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Meshless Solution of Potential Problems by Combining
Radial Basis Functions and Tensor Product ones
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Abstract: Meshless methods for the solution of Partial Differential Equations
receive nowadays increasing attention. Many meshless strategies have been pro-
posed. The majority of meshless variational methods one can find in the literature,
use Radial Basis Functions (RBF) as generators of suitable trial and test spaces.
One of the main problems encountered when exploiting RBF is performing numer-
ical integrations over circles (when 2D problems are attacked, spheres for 3D ones).
We exploit Tensor Product Functions (TPF) as the test function space. This strat-
egy allows one to consider rectangular integration domains, which are much easier
to manage. This paper numerically analyzes the effectiveness in solving potential
problems of various settings for trial and test functions. Finally, the accuracy of
our best choice method is analyzed, when using both uniform and pseudo–random
meshes.

Keywords: Meshless Methods, Poisson Problem, Mixed Boundary Conditions,
Moving Least Squares, Radial Basis Functions, Tensor Product Functions.

1 Introduction

Overcoming Finite Element (FE) methods is one of the keywords for improving
both accuracy and efficiency in the numerical solution of (some types of) Partial
Differential Equations (PDE). Nowadays meshless methods provide increasing at-
tractive techniques in this direction [Atluri (2004); Babuska, Banerjee, and Os-
born (2004); Belytschko, Krongauz, Organ, Fleming, and Krysl (1996); Fries and
Matthies (2004); Nguyen, Rabczuk, Bordas, and Duflot (2008)].

We focus our attention on the so–called true Meshless methods, which do not ex-
ploit any mesh for discretizing the problem domain. As a byproduct, true meshless
methods are more apt to implement adaptivity. Among these methods, the truly
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Meshless Local Petrov-Galerkin (MLPG) approach has been developed by S. N.
Atluri and co–workers, as a general framework for solving partial differential prob-
lems [Atluri and Zhu (1998)]. Under MLPG framework, a PDE can be solved in
its various local symmetric or unsymmetric weak forms, by using a variety of inter-
polation methods, test functions, integration schemes, and their flexible combina-
tions [Atluri (2004); Atluri, Han, and Rajendran (2004)]. In the literature one finds
many implementations relying upon Radial Basis Functions (RBF), see e.g. [Atluri
(2004)], and the references herein. A smaller number of papers exploiting Tensor
Product Functions (TPF) is also available [Ni, Ho, Yang, and Ni (2004); Duflot and
Nguyen-Dang (2002); Sun, Wang, and Miao (2008); Liu (2009); Sterk and Trobec
(2008)].

The advantages of meshless methods are peculiarly dominant when 3D problems
are considered [Xiong, Rodrigues, and Martins (2003); Schembri, Crane, and Reddy
(2004); Han and Atluri (2004); Li, Shen, Han, and Atluri (2003); Atluri, Liu, and
Han (2006a,b); Mazzia, Pini, and Sartoretto (2008)]. On the other hand, tuning and
analysis of meshless methods is likely to be started using test 2D problems. When
attacking 2D problems, RBF–based meshless techniques require the evaluation of
integrals on circular domains, which is cumbersome [Mazzia and Pini (2010)].

In this paper we analyze the accuracy of TPF and RBF based MLPG techniques, in
the solution of potential problems. Our approach drives one to deal with rectangular
integration domains, in place of circles, hence allowing easier and more accurate
quadrature to be performed, thus curing one of the main drawbacks of pure RBF–
based meshless methods, i.e. accurate and efficient evaluation of the numerical
integrals.

We numerically analyze the accuracy and convergence of meshless methods which
combine RBF and TPF functions. We use both uniform and pseudo–random, fine
meshes. We show that accurate results can be attained by devising appropriate
strategies and performing suitable parameter tuning.

2 Meshless schemes

Let us consider the linear 2D Poisson equation on the domain Ω

−∇
2u = f , (1)

where f is a given source function. Dirichlet and Neumann boundary conditions
are imposed on the domain boundary ∂Ω

u = u on Γu,
∂u
∂n
≡ q = q on Γq (2)
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where u and q are the prescribed potential and the normal flux, respectively, on
Dirichlet boundary Γu, and on Neumann boundary Γq, being ∂Ω = Γ = Γu ∪Γq.
The outward normal direction to Γ is denoted by n.

Solving Poisson problem using a weighted residual method, is equivalent to finding
that function u∈S , S being a suitable trial space, such that for every test function
ψ ∈T , where T is a suitable test space, one has

∫
Ω

(∇2u+ f )ψ dΩ = 0, (3)

where u is the trial function and ψ is a test function.

The final Ritz–Petrov–Galerkin approach relies upon restricting conditions (3) to
suitable finite–dimensional trial and test spaces

B = span{φ1, . . . ,φNB} ⊂S , U = span{ψ1, . . . ,ψNT } ⊂T .

For numerical treatment, the problem domain is discretized by a set of N nodes. To
each mesh node, P, we associate one basis function and one trial function, hence
NB = NT = N will be assumed in the sequel.

Using compact supported trial (φ ) and test (ψ) functions in the weak formula-
tion (3) amounts to writing a set of so called Local Symmetric Weak Forms (LSWF),
one for each basis test function. Using the divergence theorem and imposing Neu-
mann boundary conditions, the LSWF pertaining to the i-th node can be written

∫
Γ

(i)
I

qψi dΓ+
∫

Γ
(i)
u

qψi dΓ+
∫

Γ
(i)
q

qψi dΓ−∫
Ω(i)

(
∂u
∂x

∂ψi

∂x
+

∂u
∂y

∂ψi

∂y
+ f ψi

)
dΩ = 0

This form is symmetric in the sense that both the trial and the test functions have
equal order of differentiability requirements. We have Ω(i) = supp(ψi), Γ

(i)
u =

Ω(i) ∩Γu is the intersection of our local integration domain with Dirichlet bound-
ary pieces. Analogously, Γ

(i)
q = Ω(i)∩Γq is the intersection of our local integration

domain with Neumann boundary pieces. Eventually, Γ
(i)
I = ∂Ω(i)\(Γ(i)

u ∪Γ
(i)
q ), is

the portion of our local domain boundary, ∂Ω(i), lying inside Ω. Recall that, being
Ω(i) = supp(ψi), ψi vanishes on Γ

(i)
I .

Since each LSWF is prescribed over node zi = (xi,yi), i = 1, . . . ,N, we obtain as
many equations as the number N of nodes in the global domain. The ensuing linear



98 Copyright © 2010 Tech Science Press CMES, vol.68, no.1, pp.95-112, 2010

system of equations is Kû = f where

Ki j =
∫

Ω(i)

(
∂Φ j

∂x
∂ψi

∂x
+

∂Φ j

∂y
∂ψi

∂y

)
dΩ−

∫
Γ

(i)
u ∪Γ

(i)
I

(
∂Φ j

∂x
nx +

∂Φ j

∂y
ny

)
ψi dΓ, (4)

i, j = 1, . . . ,n

fi =
∫

Γ
(i)
q

qψi dΓ+
∫

Ω(i)
f ψi dΩ, i = 1, . . . ,n (5)

Solving the linear system allows one to compute the coefficients ûi, s.t. the final
approximated solution is

ũ(z) =
N

∑
i=1

ûi φi(z).

Incidentally note that, unlike in FE, our trial basis is not a cardinal one, i.e. φ j(zi) 6=
δi j hold true, hence ũ(zi) 6= ûi holds, too. For this reason, the û j values are called
fictitious nodal values. A recover step is to be performed in order to compute the
actual nodal values, ũi = ũ(zi), i = 1, . . . ,N.

When zk = (xk,yk) is a Dirichlet node, the k-th equation in the linear system is
replaced by ∑

N
j=1 Φ j(zk)û j = uk, thus exactly enforcing Dirichlet conditions over

Dirichlet nodes [Liu (2009); Fries and Matthies (2004)].

3 Trial and test spaces

In order to identify a suitable trial space, we exploit the Moving Least Square
(MLS) technique with a set of suitable weights, hence obtaining approximations
based upon the so called MLS shape functions [Atluri and Zhu (2002); Belytschko,
Krongauz, Organ, Fleming, and Krysl (1996); Lancaster and Salkauskas (1981)].
They become our trial basis functions.

For simplicity, let us confine to 2D problems. Let z = (x,y) an arbitrary point in
the plane. Assume a set of mesh nodes zi = (xi,yi), i = 1, . . . ,N, is given. Let us
consider the linear MLS technique. It is an approximation method which after a
given set of functions, S, computes a new basis set, S′, which “better” approximates
polynomials. Even if 1 6∈ V = span{S}, one has 1 ∈ V ′ = span{S′}. Assume that
we need to approximate the function u = u(x,y). Let p = p(x,y) = (1,x,y)T , i.e.
the degree of p is d = 1, and the number of basis functions is m = 3; Let us define
the N×m matrix

P =

 p(z1)
T

...
p(zN)T

 ,
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together with the N×N matrix

W (z) = diag(wi(z)), wi(z)≥ 0, i = 1, . . . ,N.

The functions wi(z) are called the MLS weights.

Let u = (u(z1), . . . ,u(zN))T , A(x,y) = PTWP. The linear MLS technique minimizes
a = a(z) = (a j(z))T , j = 1,2,3, i.e. on all linear polynomials in z = (x,y), the
functional

J(z) =
N

∑
I=1

(pT (zI) ·a(z)−u(zI))
2W (z) = (Pa(z)−u)T W (z)(Pa(z)−u)≥ 0.

By defining

Φ(z) = W (z)P(z) A−1(z) p(z), (6)

the minimization of the functional gives the approximation [Lancaster and Salka-
uskas (1981)]

û(z) = Φ
T (z)u =

N

∑
i=1

φi(z)u(zi).

Let Φ = (φ1, . . . ,φN); the functions φi are called the MLS shape functions [Atluri
(2004)].

Note that, after eq. (6), one has φi(z) = wi(z)(PA−1 p)i, hence the support of each
shape function, φi, is enclosed into the support of its related weight function, wi.

When implementing MLPG, in principle one can avoid explicitly computing the
MLS shape functions [Atluri (2004)], but, in order to perform the recover step,
i.e. computing the nodal solution values, one must compute the values V = {φ j(zi),
i, j = 1, . . . ,N}. Hence recovering requires further computations compared to merely
solving the linear system, which provides the fictitious values only.

Usually, RBF [Buhmann (2003)] are used as the MLS weights. In this paper, we
exploit both TPF, see e.g. [Duflot and Nguyen-Dang (2002); Ni, Ho, Yang, and Ni
(2004); Sun, Wang, and Miao (2008)], and more usual RBF, as the weights. Con-
cerning TPF, assume g(η)(t) is a given, differentiable function, η being a parameter
which controls the amplitude of its support. When dealing with RBF, we shall de-
note the “radius” as precisely the radius of its circular domain. When dealing with
TPF functions, we denote the x–“radius” as half the length of the x–side, and anal-
ogously for the y–”radius”. In this paper, we shall use equal x– and y– values,
hence we shall speak of “the” TPF radius (see the sequel for further details). To
each node, zi = (xi,yi), a TPF is associated by

wi(x,y) = g(η(x)
i )(|x− xi|) ·g(η(y)

i )(|y− yi|), (7)
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by suitably choosing the two x- and y- factors (see the sequel for details).

In order to fully specify our meshless procedure, we need to further identify suitable
test functions. Results in our previous papers [Mazzia, Pini, and Sartoretto (2008);
Mazzia and Pini (2010)], rely upon RBF weights for MLS and RBF of the same
type, as the test functions. In this paper we analyze the advantages of using TPF as
the test function space generators.

3.1 Generating functions

MLS weights and test spaces were obtained by using three types of “generating”
functions.

We considered quartic spline functions [Belytschko, Krongauz, Organ, Fleming,
and Krysl (1996)]

S(t,η) =

1−6
(

t
η

)2
+8
(

t
η

)3
−3
(

t
η

)4
, 0≤ t ≤ η ,

0, t ≥ η .
(8)

We used Gaussian generators [Lu, Belytschko, and Gu (1994)]

G(t,η) =


exp
[
−
( t

c

)2k
]
− exp

[
−
(

η

c

)2k
]

1− exp
[
−
(

η

c

)2k
] , 0≤ t ≤ η ,

0, t ≥ η .

(9)

As usual in literature, we set k = 1. The parameter c controls the shape of the
function. Following [Atluri (2004)] we set c = η/4.

Finally, we exploited [Liu (2009)]

F(t,η) =

{
1− (t/η)2, 0≤ t ≤ η ,

0, t ≥ η .
(10)

For any mesh node zi = (xi,yi) a TPF is obtained after eq. (7) by setting

g(η(x)
i )(|x− xi|) = γ(|x− xi|,η(x)

i ), g(η(y)
i )(|y− yi|) = γ(|y− yi|,η(y)

i ),

where either γ = S(t,η), or γ = G(t,η), or γ = F(t,η). The parameter η
(x)
i is the

support x–radius, while η
(y)
i is the support y radius. In other terms, the support of

wi(x,y) is a rectangle centered at zi = (xi,yi), whose x–sides are 2η
(x)
i long, while

the y–sides are 2η
(y)
i wide. Note that one could set η

(x)
i 6= η

(y)
i , hence obtaining
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rectangular domains. For simplicity, in the sequel we assume η
(x)
i = η

(y)
i , i =

1, . . . ,N, thus square function supports are obtained.

On the other hand, a RBF associated to any node zi is identified by suitably setting
a domain radius ri and considering

γ(
√

(x− xi)2 +(y− yi)2),ri),

where either γ = S(t,η), or γ = G(t,η), or γ = F(t,η).

4 Test problems

Let us consider Poisson equation

−∇
2u(x,y) = f (x,y), (x,y) ∈ [0,1]2, (11)

and two test solutions.

• One is drawn after [Wagner and Liu (2001)],

u(x,y) = [cosh(π y)− cothπ sinh(π y)] sin(π x). (12)

It solves equation (11) with f (x,y) = 0 (Laplace equation). We consider
three problems, whose solution is (12), by setting three types of boundary
conditions.

– Dirichlet boundary conditions on the whole boundary, problem labelled
LD (Laplace equation, Dirichlet boundary conditions).

– Dirichlet boundary conditions on the horizontal sides, Neumann bound-
ary conditions on the vertical ones (LM, Laplace equation, Mixed con-
ditions).

– Dirichlet boundary conditions on the vertical sides, Neumann boundary
conditions on the horizontal ones (LM1 , Laplace equation, alternative
Mixed conditions).

• Another test function is proposed in [Atluri and Zhu (1998)],

u(x,y) =−(5/6)(x3 + y3)+3x2 y+3xy2. (13)

It solves Poisson equation (11) where f (x,y) = x + y. Assume Dirichlet
boundary conditions on the whole boundary are set. Let us label this problem
PD, standing for Poisson equation with Dirichlet boundary conditions.
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Let u(x,y) be the exact solution of our problem, while ũ(x,y) is the approximated
solution estimated by our procedure.

Assume we have a mesh, M , set up for error estimation, whose nodes are zi, i =
1, . . . ,Q. Our error estimator, drawn after [Atluri, Han, and Rajendran (2004)] is

eM =

(
∑

Q
i=1(u(zi)− ũ(zi))

2

∑
Q
i=1 u2(zi)

)1/2

, (14)

being u = (u(z1), . . . ,u(zQ)), the vector of the exact nodal values.

5 Numerical results

5.1 Uniform grids

In order to analyze the main features of our Meshless procedure, we start focusing
on uniform grids on [0,1]2, called G1, . . . ,G4. Their diameters (uniform distance
between nodes) are h1 = 0.125, hi+1 = hi/2, i = 1,2,3, respectively.

In the sequel, as our standard error measure we use eM , where M is a uniform grid
with 68×68 nodes, i.e. a slightly finer grid than G4.

Based upon numerical tuning (see the sequel), we set a pair of values, one for
the trial function support radius, r, another for the test function support radius, ρ .
All trial functions share the same support radius, and the same holds for all test
functions, a valid choice since we exploit uniform grids.

Usually [Atluri (2004)] RBF are exploited as both the MLS weights, and the test
functions. Our main idea is to exploit TPF as the generators of the test space.
Since our algorithm performs integration based upon the test function domain, we
obtain rectangular integration domains, in place of circular ones. Such an ap-
proach simplifies greatly the integrations. Numerical quadratures are performed
by simple Gauss product rules, enrolling NG quadrature points both in the x– and
y–directions. We extensively investigated the importance of NG. The values NG =
4, . . . ,12,18,20,32,64 were tested.

Let us consider a TPF–TPF spline based method, i.e. TPF based upon splines of
type (8) were exploited both as MLS weights, and test functions. Quasi–optimal r
and ρ radiuses where determined by numerical experiments. Fig. 1 shows the error
raised when attacking problem PD. Note that convergence becomes poor when
finer and finer grids are exploited. Analogous results we observed when TPF based
upon Gaussian functions of type (9) are used (not shown for brevity). We guess
that exploiting TPF as MLS weights produce poor interpolating spaces, hence poor
accuracy.
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Figure 1: Errors vs grid diameter, h. PD problem is solved with TPF–TPF method,
using spline generators for both trial and test functions. Parameter values ρ/h =
1.4, r/h = 2.8 are set.

On the ground of these results, we decided to exploit RBF as the MLS weights,
while the test function space is based upon TPF. In the sequel, we refer to this tech-
nique as “RBF–TPF”. Recall that since integration is performed by our algorithm
on the domains of the test function space, using TPF test functions produces square
integration domains, which is more efficient than using RBF circular domains.

We found that effective generators for our TPF test functions are those in eq. (10).
This choice is exploited for time–dependent problems in [Sterk and Trobec (2008)],
being recommended in [Liu (2009)]. Using either spline or Gaussian generators,
we obtained less accurate results.

On the ground of our results above, in the sequel we shall consider only methods
whose test space is made by TPF functions based upon eq. (10).

Moreover, we only exploit RBF trial functions obtained using either spline or Gaus-
sian weights. Let us compare the effectiveness of these two settings.

Fig. 2 shows the error behavior vs r/h, when spline generators are exploited, ρ/h =
1 is constant. One can see that the error behavior is quite erratic, hence the setting
of r value is questionable. On the other hand, as r/h enlarges, the number of non–
zero entries in the final linear system matrix increases (see Fig. 3), since larger
interpolation domain radiuses implies a larger number of nodal contacts activated.
In order to minimize the error, and maintain small the number of non–zero entries
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Figure 2: Errors vs r/h, when attacking PD and LD problems using spline weights
for RBF trial functions. The domain is discretized by grid G3, ρ/h = 1 is set.
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Figure 3: Fill-in vs r/h, when ρ/h = 1. Spline weights for RBF trial functions.
The domain is discretized by grid G3.



RBF–TPF Based Meshless Solution of Potential Problems 105

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

er
ro

r

Grid diameter h

N_G = 5
N_G = 10
N_G = 20

Figure 4: Error behavior vs grid diameter, when solving problem PD. RBF trial
functions are obtained by spline weights, ρ/h = 1, r/h = 2.8.

in the final system, we experimented with r/h = 2.8. This setting was confirmed
also by our results on convergence, which are shown in the sequel.

Let us analyze the degree of dependence of our meshless technique upon the num-
ber of quadrature nodes, i.e. the accuracy of numerical integrations. Fig. 4 shows
that using NG = 5 the error on the finest grid is appreciably higher than with
NG ≥ 10. By numerical experiments we found that this dependence on the number
of integration nodes is not relevant when using Gaussian generators (not shown for
brevity).

Fig. 5 shows that when ρ/h = 1, the error raised with Gaussian generators mono-
tonically decreases when r/h increases. One can see that the error decreases slowly
when r/h > 4.5. Taking into consideration that as r/h increases the fill–in in the
final system increases in the identical manner shown by Fig. 3, we set as a suitable
choice r/h = 5. Less erratic error behavior w.r.t. r/h, and very low dependence
on the number of quadrature points suggest that Gaussian generators are preferable
over splines.

Up to now, we considered only Dirichlet boundary conditions. Concerning mixed
boundary conditions, Fig. 6 shows the errors raised when LM problem is attacked.
Errors marked with circles are obtained by integrating on all nodes with NG quadra-
ture points. Note that when NG = 8 the error is quite large. Errors marked with squ-
ares are obtained by performing numerical integrations with NG = 2k, k = 2,3,4,5,
on all nodes, except but on Neumann ones, where a more accurate quadrature rule,
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Figure 5: Errors vs r/h, when ρ/h = 1. Problems PD and LD are solved using RBF
trial functions obtained by Gauss weights. Grid G3 was exploited.
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Figure 6: Treatment of mixed boundary conditions. Problem LM. Circles show
errors obtained when integrations on all nodes are performed by NG = 2k nodes,
k = 2,3,4,5. Squares mark errors raised when only on Neumann nodes integrations
are performed by more accurate NG=32 quadrature formula. Grid G3 was used,
r/h = 5, ρ/h = 1 was set.
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Figure 7: Errors for PD, LD, LM problems. The error curve for problem LM1 overlaps
that one for LM. Parameter values are: r/h = 5, ρ/h = 1, NG = 5.

using NG = 32 integration points was exploited. Inspecting Fig. 6, one could argue
that NG = 16 could be enough, but our extensive numerical experiments suggest
that in order to attain convergence with fine grids, NG = 32 is likely to be set. Sum-
marizing, one can obtain accurate results by integrating on non–Neumann nodes
with a small number of quadrature points, but Neumann nodes require a quite large
number of quadrature points.

Figure 7 shows the error behavior when solving our test problems. One can see that
the attained accuracy is satisfactory.

5.2 Pseudo–random meshes

Now let us perturb our grids Gi, i = 1,2,3,4, in order to analyze the performance of
our method on (pseudo–)random meshes. More precisely, for each grid Gi, nodes
on the domain boundary are not moved, in order to avoid modifying the domain.
On the other hand, each internal node is either left unchanged, or uniformly random
shifted hi/2 either up, or down, or left or right. Fig. 8 shows a cloud of points that
were obtained by shifting the nodes in our uniform grid G4. Using this perturbation
strategy, we obtained pseudo–random meshes G′i, i = 1,2,3,4.

In the sequel, we focus on our best–choice RBF–TPF algorithm for uniform meshes.
Its RBF trial functions come from Gaussian weights, while the test functions are
TPF obtained by functions of type (10).
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Figure 8: Pseudo–random mesh obtained by perturbing grid G3.
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Figure 9: Error on random grids for problem PD, when either the “min” or the “avg”
strategies are exploited. For each random grid, on the x- axis the diameter of the
corresponding unperturbed grid is reported.
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Figure 10: Analogous to the previous Figure, apply to problem LM. The error for
the LM1 problem with “avg” strategy equals that one for LM problem.

Let us consider our Poisson problem with Dirichlet boundary conditions. When we
used uniform grids, we set one trial domain radius for all trial functions, depend-
ing upon grid diameters, and one for all test functions. Now we must devise new
strategies, which assign a peculiar domain radius to each trial and test function.
By numerical experiments, we analyzed many strategies. Here, we describe two
of them, both seeming sound procedures, one which proved unsuccessful, another
which proved effective. The “min” strategy relies upon assigning as the domain
radius of a function (either trial or test) associated to node n, the distance of the
nearest mesh point to node n. Incidentally, this is the strategy that we exploited for
uniform meshes. The “avg” strategy assigns the average distance in the six nearest
points to n. Fig. 9 shows the errors raised by either “min” or “avg” strategy. One
can see that using “min” strategy, the error is quite large and not monotonically
decreasing with h. On the opposite, “avg” strategy produces a satisfactory small,
monotonically decreasing error.

We guess that the radiuses produced by “min” strategy usually result to be too
small. It is not guaranteed that the union of the supports of the trial functions
covers the entire problem domain, and the same holds for the supports of the test
functions. Such an eventuality makes convergence either poor or even prevented.

Let us consider our Laplace problem with mixed boundary conditions. Fig. 10
shows the errors raised using a pseudo–random mesh G′i. On the x–axis, the radius
of the corresponding unperturbed grid Gi, is reported. The results for problem LM1
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superimpose those for LM, suggesting that modifying the position of the Neumann
boundary pieces does not affect the accuracy. This check is worth performing, since
test functions are TPF based, and TPF are not independent of rotations, wherever
RBF are.

By comparing Fig. 9 and Fig. 10 with Fig. 7, one can see that satisfying accuracy
is obtained with non uniform meshes, though it is slightly smaller than the one
obtained using the unperturbed grids.

The error behavior of Laplace problem with Dirichlet boundary conditions is not
displayed, since it is analogous to those already shown.

6 Conclusions

We analyzed the performance of RBF–TPF–based meshless algorithms in the so-
lution of Poisson problems. The following results are worth emphasizing.

• Using TPF–based trial space does not provide a sufficiently accurate interpo-
lating space. Implementing a solution scheme relying upon an RBF–based
trial space combined with a TPF test space, preserves the rectangular shape
for integration domains, yet exploiting a better interpolation space.

• Concerning trial functions, our numerical experiments suggest that Gaussian
generators provide higher accuracy than splines.

• Our RBF–TPF based meshless algorithm provides an effective solution to
sample potential problems, for both Dirichlet and mixed boundary condi-
tions. In the latter case, good accuracy at a reduced computational cost can
be attained by using accurate quadrature rules only on Neumann nodes.

• Use of test spaces based upon TPF, in place of RBF, reduces the critical-
ity of numerical quadrature accuracy. When Dirichlet boundary conditions
are set, quite the same errors can be obtained when reducing the number of
quadrature nodes from 64× 64 to 4× 4. When mixed boundary conditions
are considered, in order to achieve good accuracy, a small number of quadra-
ture nodes is allowed on mesh points, except but on Neumann nodes, where
a large number of integration points is required.
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