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Numerical Solution of Dual Phase Lag Model of Bioheat
Transfer Using the General Boundary Element Method

Ewa Majchrzak1

Abstract: Heat transfer processes proceeding in domain of heating tissue are
discussed. The typical model of bioheat transfer bases, as a rule, on the well known
Pennes equation, this means the heat diffusion equation with additional terms cor-
responding to the perfusion and metabolic heat sources. Here, the other approach
basing on the dual-phase-lag equation (DPLE) is considered in which two time de-
lays τq, τT (phase lags) appear. The DPL equation contains a second order time
derivative and higher order mixed derivative in both time and space. This equa-
tion is supplemented by the adequate boundary and initial conditions. To solve the
problem the general boundary element method is adapted. The examples of com-
putations for 2D problem are presented in the final part of the paper. The efficiency
and exactness of the algorithm proposed are also discussed.
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1 Introduction

Heat transfer processes proceeding in the living tissues are described, as a rule,
by the well known Pennes equation (heat diffusion equation supplemented by the
source functions called the perfusion heat source and the metabolic heat source)
[Pennes (1948); Liu and Xu (2000); Majchrzak (1998); Erhart, Divo and Kassab
(2008)]. In the special cases e.g. tissue freezing, the additional source func-
tion appears [Comini and Del Giudice (1976); Majchrzak and Dziewonski (2000);
Mochnacki and Dziewonski (2004)]. The Pennes bioheat equation bases on the
classical Fourier’s law with its assumption of instantaneous thermal propagation.
Cattaneo and Vernotte [Cattaneo (1958); Vernotte (1958)] proposed a thermal wave
model with a relaxation time τq that is required for a heat flux to respond to the tem-
perature gradient and then the thermal wave propagates through the medium with
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a finite speed. Because the living tissues are highly nonhomogeneous and accu-
mulating energy to transfer to the nearest elements would take time, therefore the
Cattaneo-Vernotte equation in comparison with the Pennes one describes more ex-
actly the heat transfer proceeding in the biological tissue [Kaminski (1990); Özisik
and Tzou (1994); Tamma and Zhou (1998)]. Although the thermal wave model
takes into account the microscale response in time, the wave concept does not ex-
plain the microscale response in space. Additionally, the thermal wave model gives
sometimes unusual physical solutions. To consider the effect of microstructural
interactions in the fast transient process of heat transport, a phase lag τT for tem-
perature gradient is introduced. In this way the dual-phase lag heat conduction
model (DPLM) is considered in which two time delays τq, τT (phase lags) appear
[Özisik and Tzou (1994); Xu, Seffen and Lu (2008); Zhou, Chen and Zhang (2009);
Majchrzak, Mochnacki, Greer and Suchy (2009)].

In this work, the general boundary element method proposed by Liao [Liao (1997);
Liao (2002); Liao and Chwang (1999)] is extended and adapted to solve the dual-
phase lag equation. It should be pointed out that for the DPL equation the corre-
sponding fundamental solution is either unknown or very difficult to obtain. So,
the concept for solving the unsteady non-linear differential equation using a direct
boundary element approach based on homotopy analysis method is applied [Liao
(1997)]. To verify the algorithm proposed, the results of computations under the
assumption that τq = τT =0 have been compared with the 1st scheme of the BEM
[Brebbia, Telles and Wrobel (1984); Majchrzak (2001)], while in the final part of
the paper the examples of DPLM solutions are presented.

2 Bioheat transfer models

The general bioheat transfer equation is given as

c
∂ T (x, t)

∂ t
=−∇q(x, t)+Q(x, t) (1)

where c is the volumetric specific heat of tissue, q(x, t) is the heat flux, Q(x, t) is
the source term due to metabolism and blood perfusion, T is the temperature, x are
the spatial co-ordinates and t is the time.

Heat transfer in biological systems is usually described by the equation basing on
the classical Fourier law

q(x, t) =−λ∇T (x, t) (2)

where λ is the thermal conductivity of tissue and ∇T(x, t) is the temperature gradi-
ent.
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Introducing (2) into (1) one obtains the traditional Pennes bioheat transfer equation
(for constant λ ) [Pennes (1948)]

c
∂ T (x, t)

∂ t
= λ∇

2T (x, t)+Q(x, t) (3)

The source term Q(x, t) is as follows

Q(x, t) = GBcB[TB−T (x, t)]+Qm (4)

where GB is the blood perfusion rate, cB is the volumetric specific heat of blood,
TB is the blood temperature and Qm is the metabolic heat source. The Pennes equa-
tion constitutes, as yet, the most popular model of thermal processes proceeding
in domain of living tissue (e.g. [Torvi and Dale (1994); Liu and Xu (2000); Lv,
Deng and Liu (2005); Majchrzak and Mochnacki (2006); Erhart, Divo and Kassab
(2008)]).

Because the biological tissue is the material with particular nonhomogeneous in-
ner structure therefore the others, modified heat conduction equations, should be
taken into account. One of them is the Cattaneo-Vernotte model [Cattaneo (1958);
Vernotte (1958); Lu, Liu and Zeng (1998)] with corresponding equation

q(x,τq) =−λ∇T (x, t) (5)

where τq = a/C2 is defined as the relaxation time, a = λ /c is the thermal diffussivity
of tissue and C is the speed of thermal wave in the medium.

According to this equation τq is the phase-lag in establishing the heat flux and
associated conduction through the medium.

Taking into account the first order Taylor expansion for q

q(x, t)+ τq
∂ q(x, t)

∂ t
=−λ∇T (x, t) (6)

one obtains the Cattaneo-Vernotte equation in the following form

c
[

∂ T (x, t)
∂ t

+ τq
∂ 2T (x, t)

∂ t2

]
= λ∇

2T (x, t)+Q(x, t)+ τq
∂ Q(x, t)

∂ t
(7)

According to the newest publications, e.g. [Xu, Seffen and Lu (2008); Zhou, Chen
and Zhang (2009)] the heat transfer in biological tissues should be described by
dual-phase-lag model basing on the assumption that

q(x, t + τq) =−λ∇T (x, t + τT ) (8)
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where τq is the relaxation time, τT is the thermalization time, τq is the phase-lag in
establishing the heat flux and associated conduction through the medium, τT is the
phase-lag in establishing the temperature gradient across the medium during which
conduction occurs through its small-scale structures [Xu, Seffen and Lu (2008)].

Taking into account the first order Taylor expansions for q and T

q(x, t)+ τq
∂ q(x, t)

∂ t
=−λ∇T (x, t)−λτT

∂ ∇T (x, t)
∂ t

(9)

one obtains the following form of bioheat transfer equation

c
[

∂ T (x, t)
∂ t

+ τq
∂ 2T (x, t)

∂ t2

]
= λ∇

2T (x, t)+λτT
∂ ∇2T (x, t)

∂ t
+Q(x, t)+τq

∂ Q(x, t)
∂ t

(10)

It should be pointed out that for τT =0 the dual-phase-lag (DPL) equation (10) re-
duces to the Cattaneo-Vernotte equation (7), while for τq = τT =0 reduces to the
Pennes one (3).

3 General boundary element method for DPL equation

From the mathematical point of view the Pennes equation (3) is the parabolic one,
the Cattaneo-Vernotte equation (7) is the hyperbolic one, while the DPL equation
(10) contains a second order time derivative and higher order mixed derivative in
both time and space.

To solve the Pennes equation by means of the boundary element method the several
variants basing on a time marching technique have been applied, this means the 1st
scheme of the BEM e.g. [Majchrzak (1998); Majchrzak and Dziewonski (2000);
Majchrzak and Jasinski (2003); Mochnacki and Majchrzak (2003)], the BEM using
discretization in time e.g. [Majchrzak and Kaluza (2006)] and the dual reciprocity
BEM [Liu and Xu (2000); Zhou, Zhang and Chen (2008); Erhart, Divo and Kassab
(2008)]. The other approaches can be also taken into account e.g. [Sladek, Sladek
and Atluri (2004); Sladek, Sladek, Tan and Atluri (2008)].

Application of the traditional BEM for solving the Cattaneo-Vernotte equation (7)
or DPL equation (10) is more complicated. The fundamental solution is difficult
to obtain, thus the equivalent boundary integral equation is not available. It should
be pointed out that in literature [Lu, Liu and Zeng (1998)] one can find the solu-
tions of Cattaneo-Vernotte equation obtained by means of the DRBEM but the DPL
equation, up to the present, is not solved using the BEM.
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In this work, the general boundary element method (GBEM) for hyperbolic heat
conduction equation proposed by Liao [Liao (1997); Liao (2002)] is adapted to
solve the dual-phase lag equation.

Taking into account the form (4) of source function the equation (10) can be ex-
pressed as follows (2D problem is considered)

(x,y)∈Ω : c
(

∂ T
∂ t

+ τq
∂ 2 T
∂ t2

)
= λ∇

2T +λτT
∂

∂ t
(∇2T )+k(TB−T )+Qm−kτq

∂ T
∂ t

(11)

where k = GBcB and T = T (x, y, t).
This equation is supplemented by the boundary conditions

(x,y) ∈ Γ1 : T (x,y, t) = Tb(x,y, t) (x,y) ∈ Γ2 : qn(x,y, t) = qb(x,y, t) (12)

and initial ones

t = 0 : T (x,y, t) = Tp,
∂ T (x,y, t)

∂ t

∣∣∣∣
t=0

= 0 (13)

where Tb(x, y, t) is known boundary temperature, qb(x, y, t) is known boundary
heat flux and Tp is the initial tissue temperature.

DPL model requires the adequate transformation of boundary conditions which
appear in the typical macro heat conduction models. In the case considered one has
(c.f. equation (9))

(x,y) ∈ Γ2 : qb(x,y, t)+ τq
∂ qb(x,y,t)

∂ t =
−λ

[
∂ T (x,y,t)

∂ n + τT
∂

∂ t

(
∂ T (x,y,t)

∂ n

)] (14)

where n is the normal outward vector and ∂ (·)/∂n is the normal derivative.

Let β =1/∆t and T f = T (x, y, f ∆t), where ∆t is the time step. Then, for time
t f = f ∆t ( f ≥ 2) the following approximate form of equation (11) can be taken
into account

c [β (T f −T f−1)+ τqβ
2(T f −2T f−1 +T f−2)] = λ∇

2T f

+λτT β (∇2T f −∇
2T f−1)+ k(TB−T f )+Qm− kτqβ (T f −T f−1) (15)

or

∇
2T f −BT f +C∇

2T f−1 +DT f−1 +ET f−2 +F = 0 (16)
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where

B =
(cβ + k)(1+ τqβ )

λ (1+ τT β )

C =− τT β

1+ τT β

D =
cβ (1+2τqβ )+ kτqβ

λ (1+ τT β )

E =−
cτqβ 2

λ (1+ τT β )
F = kTb +Qm

(17)

The boundary conditions take a form

(x,y) ∈ Γ1 : T (x,y, t f ) = Tb(x,y, t f ) (18)

and (c.f. equation (14))

(x,y) ∈ Γ2 : qb(x,y, t f )+ τ q
∂ qb(x,y, t)

∂ t

∣∣∣∣
t=t f

=

−λ

[
∂ T (x,y, t f )

∂ n
+

τT

∆t

(
∂ T (x,y, t f )

∂ n
− ∂ T (x,y, t f−1)

∂ n

)]
(19)

or

(x,y) ∈ Γ2 : −λ
∂ T (x,y, t f )

∂ n
= wb(x,y, t f ) (20)

where

wb(x,y, t f ) =
∆t

∆t + τT

[
qb(x,y, t f )+ τq

∂ qb(x,y, t)
∂ t

∣∣∣∣
t=t f

]
− τT

∆t + τT
λ

∂ T (x,y, t f−1)
∂ n

(21)

From initial conditions (13) results that T 0 = T (x, y, 0)=Tp and
T 1 = T (x, y, ∆t) = Tp.

It should be pointed out that when the equations (16), (18), (20) are solved at the
f -th time step t f = f ∆t then the temperature distributions T f−1 at time t f−1 and
T f−2 at time t f−2 are known.
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At first, a family of partial differential equations for Φ(x, y; p) is constructed [Liao
(1997); Liao (2002); Liao and Chwang (1999)]

(1− p)L[Φ(x,y; p)−U(x,y)] =−pA[Φ(x,y; p)] (22)

with boundary conditions

(x,y) ∈ Γ1 : Φ(x,y; p) = pTb(x,y, t f )+(1− p) U(x,y)

(x,y) ∈ Γ2 : −λ
∂ Φ(x,y; p)

∂ n
= pwb(x,y, t f )+(1− p)

[
−λ

∂ U(x,y)
∂ n

] (23)

where p ∈[0, 1] is an parameter, U(x, y) is an initial approximation of temperature
distribution T f , L is an 2D linear operator whose fundamental solution is known
and A is an non-linear operator.

The linear operator is the following

L(u) = ∇
2u−Bu =

∂ 2u
∂ x2 +

∂ 2u
∂ y2 −Bu (24)

while the non-linear operator takes a form (c.f. equation (16))

A[Φ(x,y; p)] = ∇
2
Φ−BΦ+C∇

2T f−1 +DT f−1 +ET f−2 +F (25)

For p =0 one obtains (c.f. equation (22))

L[Φ(x,y;0)−U(x,y)] = 0 (26)

this means

L[Φ(x,y;0)] = L[U(x,y)] (27)

and (c.f. conditions (23))

(x,y) ∈ Γ1 :Φ(x,y;0) = U(x,y)

(x,y) ∈ Γ2 :−λ
∂ Φ(x,y;0)

∂ n
=−λ

∂ U(x,y)
∂ n

(28)

The solution of (27), (28) is obvious

Φ(x,y;0) = U(x,y) (29)

On the other hand, for p=1 one has

A[Φ(x,y;1)] = 0 (30)
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and

(x,y) ∈ Γ1 :Φ(x,y;1) = Tb(x,y, t f )

(x,y) ∈ Γ2 :−λ
∂ Φ(x,y;1)

∂ n
= wb(x,y, t f )

(31)

Taking into account the form of operator A (equation (25)) it is visible that

Φ(x,y;1) = T f = T (x,y, t f ) (32)

Thus, if p=0 then Φ(x, y; p) corresponds to the initial approximation U(x, y), while
if p=1 then Φ(x, y; p) corresponds to the unknown temperature T f = T (x, y, t f ).
So, the equations (22), (23) form a family of equations in parameter p ∈[0, 1] and
the process of continuous change of the parameter p from 0 to 1 is the process of
continuous variation of solution Φ(x, y; p) from U(x, y) to T f = T (x, y, t f ).
Function Φ(x, y; p) is expanded into a Taylor series about value p=0 taking into
account the first derivative

Φ(x,y; p) = Φ(x,y;0)+
∂ Φ(x,y; p)

∂ p

∣∣∣∣
p=0

(p−0) (33)

or

Φ(x,y; p) = Φ(x,y;0)+U [1](x,y)p (34)

where

U [1](x,y) =
∂ Φ(x,y; p)

∂ p

∣∣∣∣
p=0

(35)

For p=1 one obtains

Φ(x,y;1) = Φ(x,y;0)+U [1](x,y) (36)

this means

T f = U(x,y)+U [1](x,y) (37)

Under the assumption that U(x, y) = T f−1 one has

T f = T f−1 +U [1](x,y) (38)
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Liao and Chwang [Liao and Chwang (1999)]] report that better than initial approx-
imation U(x, y) = T f−1 is to use the iterative formula

T f
k = T f

k−1 +mU [1](x,y), k = 1,2,3, ...,K (39)

where T f
0 = T f−1, m is an iterative parameter and K is the number of iterations.

Differentiation of equations (22), (23) with respect to parameter p gives

−L[Φ(x,y; p)−U(x,y)]+(1− p)L
[

∂ Φ(x,y; p)
∂ p

− ∂ U(x,y)
∂ p

]
=

−A[Φ(x,y; p)]− p
∂ A[Φ(x,y; p)]

∂ p
(40)

and

(x,y) ∈ Γ1 :
∂ Φ(x,y; p)

∂ p
= Tb(x,y, t f )+ p

∂ Tb(x,y, t f )
∂ p

−U(x,y)+(1− p)
∂ U(x,y)

∂ p

(x,y) ∈ Γ2 :−λ
∂

∂ n

(
∂ Φ(x,y; p)

∂ p

)
= wb(x,y, t f )+ p

∂ wb(x,y, t f )
∂ p

+λ
∂ U(x,y)

∂ n

− (1− p)λ
∂

∂ n

[
∂ U(x,y)

∂ p

]
(41)

For p=0 one has

L[U [1](x,y)] =−A[U(x,y)] (42)

and

(x,y) ∈ Γ1 : U [1](x,y) = Tb(x,y, t f )−U(x,y)

(x,y) ∈ Γ2 : −λ

(
∂ U [1](x,y)

∂ n

)
= wb(x,y, t f )+λ

∂ U(x,y)
∂ n

(43)

Taking into account the form of operators L and A (equations (24), (25)) the equa-
tion (42) can be written as follows

∇
2U [1]−BU [1] +R(U) = 0 (44)

where

R(U) = ∇
2U−BU +C∇

2T f−1 +DT f−1 +ET f−2 +F (45)
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To solve the equation (44) supplemented by boundary conditions (43) the tradi-
tional BEM for steady-state problem [Brebbia, Telles and Wrobel (1984)] can be
applied.

So, the boundary integral equation corresponding to the equation (44) has the fol-
lowing form

B(ξ ,η)U [1](ξ ,η)−
∫
Γ

U∗(ξ ,η ,x,y)
∂ U [1](x,y)

∂ n
dΓ =

−
∫
Γ

∂ U∗(ξ ,η ,x,y)
∂ n

U [1](x,y)dΓ+
∫∫
Ω

R(U)U∗(ξ ,η ,x,y)dΩ (46)

where (ξ , η) is the observation point, B(ξ , η) ∈(0, 1] is the coefficient dependent
on the location of point (ξ , η), U∗(ξ , η , x, y) is the fundamental solution

U∗ =
1

2π
K0(r
√

B) (47)

where K0(·) is the modified Bessel function of the second kind of order zero and r
is the distance between source point (ξ , η) and field point (x, y).
The equation (46) can be written in the form

B(ξ ,η)U [1](ξ ,η)+
1
λ

∫
Γ

U∗(ξ ,η ,x,y) W [1](x,y)dΓ =

1
λ

∫
Γ

W ∗(ξ ,η ,x,y) U [1](x,y)dΓ+
∫∫
Ω

R(U)U∗(ξ ,η ,x,y)dΩ (48)

where

W [1](x,y) =−λ
∂ U [1](x,y)

∂ n
W ∗(ξ ,η ,x,y) =−λ

∂ U∗(ξ ,η ,x,y)
∂ n

(49)

Function W ∗(ξ , η , x, y) can be calculated in analytical way and then

W ∗(ξ ,η ,x,y) =
λd
√

B
2π r

K1(r
√

B) (50)

where K1(·) is the modified Bessel function of the second kind of order one and

d = (x−ξ )cosα +(y−η)cosβ (51)
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while cosα , cosβ are directional cosines of normal vector n.

In numerical realization of BEM the boundary Γ is divided into N boundary ele-
ments, while the interior Ω is divided into L internal cells. For constant boundary
elements and constant internal cells one obtains the following approximation of
equation (48)

N

∑
j=1

Gi jW
[1]
j =

N

∑
j=1

Hi jU
[1]
j +

L

∑
j=1

Pi lR(Ul) (52)

where

Gi j =
1
λ

∫
Γ j

U∗(ξi,ηi,x,y)dΓ j (53)

and

Hi j =


∫
Γ j

W ∗(ξi,ηi,x,y)dΓ j, i 6= j

−0.5, i = j
(54)

while

Pi l =
∫∫
Ωl

U∗(ξi,ηi,x,y)dΓl (55)

Introducing the boundary conditions (43) into the linear algebraic equations (52)
one obtains the equations for the unknown W [1] on the boundary Γ1 and unknown
U [1] on the boundary Γ2. After solving the system of equations (52), the values U [1]

at the internal points (ξi, ηi) are calculated using the formula

U [1]
i =

N

∑
j=1

Hi jU
[1]
j −

N

∑
j=1

Gi jW
[1]
j +

L

∑
j=1

Pi lR(Ul) (56)

Summing up, numerical solution of DPL equation by means of the GBEM is con-
nected with the determination of function U [1] and next for transition t f−1 → t f

the temperature T f is calculated using the iterative formula (39). It should be
pointed out that for each iteration the problem described by equation (44) and
boundary conditions (43) should be solved and then in the place of function U
(c.f. equation (45)) the value T f

k−1 is introduced.
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4 Results of computations

The biological tissue domain of dimensions 0.02m×0.02m (square) is considered.
The following values of parameters are assumed: volumetric specific heat of tis-
sue c =3 MW/(m3K), thermal conductivity of tissue λ=0.5W/(mK), blood perfu-
sion rate GB=0.002 1/s, volumetric specific heat of blood cB=3.9962 MW/(m3K),
blood temperature TB=37oC, metabolic heat source Qm=245 W/m3, relaxation time
τq=15s, thermalization time τT =10s. Initial temperature of tissue equals Tp=37oC.

Along the boundary Γ1 (0≤ x ≤0.02m, y=0 - c.f. Figure 1) the Dirichlet condition
Tb=37oC is assumed, on the external surface of tissue (Γ2: 0≤ x ≤0.02m, y=0.02m)
the Neumann condition in the form

qb(x,0.02, t) = q0
t
te

(
1− t

te

)
exp
(
− x2

d2

)
(57)

is accepted (Figure 2), where q0=20 kW/m2 is the maximum heat flux, te=20s is
the exposure time and d=0.01m. On the remaining boundaries (Γ3) the no-flux
condition is assumed.

 
Figure 1: Boundary conditions and discretization

The problem is solved by means of the GBEM. At first, for transition t f−1 → t f

( f ≥2) the equation (44) with corresponding boundary conditions (c.f. equations
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Figure 2: Boundary heat flux

(43), (21))

(x,y) ∈ Γ1 : U [1](x,y) = 0

(x,y) ∈ Γ2 : −λ
∂ U [1](x,y)

∂ y
=

∆ t
∆ t + τT

·q0

[
t f

te

(
1− t f

te

)
+

τq

te

(
1− 2t f

te

)]
exp
(
− x2

d2

)
− τT

∆ t + τT
λ

∂ T f−1

∂ y
+λ

∂ U(x,y)
∂ y

(x,y) ∈ Γ3 : −λ
∂ U [1](x,y)

∂ n
=− τT

∆ t + τT
λ

∂ T f−1

∂ n
+λ

∂ U(x,y)
∂ n

(58)

is considered. In formulas (58) U(x, y) = T f
k−1 (T f

0 = T f−1, of course), where k
is the number of iteration (c.f. equation (39)). Next, for iteration k this problem is
solved by traditional BEM under the assumption that the time step equals ∆t=1s,
number of constant boundary elements N=40, number of internal cells L=100 (Fig-
ure 1) and iterative parameter m=0.9. For each iteration k the error of numerical
solution is calculated (c.f. equation (44))

Erk =

√
1
L2

L

∑
l=1

[
∇2U [1]

l −BU [1]
l +R(Ul)

]2

k
(59)

If Erk ≤10−4 then the values U [1](xl , yl) at the internal nodes (xl , yl), l = N+1, ...,
N +L are accepted and the temperatures T f = T (xl , yl , t f ) = T f

k (c.f. equation (39))
constitute the pseudo-initial condition for the next transition t f → t f +1.
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Figure 3: Temperature distribution for time 20, 30 and 60 s - DPL equation (left-
hand side), Pennes equation (right-hand side)
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Figure 4: Comparison of DPL and Pennes models - temperature history at points A
and B

On the left-hand side of Figure 3 the temperature distribution for times 20, 30 and
60 s for DPL model is shown, while on the right-hand side the temperature distri-
bution obtained by means of the Pennes model (τq = τT =0) is presented. Figure 4
illustrates the temperature history at the points A and B marked in Figure 1 both
for the DPL equation as well as the Pennes one. The differences between these so-
lutions are visible, and in the case of Pennes equation application the temperatures
are greater in comparison with the DPL equation.

The computations have been also done for others time steps, for example ∆t=0.5s
and ∆t=1.5s, respectively, and also for other number of boundary elements (N=80).
It turned out that the number of iterations assuring the assumed exactness increases
when the size of time step is reduced and decreases when the number of boundary
elements increases. Very important is also the proper choice of iteration parameter
m. In the case considered the optimum value of this parameter is about 0.9.

To verify the algorithm proposed the results obtained using the GBEM have been
compared with the results obtained by means of the 1st scheme of the BEM [Breb-
bia, Telles and Wrobel (1984); Majchrzak (2001)] and that the differences between
these solutions were very small. This comparison is possible only in case when
τq = τT = 0, of course.
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5 Conclusions

The general boundary element method is adapted to solve the DPL equation sup-
plemented by the Dirichlet and Neumann boundary conditions. In this method the
solution obtained for time t f−1 is a starting point to get the solution for the time t f .
For each transition t f−1→ t f the 1st-order deformation derivative U [1](x, y) is de-
termined from linear equation which can be solved by the traditional BEM and next
the temperature T f is calculated using the iterative procedure. The exactness of the
method proposed is connected with the proper choice of time step ∆t, discretization
of the domain considered and the value of iterative parameter m.
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