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Self-Adaptive Differential Evolution Based on the Concept
of Population Diversity Applied to Simultaneous
Estimation of Anisotropic Scattering Phase Function,
Albedo and Optical Thickness

F. S. Lobato!, V. Steffen Jr> and A. J. Silva Neto®

Abstract: Differential Evolution Algorithm (DE) has shown to be a powerful
evolutionary algorithm for global optimization in a variety of real world problems.
DE differs from other evolutionary algorithms in the mutation and recombination
phases. Unlike some other meta-heuristic techniques such as genetic algorithms
and evolutionary strategies, where perturbation occurs in accordance with a ran-
dom quantity, DE uses weighted differences between solution vectors to perturb
the population. Although the efficiency of DE algorithm has been proven in the
literature, studies indicate that the efficiency of the DE methods is sensitive to its
control parameters (perturbation rate and crossover rate) and there is not any guar-
antee that premature convergence will be avoided. To overcome this problem, the
present work proposes an Self-Adaptive Differential Evolution (SADE) as based
on the concept of population diversity aiming at dynamically updating the control
parameters. The methodology proposed is applied to the simultaneous estimation
of the radiation phase function of anisotropic scattering, albedo and optical thick-
ness in an inverse radiative transfer problem. The results show that the procedure
represents a promising alternative for the type of problem presented above.

Keywords: Adaptive Differential Evolution, Population Diversity, Inverse Prob-
lems, Radiative Transfer.

1 Introduction

Nowadays, the application of numerical optimization techniques for parameter iden-
tification has increased significantly due to the difficulty in building theoretical
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models that are able to represent physical phenomena under real operating condi-
tions. Basically, the estimation problem, also known as inverse problem, consists
of minimizing the difference between experimental and calculated values. Tra-
ditionally, three research lines are proposed for the solution of parameter iden-
tification problems by using optimization techniques: the Deterministic, the Non-
Deterministic and the Hybrid Approach [Wang, Su and Jang (2001); Silva Neto and
Soeiro (2002); Silva Neto and Soeiro (2003a); Silva Neto and Silva Neto (2003b);
Chang, Liu and Chang (2005); Liu (2006); Chalhoub, Campos Velho and Silva
Neto (2007), Harris, Mustata, Elliott, Ingham and Lesnic (2008); Yeih and Liu
(2009); Lobato, Steffen Jr and Silva Neto (2010)].

In this context, the inverse analysis of radiative transfer in participating media has
numerous practical applications, such as the one-dimensional plane-parallel [Silva
Neto and Ozisik (1995); Acevedo, Roberty and Silva Neto (2004); Lobato, Stef-
fen Jr and Silva Neto (2008); Lobato, Steffen Jr and Silva Neto (2009)] and two-
dimensional media [Carita Montero, Roberty and Silva Neto (2001); Carita Mon-
tero, Roberty and Silva Neto (2004)], and radiative transfer in composite layer me-
dia [Siegel and Spuckler (1993); Wang, Cheng and Tan (2001)], which are devoted
to applications in scientific and technological areas that are related to environmen-
tal sciences [Hanan (2001)], parameter estimation [Sousa, Soeiro, Silva Neto and
Ramos (2007)], and tomography [Kim and Charette (2007)].

The main difficulty found in the so-called non-deterministic approach is the high
number of objective function evaluations needed to solve optimization problems.
Besides, in spite of the performance and the number of applications encompassed
when fixed parameters are used by the algorithm, there is no guarantee that pre-
mature convergence will be avoided [Coelho and Mariani (2006)]. In addition, the
DE algorithm is sensitive to control parameters [Storn, Price and Lampinen (2005);
Gimperle, Miiller and Koumoutsakos (2002)] and it is highly problem dependent
[Zaharie (2002); Qin and Suganthan (2005); Brest et al (2006)], thus claiming for
ad-hoc configurations. According to Nobakhti and Wang (2006), because of the
special mutation mechanism used in DE, if for any reason (such as an incorrect
choice of the perturbation rate - F') the DE population looses diversity, then the
search will completely stop as mutation becomes zero. To overcome this difficulty,
various methodologies have been proposed. Zaharie (2003) proposes a feedback
update rule for F that is designed to maintain the diversity of the population at a
given level. According the authors, this procedure is able to avoid premature con-
vergence. Recently, chaotic search models have been used for the adaptation of pa-
rameters in non-deterministic approach due to its ability in escaping premature con-
vergence [Coelho and Mariani (2006)]. In Tavazoei and Haeri (2007), a study about
the performance of different chaotic search models when they are incorporated to
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classic optimization is addressed. Coelho and Mariani (2007) have used the Ant
Colony algorithm with logistic maps in engineering problems. Another research
line to make the number of objective function evaluations to decrease is using spe-
cial strategies to update the population size. In this context, Lobato and Steffen Jr
(2009) defined the convergence rate concept based on the homogeneity of the pop-
ulation and applied this concept to solve optimal control problems. In the present
contribution the Self-Adaptive Differential Evolution algorithm (SADE) is used for
the solution of the inverse radiative transfer problem related to the simultaneous es-
timation of the optical thickness, single scattering albedo, diffuse reflectivies and
anisotropic scattering phase function of a one-dimensional homogeneous partici-
pating media. The results obtained with this methodology are compared with the
standard Differential Evolution (DE) algorithm with fixed parameters. This work
is organized as follows. The mathematical formulation of the direct and inverse
problems is presented in Sections 2 and 3, respectively. A review of the Differ-
ential Evolution method and the strategy for the dynamic adapting of parameters
is presented in Section 4. The results and discussion are described in Section 5.
Finally, the conclusions and suggestions for future work conclude the paper.

2 Mathematical Formulation of the Direct Problem

A plane-parallel, gray, anisotropically scattering slab of optical thickness 7,, with
diffusely reflecting boundaries is subjected to external isotropic irradiation at both
boundaries, 7=0 and 7=1, as shown in Fig. 1.
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Figure 1: Schematic representation of the one-dimensional participating medium.

It is assumed that the emission of radiation by the medium due to its tempera-
ture is negligible in comparison to the intensity of the external incoming radiation.
Also the effects of possible differences on the refractive indices of the participating
medium and surrounding environment are not taken into account. The mathemati-
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cal formulation of the direct radiative transfer problem is given by [Ozisik (1973)];

1

ualgr’“) +1(T,u) = %/p(u,u’)l(f,u’) dp',0<t<71, —1<p<1l (1)
-1
1
1(0,u) =A1+2p1/1(0,—u’) wdu', u>0 2)
0
1
(T, ) =Az+2pz/l(ro,u’) pdu', u<o 3)
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where (7, 1) is the dimensionless radiation intensity, 7 is the optical variable, U is
the direction cosine of the radiation beam with the positive T axis, @ is the single
scattering albedo, p; and p; are the diffuse reflectivities at boundaries T = 0 and
T = T,, respectively, A| and A, are the strength of the external irradiation at these
boundaries, and p(u, ') is the phase function of anisotropic scattering which is
represented in terms of a series of Legendre polynomials as

M M
p (.Ualil) = Z—'O (2m+1) fnP (1) P (.u/) = Z_,Obmpm (1) P (.U/) “)

with b, = 1, where the coefficients b,,, m = 1,2, ..., M are tabulated [Chu, Clark,
and Churchill (1957)].

In the direct problem defined by Eqgs. (1) to (3) the radiative properties and bound-
ary conditions are considered known, then the problem becomes the one of deter-
mining the radiation intensity /(, it). For that purpose a Collocation Method [Vil-
ladsen and Michelsen (1978); Wylie and Barrett (1985)] was used together with a
Gauss-Legendre quadrature for the terms given on the right hand sides of Egs. (1)
to (3).

3 Mathematical Formulation of the Inverse Problem

In the inverse problem considered here the optical thickness 7,, the single scattering
albedo m, the diffuse reflectivities p; and p», and the coefficients of phase function
of anisotropic scattering, b,,, m = 1,2, ..., M are considered unknown. Note that
M is also unknown and from now on it will be referred to as M*. Measured exit
intensities at both surfaces of the plate {Yi}, at different polar angles corresponding
toi=1,2,...,K, are considered available, where K is the total number of measured
data. Therefore, the inverse problem can be stated as: utilizing the measured data
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{Yi}, i=1,2, ...,K, determine the M*+4 elements of the vector of unknowns Z
defined as:
Z={1,,0,p1,p2,b1,b2, ... by }" )

Considering that the number of measured data, K, is larger than the number of
parameters to be estimated, M*+4, an implicit formulation based on a optimization
problem is used for the inverse radiation problem at hand, in which it is required
the minimization of the least squares norm as given below:

0(Z) =

where [; and Y; are computed and measured exit intensities, respectively, and the
elements of the vector of residues are

[Ii(r(,,a),pl,pz,bl,bz,...,bM*)—Y,-]z :éTé (6)

N
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=

Gi :Ii(T07w7p17p2)b1)b2)"'7bM*) _Yi) i= 15 27 ey K (7)

As real experimental data are not available, the measured exit intensities, Y;, were
obtained from simulation. For this aim, random error £ (with normal distribution
and unitary standard deviation) was added to the exact intensities, I, obtained
from the solution of the direct problem,

Yi = lpaer, + OE;, i=1,2, ..., K (8)
and o represents the standard deviation of measurement errors.

4 Solution of the Inverse Problem
4.1 Differential Evolution Algorithm

Differential Evolution (DE) is a recent optimization technique in the family of evo-
lutionary computation proposed by Storn and Price (1995), which differs from other
evolutionary algorithms in the mutation and recombination phases. According to
several authors, DE has as main advantages the conceptual simplicity and faster
convergence. However, the main difficulty with the technique appears to be in the
slowing down of convergence as the region of global minimum is approached and
stagnation of the population [Lampinen and Zelinka (2000)].

This methodology consists in generating trial parameter vectors by adding the

weighted difference between two population vectors to a third vector. The con-
trol parameters in DE are: NP, the population size, CR, the crossover rate, and, F,
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the weight applied to random differential (perturbation rate). According to Storn,
Price and Lampinen (2005), NP should be about 5 to 10 times the problem dimen-
sion (number of parameters in a vector), F' should be in the range 0.1 to 2.0 and CR
in the range 0.01 to 1.0.

The iterative procedure of the canonical DE is shown in Fig. 2 and summarized as
follows [Storn, Price and Lampinen (2005)]:

Define DE parameters (population size, selection and
crossover method, perturbation rate, etc.)

l

Create an initial population, randomly distributed
throughout the design space

T
]

Evaluate the objective function and take it as a fitness
measure of each individual

l

Apply mutation operator

l

Apply crossover operator (after these two steps a set
of new individuals is generated)

I

Apply selection (which means to replace the worst
individuals in the population by the previously
generated ones)

Stop criterion

Figure 2: Differential Evolution Structure.

» Step 1: Randomly initialize the population of individuals for DE, where each
individual contains n variables;

» Step 2: Evaluate the objective values of all individuals, and determine the
individual that has the best objective value;

 Step 3: Perform mutation operation for each individual to obtain each indi-
vidual’s mutant counterpart;

» Step 4: Perform crossover operation between each individual and its corre-
sponding mutant counterpart to obtain each individual’s trial individual;

» Step 5: Evaluate the objective function values of the trial individuals;
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» Step 6: Perform selection operation between each individual and its corre-
sponding trial counterpart to generate the new individual for the next gener-
ation;

» Step 7: Determine the best individual of the current new population with
the best objective value. If the objective function value is better than the
objective function value of Xy, then update Xj.5 and its objective function
value with the value of the current best individual;

» Step 8: If a stopping criterion is met, then output X, and its objective
function value; otherwise go back to Step 3.

Storn and Price (1995) proposed various mutation schemes for the generation of
new vectors (candidate solutions) by the combination of the vectors that are ran-
domly chosen from the current population as shown in Tab. 1.

Table 1: Mutation Schemes used in the Differential Evolution Algorithm (ry, ..., rs
are random integer indexes and mutually different, x, is the trial vector (individual),
Xpest 18 the best individual of the current population and x is the current individual).

Strategy Updating Equation
rand/1 X =x1+F (x2—x3)
rand/2 X =x1+F (X2 — X3+ Xpa — X,5)
best/1 X' = Xpess + F (X0 — X3)
best/2 ¥ = Xpest +F (xr2 — X3 +Xp4 — er)
rand/best/1 X' =x,1 +F (Xpest — X1 + X1 —X12)
rand/best/2 | X' = xp1 +F (Xpess — Xr1) + F (Xr1 — X2 + X3 — Xp4)

Applications of the above technique are found in various fields of science and engi-
neering, such as: digital filter design [Storn (1999)], batch fermentation process
[Chiou and Wang (1999)], parameter estimation in fed-batch fermentation pro-
cess [Wang, Su and Jang (2001)], parameter estimation in biofilter modeling [Bhat,
Venkataramani, Ravic and Murty (2006)], economic load dispatch problem [Coelho
and Mariani (2007)], engineering system design applied to a multi-objective con-
text [Lobato and Steffen Jr (2007)], apparent thermal diffusivity estimation of fruits
drying [Mariani, Lima and Coelho (2008)], solution of inverse radiative trans-
fer problems in two-layer participating media [Lobato, Steffen Jr and Silva Neto
(2008)], optimal control problems [Lobato, Murata, Oliveira-Lopes and Steffen Jr
(2008)], multi-objective optimization [Lobato, Steffen Jr and Silva Neto (2009)],
estimation of radiative properties [Lobato, Steffen Jr and Silva Neto (2010)], and
other applications [Storn, Price and Lampinen (2005)].
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4.2  Self-Adaptive Differential Evolution Algorithm

In this work, parameter updating is performed according to the previous work from
Zaharie (2003). This methodology is based on the evolution of the population
variance (viewed as a measure of the diversity population) given by:

Var (x) = x* — %i 2 9
NP

i=1

According to Zaharie (2002, 2003) the expected value of the variance of population
obtained after recombination, if the best element of the population is not taken into
consideration, is:

2CR CR?
E (Ve = 14+2FCR— " +—— |V 10
War(0) = (14202208 + S8 Y var (10
Consider that x(g) is the population obtained at generation g-1 (previous popula-
tion). During the g-th generation the vector x is transformed into x’ (recombina-
tion); then in x” (selection). x” will represent the starting population for the next
generation, x(g + 1). Defining y as

Var (x(g+1))
Var (x(g))

14 (11)

information about the variance tendency is provided: if Yy < 1 we can compensate an
increase of the variance, thus we could accelerate the convergence but with the risk
of inducing premature convergence and if ¥ > 1 we can compensate a decrease of
the variance, thus we can avoid premature convergence situations. The controlling
idea is to choose the parameter F such that the recombination applied in generation
g compensates the effect of the previous application of recombination and selection.
The idea of the parameter adaptation is to solve, with respect to F’:

2CR CR?
1+2FCR——— 4+ =¢ (12)
NP NP
Vi 1
Var(x(g))

Equation (12) can be solved with respect to F:

F:{@\/E if 7>0 (13)

Foin otherwise
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where 1 = NP (¢ — 1) +CR(2—CR) and Fp, is the minimal value for F. A suf-
ficient condition for increasing the population variance by recombination is that
F > \/1/NP, thus F,;, = \/1/NP should be used. An upper bound for F can
also be imposed as suggested by Storn, Price and Lampinen (2005) (Fipax = 2). By
solving Eq. (12) with respect to CR one obtains the following adaptation rule for
CR:

2 .
CR — —(NP><F2—1)+\/(NP><F2—1) —~NP(l—¢) if c>1 (14)
CRuin otherwise.

with CR,,;, = 0.01 <CR < 1.

5 Results and Discussion

In the inverse radiative transfer problem described before, the goal is the simulta-
neous estimation of the optical thickness, 7,, the single scattering albedo @, the
diffuse reflectives p; and p,, and the coefficients of the anisotropic scattering phase
function b,,, m = 1,2, ...,M*. Due to space limitation, the present contribution
will focus on the estimation of the phase functions represented by PF-1 and PF-
2, whose coefficients are listed in Tab. 2. Therefore, even though the other four
parameters are also estimated, only test cases with one set of exact values 7,=1.0,

®=0.5 and p;=p,=0.2 were considered.

Table 2: Phase function expansion coefficients [Chu, Clark and Churchill (1957)]
(m is the index of refraction of the particle relative to the surrounding media and ¢
is tD/A, D is the particle diameter and A is the wavelength of incident radiation).

Forward Scattering | Backward Scattering
Coefficient PF-1 (M=4) PF-2 (M=5)
m=1.4, a=1 m=oo, (=1
b 0.57024 -0.56524
by 0.56134 0.29783
b3 0.11297 0.08571
by 0.01002 0.01003
bs 0.00000 0.00063
be - 0.00000

For evaluating the methodology proposed in this work, some practical points should
be emphasized:
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* To compare the results obtained by the proposed methodology, the canoni-
cal DE algorithm is used with the following parameters: DE-1 {F'=0.5 and
CR =0.5}, DE-2 {F=0.5 and CR = 0.8} and DE-3 {F=0.8 and CR = 0.5}.
Parameters used in all algorithms tested: 10 individuals, 1000 generations
and DE/rand/1/bin strategy for the generation of potential candidates;

* To perform the SADE algorithm Y equal to 1 was adopted;

* Inall test cases it is also considered the following external illumination: A;=1
and A,=0;

* Finally, the stopping criterion for all the algorithms is associated to the dif-
ference between the best and the worst values of the objective function; this
difference should be smaller than 10~°. All the algorithms were executed 10
times to obtain the average values presented.

In order to examine the accuracy of the inverse methodology of analysis considered,
test cases with noise (6=0.02 in Eq. (8), i. e., corresponding to 5% error) or without
noise (0=0) have been studied.

Table 3 presents the results obtained by DE and SADE algorithms considering the
Phase Functions PF-1 and PF-2. In this table it is important to observe that, con-
sidering noiseless data, both DE and SADE were able to estimate the parameters
satisfactorily as shown by the values obtained for the objective function. However,
the SADE algorithm leads to a smaller number of objective function evaluations as
compared with the original DE algorithm (a reduction of 32%, 34% and 22% in the
number of objective function evaluations with respect to DE-1, DE-2 and DE-3,
respectively). Good estimates are obtained even when noise is taken into account.

Figure 3 presents the exit radiation intensities profiles at boundaries 7=0 and 7=7,
calculated with the radiative parameters estimated using the SADE algorithm with-
out noise (6=0), and with the exact radiative parameters shown in Tab. 3.

In theses figures it is possible to observe that the SADE algorithm is able to perform
satisfactorily at the boundaries 7=0 and t=t, for all cases considered without noise.
It is important to emphasize that similar behavior can also be observed when noise
is considered, however larger deviations with respect to the profiles obtained by
using the exact values of the parameters appear.

Table 4 presents the average errors obtained by DE and SADE algorithms consid-
ering the Phase Functions PF-1 and PF-2.

In this table is possible to observe that both the algorithms are able to estimate
satisfactorily the anisotropic scattering radiation phase function, albedo and optical
thickness. However, it is important to emphasize that the SADE algorithm leads to
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Table 3: Results obtained using the DE and SADE methods, where OF is the ob-
jective function value, Eq. (6), and N is the number of function evaluations.

M=4 (m=1.4, a=1) M=5 (m=so, a=1)
Error
%) Exact | DE-1 | DE-2 | DE-3 | SADE | Exact | DE-1 | DE-2 | DE-3 | SADE
. 0 L0 0.999 | 0.998 | 0.999 | 1.000 L0 0.999 | 0.999 | 0.999 | 0.999
5 0.978 | 1.019 | 0.987 | 0.986 1.000 | 0.994 | 0.994 | 0.992
® 0 05 0.499 | 0.4999 | 0.499 | 0.500 05 0.499 | 0.499 | 0.499 | 0.499
5 0.491 | 0.510 | 0.495 | 0.495 0.491 | 0.488 | 0.488 | 0.483
o 0 02 0.199 | 0.200 | 0.200 | 0.199 02 0.200 | 0.200 | 0.199 | 0.200
5 0.199 | 0.199 | 0.200 | 0.200 0.204 | 0.204 | 0.203 | 0.203
pz 0 02 0.195 | 0.199 | 0.210 | 0.199 02 0.198 | 0.198 | 0.199 | 0.199
5 0.224 | 0.230 | 0.182 | 0.198 0.220 | 0.214 | 0.201 | 0.194
by 0 0.570 0.570 | 0.560 | 0.570 | 0.570 0.565 -0.570 | -0.570 | -0.570 | -0.570
5 0.496 | 0.492 | 0.484 | 0.493 -0.621 | -0.666 | -0.666 | -0.666
by 0 0.561 0.561 | 0.558 | 0.561 | 0.561 0297 0.294 | 0.295 | 0.294 | 0.296
5 0.510 | 0.532 | 0.511 | 0.536 0.268 | 0.265 | 0.265 | 0.265
by 0 0112 0.111 | 0.110 | 0.111 | 0.113 0.085 0.084 | 0.084 | 0.084 | 0.084
5 0.093 | 0.099 | 0.102 | 0.104 0.077 | 0.088 | 0.093 | 0.079
by 0 0.010 0.009 | 0.010 | 0.010 | 0.009 0.010 0.009 | 0.009 | 0.009 | 0.009
5 0.008 | 0.012 | 0.010 | 0.009 0.011 | 0.011 | 0.011 | 0.011
bs 0 0.000 0.000 | 0.000 | 0.000 | 0.000 0.000 0.000 | 0.000 | 0.000 | 0.000
5 0.001 | 0.001 | 0.001 | 0.001 0.000 | 0.001 | 0.001 | 0.001
b 0 i - - - - 0.000 0.000 | 0.000 | 0.000 | 0.000
5 - - - - 0.000 | 0.001 | 0.001 | 0.001
OF 0 i 6E-10 | 2E-10 | 8E-10 | 4E-10 i 4E-10 | SE-10 | 4E-10 | 3E-10
5 1E-02 | 1E-02 | 1E-02 | 1E-02 1E-02 | 1E-02 | 1E-02 | 1E-02
N 0 i 2960 | 3050 | 2580 | 2010 i 2420 | 2880 | 2380 | 1920
5 1220 | 1660 | 1480 | 1060 1200 | 1680 | 1540 | 1100
Table 4: Average errors obtained using the DE and the SADE methods.
M=4 (m=14, a=1) M=5 (m=c, a=1)
Error DE-1 DE-2 DE-3 SADE DE-1 DE-2 DE-3 SADE
(%) (%) (%) (%) (%) (%) (%) (%) (%)
0 0.0743 | 0.1981 | 0.1353 | 0.0067 | 0.1267 | 0.1108 | 0.1081 | 0.0783
5 2.2508 | 2.0608 | 2.0407 | 1.4522 | 1.7072 | 1.7501 | 1.7657 | 1.6689
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Figure 3: Radiation intensities profiles at boundaries 7=0 and 7=7,.

a smaller error in all cases studied as compared with the canonical DE algorithm
(DE-1, DE-2 and DE-3).

Figure 4 shows the perturbation rate and crossover rate profiles obtained by using
the SADE algorithm for noiseless data.

6 Conclusions

In this work, the Self-Adaptive Differential Evolution (SADE) algorithm, which is
based on the concept of population diversity to dynamically updating the control
parameters, was applied to the simultaneous estimation of the anisotropic scattering
radiation phase function, single scattering albedo and optical thickness of an inverse
radiative transfer problem. The SADE has been found to be beneficial for adjust-
ing control parameters during the evolutionary process, specially when compared
with the standard Differential Evolution algorithm with fixed parameters. The main
characteristics of the proposed methodology are: dynamic updating of control pa-
rameters based on the diversity of the population and the easiness of incorporating
this strategy to other evolutionary strategies. This first characteristic avoided the
necessity of choosing these parameters and, as a consequence, the premature con-
vergence of the evolutionary process was not necessary. Finally, the results showed
that the methodology conveyed represents a promising alternative for dealing with
optimization problems. Further research work will be focused on the influence of
the parameter values required by SADE on the solution of others case studies.
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