equivalent forces of the four-node quadrilateral element

developed for the construction of the numerical base functions. In the current work,
the same approach is implemented to construct the numerical base functions of the
closed liquid cell. The main procedure can be described as below.

Consider a closed liquid unit cell with vertices 1, 2, 3 and 4 that are interconnected
by boundaries Γ12, Γ23, Γ43 and Γ14, as shown in Fig. 11. Instead of the prescribed
displacements which are common in the linear boundary conditions, kinematical
constraints are applied to the boundaries to ensure periodicity of the model in the
deformed configuration. Take the construction of N1x for example, as illustrated in
Fig. 11, the boundary conditions for a pair of the corresponding nodes

(
A+,A−

)
on opposite edges Γ12 and Γ43, can be given as{

uA+−uA− = ∆x
vA+

= vA− (26)

Similarly, for a pair of the corresponding nodes (B+,B−) on the opposite edges Γ14
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Figure 13: Periodic boundary conditions for the construction of the base function
N1x of the eight-node quadrilateral element

and Γ23, the boundary conditions can be expressed as{
uB+−uB− = ∆y
vB+

= vB− (27)

where, ∆x and ∆y are given constants, whose values at node 1 are both set to be
1, and are both set to be zero at nodes 2 and 4. For the other nodes, the values of
∆x and ∆y vary linearly along edges Γ12 and Γ14, respectively. The displacements
of the node 3 are constrained in both directions. Using the kinematical constraints
described above, the whole displacement field of the coarse-grid element can be
obtained by solving the equilibrium equation (Eq.1) on the sub-grid mesh with the
standard FEM. The numerical base function N1x is then obtained.

Under the periodic boundary conditions, the treatment of the volume expansions is
almost the same as that under the linear boundary conditions. However, it is obvi-
ous that those fix constraints (i.e., the nodes at the boundaries are all constrained,
as shown in Fig. 7) used in the linear boundary conditions are not suitable for
resolving the macroscopic equivalent forces and the local effects of the volume ex-
pansion of the fluid upon the periodic boundary conditions. Consequently, instead
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Figure 14: Periodic boundary conditions for the calculation of the macroscopic
equivalent forces of the eight-node quadrilateral element

     
(a)                     (b)                    (c) 

 

Figure 15: Microscopic models of (a) Unit cell A, (b) Unit cell B and (c) Unit cell
C

of the fixed constraints, the corresponding periodic boundary conditions are applied
on the unit cell to calculate the macroscopic equivalent forces and the local effects.
The detail of this procedure is illustrated in Fig. 12. Only the four corner nodes are
fixed, while the other nodes on the edges are constrained periodically. For exam-
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ple, the boundary conditions for a pair of the corresponding nodes
(
A+,A−

)
on the

opposite edges can be given as:{
uA+

= uA−

vA+
= vA− (28)

Using the boundary conditions described above, the nodal forces fn at the boundary
nodes can be calculated by solving the equilibrium equation (i.e., Eq.1) on the
sub-gird mesh with the standard finite element analysis. Then, the macroscopic
equivalent forces can be calculated by Eqs. 20 and 21 as mentioned above.

4.2 Periodic boundary conditions for the higher order element

In this subsection, the generalized periodic boundary conditions are introduced to
construct the base functions of the higher order element. Similar to the periodic
boundary conditions used in the conventional four-node quadrilateral element, the
kinematical constraints are applied to nodes on the opposite boundaries of the eight-
node quadrilateral element to ensure periodicity of the model in the deformed con-
figuration. In particular, the nodes at the center of the edges of the unit cell, i.e. the
middle nodes of the higher order element, need to be fixed to ensure that the base
functions obtained can satisfy Nix

∣∣ j = δi j,(i, j = 1 ∼ 8). Take the construction of
the N1x for example, the boundary conditions are shown in Fig. 13. The boundary
conditions for a pair of corresponding nodes

(
A+,A−

)
can be also expressed as

Eq.26. But now, the values of ∆x are given as

∆x =−1
4

(
1− x

a

)(
1− y

b

)(
1+

x
a

+
y
b

)
(29)

Moreover, nodes 3, 6 and 7 need to be constrained in all directions. Using these
boundary conditions, the base function N1x can be calculated on the sub-grid mesh
by the standard FEM. The rest of the base functions can be constructed in a similar
way. It can be verified that the base functions obtained satisfy Eq.24.

The treatment of the volume expansion of the fluid in the unit cells for the higher
order element under the periodic boundary conditions can be performed in a similar
way as that described for the conventional four-node quadrilateral element. The
corresponding boundary conditions can be found in Fig. 14.

5 Numerical experiments

In this section, several representative numerical examples are presented to assess
the accuracy of the proposed EMsFEM for the analysis of the closed liquid cell
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materials. Four strategies, i.e. the EMsFEM based on the four-node quadrilateral
coarse-grid elements with the linear boundary conditions (EMsFEM-4), the EMs-
FEM based on the four-node quadrilateral coarse-grid elements with the periodic
boundary conditions (EMsFEM-4P), the EMsFEM based on the eight-node quadri-
lateral coarse-grid elements with the quadratic boundary conditions (EMsFEM-8)
and the EMsFEM based on the eight-node quadrilateral coarse-grid elements with
the periodic boundary conditions (EMsFEM-8P) are implemented. The results
obtained are compared with those calculated by the standard FEM with conven-
tional four-node elements (FEM-4) or conventional eight-node elements (FEM-8)
applied on the fine-scale mesh. The closed cell structure considered is composed
of nx×ny = 20×6 periodic unit cells where nx and ny denote the numbers of unit
cells in the x- and y-directions, respectively. Moreover, in order to examine the
accuracy of the EMsFEM developed for the closed liquid cell structure more intu-
itively, three types of unit cells are considered. The size and the fine-scale mesh
of these unit cells are shown in Fig. 15. Plane strain condition is assumed in the
study, and all the parameters used in the examples are dimensionless. The Young’s
modulus is 2.0E9 and the Poisson’s ratio is 0.3.

 

Figure 16: The boundary conditions for the structure with 20×6 closed liquid cells
subjected to external loads
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 Figure 17: Displacements in the y-direction of the points on the bottom surface of
the cantilever closed liquid cell beam structure separately composed of (a) Cell A,
(b) Cell B and (c) Cell C subjected to external forces
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FEM-8

EMsFEM-4P

EMsFEM-8P  

Figure 18: Microscopic von Mises stress of the whole structure

FEM-4 EMsFEM-4 EMsFEM-4P

FEM-8 EMsFEM-8 EMsFEM-8P  
Figure 19: Microscopic stress in the x-direction of the unit cell 5 marked in Fig. 16
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Figure 20: Five types of sub-grid mesh of Cell B

5.1 Mechanical simulation of the closed liquid cell structure subjected to exter-
nal forces

As an assessment of the EMsFEM described previously for the analysis of the
closed liquid cell structure, a comparison between the results calculated by the
EMsFEMs and those obtained by the standard FEM is performed. Firstly, we as-
sumed that the structure is only subjected to the external loads and there is no vol-
ume expansion of the fluid in all the cells of the structure. As illustrated in Fig. 16,
the structure can be considered as a cantilever beam, of which the left side is fixed.
The uniform distributed forces of 2.0E6 act along the right side of the structure.

The displacements in the y-direction of the nodes on the bottom surface of the
structure composed of three types of unit cells are illustrated in Figs. 17(a)-(c),
respectively. It can be observed that the results obtained by the EMsFEM based on
both four-node and eight-node quadrilateral elements in general agree well with the
reference values obtained by the standard FEM (FEM-4 and FEM-8). Moreover,
we can observe that the periodic boundary conditions play an important role in im-
proving the accuracy of the EMsFEM. Comparing the results shown in Figs. 17(b)
and (c), it can be seen that the accuracy of the EMsFEM-4 and the EMsFEM-8
becomes worse when the dimension of the inclusion is close to that of the unit cell.
This is also called the “resonance effect” which is mainly induced by the boundary
layer in the first-order corrector [Hou and Wu (1997); Hou, Wu and Cai (1999)]. In
general, these errors can be alleviated by the periodic boundary conditions for gen-
eral heterogeneous periodic materials [Zhang, Wu, Lv and Fu (2010)]. However,
due to the special characteristic of the closed liquid cell structure, i.e. a fluid-filled
inclusion inside the cell, the EMsFEM-4P still has large errors. On the other hand,
it can be found that a good agreement of the results between the EMsFEM-8P and
the standard FEM is obtained. This means that the EMsFEM-8P can obtain more
satisfactory results.

Since the EMsFEM can take the downscaling computation easily, we can do the
downscaling computations with the developed EMsFEM methods directly and com-



A New Multiscale Computational Method 83

pare them with the standard FEM. For simplicity, we only take the downscaling
computation of the structure consisting of a periodic array of Cell A (see Fig. 15a).
The distribution of the microscopic von Mises stress in the whole structure is shown
in Fig. 18. It can be observed that the EMsFEM-8P can reach acceptable results of
the actual microscopic stress. In addition, the stress in the x-direction (σ11) of the
local unit cell (i.e., the No. 5 cell in Fig. 16) of the structure is plotted in Fig. 19.
It can be found that the results obtained by the EMsFEM-8P fit fairly well those
calculated by FEM-8.

Now let’s discuss the errors of the pressure of the fluid within the closed cells in
the structure. The error formula for the pressure of the fluid within the closed cells
in the structure is defined as

Erri% =

∣∣Pi
FEM−Pi

EMsFEM

∣∣∣∣PMax
FEM

∣∣ ×100% (30)

where Pi
FEM is the pressure of the i-th unit cell in the structure obtained by the FEM,

Pi
EMsFEM is the pressure calculated by the EMsFEM and

∣∣PMax
FEM

∣∣ is the absolute value
of maximal fluid pressure in all unit cells in the structure.

The errors of the fluid pressure calculated based on Eq.30 are listed in Tab. 1
for some unit cells. In general, we may find that the fluid pressures calculated
by the EMsFEMs coincide well with the reference solutions. Furthermore, we
can observe that the errors obtained by all the EMsFEM methods become larger
when the location of the unit cells is closer to the boundary of the structure. This
is called the “boundary effects”, which are common to the conventional multi-
scale/homogenization methods based on the local periodicity hypothesis. On the
other hand, we can find that the errors of the fluid pressure calculated by the
EMsFEM-8P are less than 1.41%. The boundary effects can be reduced effectively
by using the higher order elements with periodic boundary conditions.

Table 1: Error analysis of the fluid pressure in some unit cells of the structure
composed of unit cell B subjected to external forces

EMsFEM-4 EMsFEM-4P EMsFEM-8 EMsFEM-8P
Cell 1 8.11% 7.68% 5.68% 1.39%
Cell 2 0.92% 1.18% 0.40% 1.15%
Cell 3 0.42% 0.51% 0.17% 0.24%
Cell 4 0.40% 0.49% 0.16% 0.23%
Cell 5 0.91% 1.17% 0.38% 1.14%
Cell 6 8.13% 7.70% 5.69% 1.41%
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 Figure 21: Convergence rate of (a) the displacement uyand (b) the fluid pressure p
in Cell 1 as shown in Fig. 16 with refining the sub-grids of Cell B

5.2 Convergence test

In this test, we still consider the model used in Section 5.1, but only the Cell B (see
Fig. 15b) is chosen. A series of mesh discretization schemes are conducted by step-
wise refining the sub-grid mesh of the unit cells, as shown in Fig. 20. All the mul-
tiscale strategies developed in this paper (EMsFEM-4, EMsFEM-4P, EMsFEM-8
and EMsFEM-8P) are applied to simulate the structure, while both the standard
FEMs (FEM-4 and FEM-8) are adopted to solve this problem on the fine-scale
mesh. It should be mentioned here that the fine-scale mesh is also refined while
refining the sub-grid mesh of the cell.

The results of the displacement in the y-direction (uy) of Point P1 (see Fig. 16) are
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Figure 22: The boundary conditions for the structure with 20×6 closed liquid cells
subjected to volume expansions

shown in Fig. 21(a). The results of the fluid pressure in one of the unit cell (Cell
1) are shown in Fig. 21(b). It can be observed that the results obtained by all the
multiscale strategies converge monotonously. The same phenomenon can be found
in the results calculated by the two standard FEMs when the mesh of the structure
is stepwise refined. We also observe that the results calculated by the EMsFEM-8P
agree better with the reference values obtained by FEM-8 than the other EMsFEMs.

5.3 Mechanical simulation of the closed liquid cell structure subjected to vol-
ume expansions of the fluid

The closed liquid cell structures are materials that are capable of performing me-
chanical work in the form of physical shape change. The shape change can be
directly controlled by changing the pressure and volume expansion of the fluid in
the closed cells. Consequently, the accuracy of the treatment of the volume expan-
sion of the fluid in unit cells is one of key factors for the survival and success of
the EMsFEM for the mechanical analysis of the closed liquid cell materials. In this
example, we are going to demonstrate the accuracy of the results of the deforma-
tion and the fluid pressure, which are calculated by the EMsFEM when the closed
liquid cell structure is subjected to volume expansions. We continue to consider the
cantilever liquid close cell beam structure with three types of unit cells mentioned
in Section 5.1. An increase or decrease in the volumes of the fluid inclusions is
applied to the structure, as depicted in Fig. 22.

Figs. 23(a) and (c) plot the displacements in the y-direction of the nodes on the
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Figure 23: Displacements in the y-direction of the points on the bottom surface of the 

cantilever closed liquid cell beam structure separately composed of (a) Cell A, (b) Cell 

B and (c) Cell C subjected to volume expansions 

 

Figure 23: Displacements in the y-direction of the points on the bottom surface of
the cantilever closed liquid cell beam structure separately composed of (a) Cell A,
(b) Cell B and (c) Cell C subjected to volume expansions
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Figure 24: Microscopic von Mises stress of the whole structure

bottom surface of the structure with three types of unit cells, respectively. It can
be observed that the results obtained by the EMsFEMs and those calculated by the
two standard FEMs exhibit a good agreement with each other. This also means that
the treatment of the volume expansion of the fluid works with acceptable accuracy.
In particular, we can find from Fig. 23(c) that the errors of the EMsFEM-4 and
the EMsFEM-4P are magnified when the dimension of the fluid inclusion is close
to the size of the unit cell. Besides the resonance effect mentioned above, another
important reason is that the boundary conditions for the calculation of the numer-
ical base functions in the EMsFEM-4 and EMsFEM-4P impose relatively strong
restrictions for the boundary nodes. The macroscopic equivalent forces can not be
represent sufficiently well the real volume expansion. In contrast, since the nodes
at the middle of the edges in the higher order elements are taken into account, the
errors induced by the EMsFEM-8 are reduced. Furthermore, combining the pe-
riodic boundary conditions with the higher order elements, the EMsFEM-8P can
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Figure 25: Microscopic von Mises stress of Cell 5 marked in Fig. 22

obtain more satisfactory results. It implies that the periodic boundary conditions
proposed for the higher order elements can reflect better the heterogeneous behav-
iors of the coarse-grid elements and can simulate the boundary deformation of the
closed liquid cell more reasonably under the volume expansion conditions of the
fluid.

The downscaling computation of all the EMsFEM methods is conducted here and
the results are compared with those calculated by the standard FEM. For simplicity,
we still only consider the structure consisting of Cell A. The distribution of micro-
scopic equivalent stress in the whole structure obtained by the FEM-8, EMsFEM-
4P and EMsFEM-8P is shown in Fig. 24. In addition, the stress distribution of one
of the unit cells in the structure (Cell 5 as shown in Fig. 22) is carried out in detail,
as illustrated in Fig. 25. It can be observed that the EMsFEM-8P can acquire ac-
ceptable results of the actual microscopic stress in the closed liquid cell structure.

Furthermore, relatively larger errors of the fluid pressure obtained by the EMsFEM-
4, EMsFEM-4P, and EMsFEM-8 can be observed in Tab. 2. The boundary ef-
fects are even magnified when the volume expansions are imposed to the structure.
Moreover, it can be also observed that the errors of the fluid pressure in general
appear a little higher than those of the displacement results, especially when the
fluid inclusions are located at the boundary of the structure. One of the reasons is
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Table 2: Error analysis of the fluid pressure in some unit cells of the structure
composed of unit cell B subjected to volume expansions

EMsFEM-4 EMsFEM-4P EMsFEM-8 EMsFEM-8P
Cell 1 10.65% 5.83% 8.93% 1.42%
Cell 2 4.42% 0.91% 3.02% 3.24%
Cell 3 11.92% 6.12% 6.90% 5.56%
Cell 4 11.92% 6.11% 6.90% 5.56%
Cell 5 4.41% 0.92% 3.02% 3.25%
Cell 6 10.64% 5.83% 8.92% 1.41%

the “boundary effects”, which are common and hard to be eliminated in the con-
ventional multiscale/homogenization methods based on local periodicity hypothe-
ses. Another reason is that the errors of fluid pressure are generally one order
higher than the displacement, just as that observed in the conventional finite ele-
ment method, where the stress error is generally higher than that of the displace-
ment. On the other hand, when the periodic boundary conditions are introduced in
the construction of the base functions for the EMsFEM with higher order elements
(EMsFEM-8P), the errors of the fluid pressure are reduced. Thus, the EMsFEM-8P
can provide more reliable results, not only for the displacement but also the fluid
pressure.

From the numerical examples above, we can see that the results obtained by all
the EMsFEMs developed for the closed liquid cell materials compare well with the
reference values calculated by the standard FEM on the fine-scale mesh. The results
obtained by the EMsFEM-8P are better than those calculated by the EMsFEM-4,
EMsFEM-4P and EMsFEM-8.

6 Conclusions

The extended multiscale finite element method is developed for the mechanical
analysis of closed liquid cell materials. The base functions constructed numeri-
cally for the displacement field as well as the pressure of the incompressible fluid
within the closed liquid cell are employed to establish the relationship between the
macroscopic and microscopic variables, such as displacement, stress, strain and
pressure. In the macroscopic process, the effects of the volume expansion of the
fluid in the unit cells are treated as the combination of the effects of the macro-
scopic equivalent forces and the local response of the volume expansion on the unit
cells.

Numerical examples show that the extended multiscale finite element method with
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the conventional four-node quadrilateral coarse-grid elements sometimes will in-
duce strong boundary effects and cannot predict accurately the fluid pressure in
the closed cells. Thus a more reasonable higher order coarse-grid element (eight-
node) which can characterize the structural deformations of the closed cells with
greater accuracy is proposed. The quadratic boundary conditions are introduced
for the construction of the numerical base functions of the eight-node quadrilateral
coarse-grid element.

Furthermore, inspired by the periodic boundary conditions used in the conventional
homogenization method, the generalized periodic boundary conditions are intro-
duced for the construction of numerical base functions of higher order elements.
The results indicate that the extended multiscale finite element method with the
higher order elements as well as periodic boundary conditions has more accuracy
and can be successfully used for solving the closed liquid cell problems.
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