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MLPG Application of Nanofluid Flow Mixed Convection
Heat Transfer in a Wavy Wall Cavity

A. Arefmanesh1, M. Najafi2 and M. Nikfar3

Abstract: Procuring a numerical solution through an application of the meshless
local Petrov-Galerkin method (MLPG) on the fluid flow and mixed convection in a
complex geometry cavity filled with a nanofluid is the scope of the present study.
The cavity considered is a square enclosure having a lower temperature sliding
lid at the top, a differentially higher temperature wavy wall at the bottom, and two
thermally insulated walls on the sides. The nanofluid medium used is a water-based
nanofluid, Al2O3-water with various volume fractions of its solid. To carry out the
numerical simulations, the developed governing equations are determined in terms
of the stream function-vorticity formulation. The weighting function in the weak
formulation of the governing equations is taken as unity, and the field variables are
approximated using the MLS interpolation. Capability as well as adaptability of
the proposed meshless technique is ascertained by close comparisons of the illus-
trated results obtained through the mesh-free method with those obtained through
a traditional method already existing in the literature. Effective viscosity and ther-
mal conductivity of the solid-liquid mixture are determined using the Brinkman
and Maxwell models, respectively. A parametric study conducted through the
present method to gain insight into the nanofluid convective heat transfer perfor-
mance shows rational and deducible results. The study reveals that, distributions
of the local Nusselt number along the wavy hot wall closely follow the pattern of
the wall’s geometry for different Richardson numbers and the nanoparticles volume
fractions considered.
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Nomenclature

cp specific heat
Pr Prandtl number
g gravitational acceleration
Re Reynolds number
Gr Grashof number
Ri Richardson number
H cavity height
S collection of nodal points
h heat transfer coefficient
t−n coordinates
k thermal conductivity
T temperature
L cavity width
U,V dimensionless velocity components
N MLS interpolation function
x Cartesian coordinates vector
n normal vector
x-y Cartesian coordinates
nk number of interpolation nodes
X−Y dimensionless Cartesian coordinates
Nu Nusselt number
W test function

Greek Symbols

α thermal diffusivity
Ω dimensionless vorticity
β thermal expansion coefficient
ΩI control volume
Γ boundary
ω vorticity
Γh,ΓI boundary segment
Ψ dimensionless stream function
µ dynamic viscosity
Φ stream function
ν kinematic viscosity
θ dimensionless temperature
ρ density
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ϕ nanoparticles volume fraction
Ω domain

Subscripts

c cold
in inside
eff effective
l cavity lid
f base fluid
nf nanofluid
h hot
s solid particle
I point or control volume number
w wall

Superscripts

ˆ nodal value
– approximation, average

1 Introduction

As a remedy to overcome the complexities regarding the mesh generation in con-
ventional numerical techniques, the finite volume and finite element methods, some
different mesh-free approaches have been introduced [Atluri and shen (2002); Liu
(2003); Atluri (2004)]. In the earlier mesh-free techniques [Nayroles, Touzot and
Villon (1992); Belytschko, Krongauz, Organ, Flemming and Krysl (1996); Lu, Be-
lytschko and Gu (1994); Zhu and Atluri (1998)], an auxiliary grid was required
to evaluate the integrals resulting from applying the Galerkin method to the differ-
ential equations. Hence, these methods could not be considered totally meshless.
Subsequently, two truly meshless techniques- the meshless local boundary equa-
tion (MLBE) method, and the meshless local Petrov-Galerkin (MLPG) method-
were proposed by Zhu, Zhang and Atluri [1998], and Atluri and Zhu [1998, 2000],
respectively. To obtain the discretized equations in the latter scheme, the shape
functions from the moving least squares (MLS) interpolations were employed in
a local weak form of the differential equations over a local sub-domain. Atluri’s
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book [2004] presents a recent comprehensive review of the MLPG methods with
emphasis on the solid mechanics applications.

Many efforts have been made to implement the MLPG method on the fluid flow
and convection heat transfer analysis. Lin and Atluri [2000, 2001] applied the
newly-developed MLPG method to the solutions of the convection-diffusion and
the Navier-Stokes (N-S) equations. They modified the local weak forms to over-
come the so-called Babuska-Brezzi conditions while solving the primitive variables
from of the N-S equations. Moreover, they presented different upwinding scheme
in order to obtain stabilized solutions under high Peclet (Pe) and Reynolds (Re)
numbers. Liu [2003] investigated the performance of the MLPG method for sim-
ulating the buoyancy-driven heat transfer in a differentially-heated square cavity
filled with air for Rayleigh numbers up to 105. His results showed that the MLPG
method is more accurate than the finite difference method (FDM) using the same
uniform nodal distributions. Arefmanesh, Najafi and Abdi [2005] applied a varia-
tion of the MLPG method with unity as the test function to the convection-diffusion
and the potential flow equations. Comparisons of their results with the analytical
solution for the convection-diffusion equation in a square domain demonstrated the
high accuracy of their proposed method.

Arefmanesh, Najafi and Abdi [2008] used a variation of the MLPG method with
unity test function to solve a number of non-isothermal fluid flow problems. They
employed the stream function-vorticity formulation to solve different test cases
such as a non-isothermal lid-driven cavity flow with an inlet and an outlet. Haji Mo-
hammadi [2008] applied the MLPG method to simulate the incompressible viscous
fluid flow. He formulated his considered cases in terms of the stream function-
vorticity, and employed the radial basis function interpolations in his approach.
Through introducing a new upwinding scheme, he obtained stabilized solutions
for a square lid-driven cavity flow for Reynolds numbers up to 104. Dehghan and
Mirzaei [2009] used the MLPG method for the unsteady magnetohydrodynamic
flow through a pipe of rectangular cross section. They approximated the field vari-
ables by the MLS scheme, and employed unity as the test function in the local
weak form. They concluded that the employed MLPG method was quite efficient
and more flexible compared to the boundary element method. In another recent
work, Avila and Atluri [2009] solved the unsteady two-dimensional N-S equations
written in terms of the primitive variables using the MLPG method coupled with a
fully implicit pressure correction approach. They solved the transient laminar flow
field in a domain wherein certain surfaces had, a sliding motion, a harmonic mo-
tion, and an undulatory movement. They concluded in their work that the MLPG
method coupled with a fully implicit pressure-correction algorithm was a viable al-
ternative for the solution of fluid flow problems, particularly for those characterized
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by non-steady fluid motion around flexible bodies with undulatory or contraction-
expansion types of movements. Very recently, Wu, Tao, Shen and Zhu [2010]
extended the MLPG method to solve the incompressible fluid flow problems using
the primitive variables approach. They employed the streamline upwind Petrov-
Galerkin (SUPG) method to obtain stabilized solution in convection-dominated
problems, and applied the pressure-stabilizing Petrov-Galerkin method to satisfy
the Babuska-Brezzi conditions. Their results showed that the method was stable,
and resulted in converged solutions at high Reynolds numbers. Finally, in another
study by Arefmanesh, Najafi and Nikfar [2010], the MLPG method was extended
to investigate natural convection heat transfer in cavities with differentially-heated
wavy side walls. Using the stream function-vorticity formulation and MLS in-
terpolations, the analysis focused on the effects of the dimensionless amplitudes,
wall’s number of undulations, and Rayleigh number on the natural convection heat
transfer within the considered enclosures. Their results showed a total validity and
feasibility of the implemented code.

As far as using nanofluids in mixed convection analysis is concerned, only conven-
tional methods, and nothing in application of mesh-free methods are reported. The
behavior of nanofluids inside a two-sided lid-driven differentially-heated square
cavity was investigated using the finite volume approach by Tiwari and Das [2007].
Copper-water nanofluid was used, and a model was developed to analyze the nanofluid
behavior taking into account the solid volume fraction. The study concluded that
both the Richardson number and the direction of the moving walls affect the fluid
flow and heat transfer in the cavity. Ghasemi and Aminossadati [2010] studied
mixed convection in a lid-driven triangular enclosure filled with an Al2O3-water
nanofluid. Two different cases of upward and downward left sliding wall were
considered. In their study, the power law profile approximation and the SIMPLE
algorithm were used. The effects of the Richardson number, solid volume fraction,
and direction of the sliding wall motion on the fluid flow, temperature fields, and
heat transfer rate were examined. The results showed that the addition of Al2O3
nanoparticles enhanced the heat transfer rate for all values of the Richardson num-
ber, and for each direction of the sliding wall motion. A numerical investigation
of laminar mixed convection using a Copper-water nanofluid in a square lid-driven
cavity was executed by Talebi, Mahmoudi and Shahi [2010]. The conventional fi-
nite volume approach was used in this study. The horizontally moving top lid was
insulated while the vertical walls were kept at constant, but different temperatures.
The thermal conductivity and effective viscosity of the nanofluid were calculated
using the Patel and Brinkman models, respectively. The study was carried out for
Ra = 104-106, Re = 1-100, and for a range of the solid volume fraction from 0 to
0.05. The study showed that at a fixed Reynolds number, the solid concentration



96 Copyright © 2010 Tech Science Press CMES, vol.69, no.2, pp.91-117, 2010

affects the flow pattern and the thermal behavior of the nanofluid. The finite vol-
ume method using the SIMPLE algorithm was employed by Shahi, Mahmoudi and
Talebi [2010] to solve the governing equations in another mixed convection heat
transfer through a copper-water nanofluid. A square cavity with an inlet and an
outlet ports was considered for which the convection effect was attained by heat-
ing from a constant flux heat source located at the bottom wall, and cooling from
the injected flow. The Patel and Brinkman models were utilized to calculate the
thermal conductivity and effective viscosity of the nanofluid, respectively. They
concluded in this work that an increase in solid concentration leads to increase the
average Nusselt number at the heat source surface and to decrease the average bulk
temperature.

Among other recent works on mixed convection using nanofluids, is a study by
Mansour, Mohamed, Abd-Elaziz and Ahmed [2010]. The heat transfer in a square
lid-driven cavity partially heated from below, and filled with water and various vol-
ume fractions of Cu, Ag, Al2O3, and TiO2 was investigated using the finite differ-
ence method. The effects of the Reynolds number, solid volume fraction, different
values of the heat source length, and locations of the heat source on the stream-
lines and isotherms contours, and the local and average Nusselt numbers along the
heat source were considered. The study concluded that increasing the solid volume
fraction leads to decreasing both the activity of the fluid motion, and the fluid tem-
perature. Also, an increase in the length of the heat source leads to an increase in
the flow intensity and fluid temperature, but a decrease in the corresponding aver-
age Nusselt number. Muthtamilselvan, Kandaswamy and Lee [2010] conducted a
study to investigate the transport mechanism of mixed convection in a lid-driven
enclosure filled with Copper-water nanofluid (Pr = 6.2). For the enclosure, the
two vertical walls were insulated while the horizontal walls were kept at constant
temperatures with the top surface moving at a constant speed. The finite volume
method with a staggered grid arrangement and the SIMPLE algorithm were em-
ployed to solve the governing equations. The study concluded that both the aspect
ratio and solid volume fraction affected the fluid flow and heat transfer in the en-
closure. Also, the variation of the average Nusselt number was found to be linear
with the solid volume fraction.

Lattice Boltzmann Method was applied to investigate the mixed convection flows
utilizing nanofluids (Cu, CuO or Al2O3 with water) in a lid-driven cavity by Ne-
mati, Farhadi, Sedighi, Fattahi and Darzi [2010]. The effective thermal conductiv-
ity and viscosity of the nanofluids were calculated by Chon and Brinkman models,
respectively. The results of this study indicated that the effects of the solid vol-
ume fraction grow stronger sequentially for Al2O3, CuO and Cu. Also, the study
showed that an increase of the Reynolds number leads to a decrease of the solid



MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer 97

concentration effect. Abu-Nada and Chamkha [2010] applied a second order ac-
curate finite volume method to study a steady laminar mixed convection flow in
a lid-driven inclined square enclosure filled with Al2O3-water nanofluid. The left
and right walls of the enclosure were insulated while the bottom and top walls were
maintained at constant temperatures with the hot top surface moving at a constant
speed. The study found that significant heat transfer enhancement can be obtained
due to the presence of nanoparticles, and that this can be accentuated by inclination
of the cavity at moderate and high Richardson numbers.

A literature scan reveals that the MLPG method is yet to be extended to analyze
the mixed convection heat transfer through nanofluids. The present study focuses
on acquiring a numerical solution through implementation of the MLPG method
on a two-dimensional laminar mixed convection heat transfer using a nanofluid
within a lid-driven wavy wall cavity. The study embraces analysis of some pertinent
parameters on the heat transfer characteristics and fluid flow mechanisms of the
utilized nanofluid within the enclosure.

2 Problem Formulation

Mixed convection fluid flow and heat transfer within a lid-driven square cavity with
a wavy bottom wall is simulated numerically using the MLPG method. As depicted
in Fig. 1, the height and the width of the cavity are denoted H and L, respectively,
with H = L. The left and the right walls of the cavity are insulated while the bottom
wall of the enclosure, which is a wavy wall, is maintained at a constant temperature
Th, here referred to as “hot” temperature. The enclosure’s top wall, which moves
in its own plane from left to right with a constant speed ul , is kept at a constant
temperature Tc , here referred to as “cold” temperature, with a differential tem-
perature difference between Th and Tc, so that Th > Tc. The cavity is filled with
a nanofluid composed of a mixture of water and Al2O3 spherical nanoparticles.
The nanoparticles are presumed to be in thermal equilibrium with the base fluid,
water. Moreover, there is no slip between the nanoparticles and the base fluid.
The thermophysical properties of the base fluid and the nanoparticles are presented
in Table 1. The nanofluid properties are assumed to be constant with the excep-
tion of the density which varies according to the Boussinesq approximation [Bejan
(2004)]. The geometry of the wavy surface analyzed in this study is described by
y = 0.025(1− cos(6x)), where x and y here are the Cartesian coordinates as shown
in Fig. 1.

The steady-state fluid flow and heat transfer in the cavity are governed by the con-
tinuity, momentum, and energy equations. The natural convection term is incor-
porated in the momentum equation by employing the Bousinesq approximation
[Bejan (2004)]. In this study, the two-dimensional fluid flow problem is formulated
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Figure 1: Lid-driven differentially-heated cavity, domain, boundary conditions, and
a typical control volume

Table 1: Thermophysical properties of the base fluid and the nanoparticles [Ho,
Chen and Li (2008)]

Property Base fluid (water) Nanoparticle (Al2O3)
cp (J/kg K) 4179 765
ρ (kg/m3) 997.1 3600
β (1/K) 2.1×10−4 6.3×10−6

µ (kg/m s) 8.91×10−4 -
k (W/m K) 0.605 46
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in terms of the stream function and vorticity.

To cast the governing equations into a dimensionless form, the following dimen-
sionless variables are introduced:

X =
x
H

, Y =
y
H

U =
u
ul

, V =
v
ul

, θ =
T −Tc

Th−Tc
(1)

Ψ =
Φ

Hul
and Ω =

ωH
ul

.

where u and v are the velocity component in the x and y-directions, respectively, Ψ

is the stream function, and ω is the vorticity. Substituting the above dimensionless
variables into the stream function, vorticity, and energy equations results in the
following dimensionless form of the governing equations:

∂ 2Ψ

∂X2 +
∂ 2Ψ

∂Y 2 =−Ω, (2)

U
∂Ω

∂X
+V

∂Ω

∂Y
=

µe f f

ρn f ν f

1
Re

(
∂ 2Ω

∂X2 +
∂ 2Ω

∂Y 2

)
+

βn f

β f
Ri

∂θ

∂X
(3)

and

U
∂θ

∂X
+V

∂θ

∂Y
=

αn f

α f

1
Re Pr

(
∂ 2θ

∂X2 +
∂ 2θ

∂Y 2

)
, (4)

where ν f , β f , and α f are the kinematic viscosity, thermal expansion coefficient,
and thermal diffusivity of the base fluid, respectively. The subscripts nf and eff
in the above equations refer to the words “nanofluid” and “effective”, respectively.
The Reynolds number, Re, the Richardson number, Ri, and the Prandtl number, Pr,
are defined as

Re =
ulH
ν f

, Ri =
gβ f (Th−Tc)H

u2
l

, Pr =
ν f

α f
(5)

Moreover, the Grashof number Gr = Ri×Re2 is

Gr =
gβ f (Th−Tc)H3

ν f
2 (6)

The boundary conditions for the problem are specified and shown in Fig. 1. Writing
the boundary conditions in terms of the stream function is straightforward. To write
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the boundary condition for the vorticity, the following relation for the vorticity is
employed for each wall of the cavity [Arefmanesh, Najafi and Nikfar (2010)]:

Ωw =
2
4n2

(√
U2

w +V 2
w∆n+Ψw−Ψin

)
, (7)

where n denotes normal direction (t is the perpendicular direction to n) to the wall,
Uw and Vw are the components of the wall velocity in the X and Y -directions, re-
spectively, and Ψw and Ψin are the values of the dimensionless stream function at a
point inside the cavity next to the wall and on the wall, respectively.

2.1 Thermophysical Properties of the Nanofluid

The effective thermophysical properties of the nanofluid can be obtained from
various formulas available in the literature. According to the Brinkman model
[Brinkman (1952)], the effective viscosity of a dilute suspension of small rigid
spherical particles in a fluid is given by

µe f f =
µ f

(1−ϕ)2.5 , (8)

where µ f is the viscosity of the base fluid, and ϕ is the volume fraction of the
nanoparticles.

The density, ρn f , the heat capacity, (ρcp)n f , and the thermal expansion coefficient,
(ρβ )n f , of the nanofluid are obtained from the following formulas [Khanafer, Vafai
and Lightstone (2003)]:

ρn f = (1−ϕ)ρ f +ϕρs, (9a)

(ρcp)n f = (1−ϕ)(ρcp) f +ϕ(ρcp)s, (9b)

(ρβ )n f = (1−ϕ)(ρβ ) f +ϕ(ρβ )s. (9c)

The subscripts s and f in the above equations refer to the solid particles, and the
base fluid, respectively.

The effective thermal conductivity of the solid-liquid mixture, ke f f , is evaluated
from the Maxwell model [Khanafer, Vafai and Lightstone (2003)],

ke f f

k f
=

(ks +2k f )−2ϕ(k f − ks)
(ks +2k f )+ϕ(k f − ks)

, (10)

where k f , and ks are thermal conductivities of the base fluid and the nanoparticles,
respectively. Thermal diffusivity of the nanofluid is expressed as

αn f =
kn f

(ρcp)n f
. (11)
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The local Nusselt number based on the height of the cavity is evaluated from the
following relation:

Nu =
hn f H

k f
. (12)

The heat transfer coefficient, hn f , is obtained from

hn f =
q

(Th−Tc)
, (13)

where, the wall heat flux per unit area, q, can be written as

q =−kn f
(Th−Tc)

H
∂θ

∂n

∣∣∣∣
wall

. (14)

Substituting Eqs. (13) and (14) into Eq. (12) yields the following relation for the
local Nusselt number:

Nu =−
kn f

k f

∂θ

∂n

∣∣∣∣
wall

. (15)

3 Numerical Procedure

In the present study, the governing equations are solved numerically by the MLPG
method. To implement the method, an arbitrary collection of points is selected
in the computational domain (Fig. 1). Subsequently, a control volume is gener-
ated around each of the points. A typical rectangular control volume ΩI generated
around point I is shown in Fig. 1.

As a first step in developing the discretized equations for the control volume ΩI , the
weak forms of the governing equations are to be obtained. This is accomplished by
multiplying the stream function, vorticity, and energy equations by the test function
WI . Subsequently, the resulting equations are integrated over ΩI . After performing
the integration by parts, the weak forms of the stream function, vorticity, and energy
equations for the control volume ΩI are expressed, respectively, as:

−
∫

ΩI

∇WI.∇ΨdΩ+
∫

ΓI−ΓI
⋂

Γh

WI
∂Ψ

∂n
dΓ+

∫
ΓI
⋂

Γh

WI
∂Ψ

∂n
dΓ =−

∫
ΩI

WIΩdΩ, (16)

∫
ΩI

WI

(
U

∂Ω

∂X
+V

∂Ω

∂Y

)
dΩ =

−
µe f f

ρn f ν f

1
Re

∫
ΩI

∇W I.∇ΩdΩ+
µe f f

ρn f ν f

1
Re

∫
ΓI−ΓI

⋂
Γh

WI
∂Ω

∂n
dΓ

+
µe f f

ρn f ν f

1
Re

∫
ΓI
⋂

Γh

WI
∂Ω

∂n
dΓ+

βn f

β f
Ri
∫

ΩI

WI
∂θ

∂X
dΩ, (17)
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∫
ΩI

WI

(
U

∂θ

∂X
+V

∂θ

∂Y

)
dΩ =−

αn f

α f

1
Re Pr

∫
ΩI

∇W I.∇θdΩ

+
αn f

α f

1
Re Pr

∫
ΓI−ΓI

⋂
Γh

WI
∂θ

∂n
dΓ+

αn f

α f

1
Re Pr

∫
ΓI
⋂

Γh

WI
∂θ

∂n
dΓ (18)

where Γh is the portion of the domain boundary for which a natural boundary con-
dition is enforced. Here, ΓI is the boundary of the control volume ΩI , and ΓI

⋂
Γh

represents the intersection of ΓI with Γh.

Next, the integrals in Eqs. (16-18) are to be evaluated. The Gaussian quadrature is
employed for this purpose. To perform the numerical integrations, the control vol-
ume ΩI is divided into a number of sub-partitions (Fig. 1). The proper number of
the Gauss points for the surface and the contour integrations in each sub-domain are
selected. Subsequently, the field variables are approximated at each of the Gauss
points using the MLS interpolations. Considering Ωk as the interpolation domain
for a typical Gauss point k, and S j, j = 1(1) nk, as a collection of nk nodal points with
coordinates x j ∈ Ωk (whose influence domains cover the considered Gauss point),
the unknown stream function, vorticity, and temperature fields are approximated
within Ωk, respectively, [Onate, Idelsohn, Zienkiewicz, Taylor (1996)] by

Ψ
(k) (x)=

∫ nk

j=1
N(k)

j (x)Ψ̂ j, (19a)

Ω
(k) (x)=

∫ nk

j=1
N(k)

j (x)Ω̂ j, (19b)

and

θ
(k) (x)=

∫ nk

j=1
N(k)

j (x)θ̂ j (19c)

where Ψ̂ j, Ω̂ j, and θ̂ j are the fictitious nodal values for the stream function, vor-
ticity, and temperature, respectively. In Eqs. (19-a) through (19-c), N(k)

j (x), j =
1(1)nk, are the MLS interpolation functions [Onate, Idelsohn, Zienkiewicz, Taylor
(1996)].

Having obtained the weak formulations of the governing equations and the moving
least-squares approximations of the field variables, the final step in the discretiza-
tion process is to present the fully-discretized equations for a typical control volume
ΩI with the boundary ΓI . The MLS interpolations for the stream function, vorticity,
and temperature (Eqs. 19-a, b, and c) at a typical Gauss point k are substituted into
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Eqs. (16-18). The resulting discretized equations are given by

∫ nk

j=1

(∫
ΓI−ΓI

⋂
Γh

WI N(k)
j , n (x)dΓ

)
Ψ̂ j =−

∫ nk

j=1

(∫
ΩI

WI N(k)
j (x)dΩ

)
Ω̂ j

−
∫

ΓI
⋂

Γh

WI
∂Ψ

∂n
dΓ+

∫ nk

j=1

(∫
ΩI

(
WI ,X N(k)

j ,X (x)+WI ,Y N(k)
j ,Y (x)

)
dΩ

)
Ψ̂ j, (20)

∫ nk

j=1

[∫
ΩI

WI

(
UN(k)

j ,X (x)+V N(k)
j ,Y (x)

)
dΩ−

µe f f

ρn f ν f

1
Re

∫
ΓI−ΓI

⋂
Γh

WIN
(k)
j , n (x)dΓ

]
Ω̂ j

+
µe f f

ρn f ν f

1
Re

∫ nk

j=1

(∫
ΩI

(
WI ,X N(k)

j ,X (x)+WI ,Y N(k)
j ,Y (x)

)
dΩ

)
Ω̂ j

=
µe f f

ρn f ν f

1
Re

∫
ΓI
⋂

Γh

WI
∂Ω

∂n
dΓ+

βn f

β f
Ri
∫ nk

j=1

(∫
ΩI

WIN
(k)
j ,X (x)dΩ

)
θ̂ j (21)

and∫ nk

j=1

[∫
ΩI

WI

(
UN(k)

j ,X (x)+V N(k)
j ,Y (x)

)
dΩ−

αn f

α f

1
Re Pr

∫
ΓI−ΓI

⋂
Γh

WI N(k)
j , n (x)dΓ

]
θ̂ j

+
αn f

α f

1
Re Pr

∫ nk

j=1

(∫
ΩI

(
WI ,X N(k)

j,X (x)+WI ,Y N(k)
j,Y (x)

)
dΩ

)
θ̂ j

=
αn f

α f

1
Re Pr

∫
ΓI
⋂

Γh

WI
∂θ

∂n
dΓ. (22)

The weighting function WI is taken to be unity (WI = 1) in the present study.

Similar discretized equations are obtained for all the Gauss points within the control
volume ΩI , and in turn, for all the control volumes of the domain. Assembling these
equations for the control volumes and enforcing the essential boundary conditions
by the direct interpolation method yield a set of algebraic equations for the stream
function, vorticity, and temperature. Solving this system of the algebraic equations
yields the unknown values of the field variables at the points.

4 Benchmarking of the Code

To validate the proposed developed scheme, a mixed convection simulation in a
square cavity is carried out using the code. The results of the simulation are com-
pared with the existing numerical results in the literature obtained using the FVM
by Moallemi and Jang [1992].

Similar to the test case of Moallemi and Jang [1992], in the present study, the lid-
driven mixed convection in a square cavity is simulated. The cavity comprises two
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insulated side walls, a horizontally moving constant temperature cold wall at Tc ,
and a hot constant temperature bottom wall at Th , with Th > Tc. The motion of the
top lid is from left to right with a constant speed of ul . The cavity is filled with a
fluid with Pr = 1.

Figure 2 shows the streamlines and the isotherms obtained by the MLPG simulation
for Ri = 1 (Gr = 106, Re = 1000), and Pr = 1. The appropriate results presented
by Moallemi and Jang [1992], for the exact same parameters, using the FVM are
also shown in this figure. As it can be seen from Fig. 2, very good agreements
exist between the streamlines and the isotherms obtained by the MLPG simulation
and those of Moallemi and Jang [1992]. Comparisons between the local Nusselt
numbers for the cold and the hot walls of the cavity obtained by the proposed
MLPG method for Pr = 1, and the respective results of Moallemi and Jang [1992]
which are given for Pr = 7.1, 1, 0.1, and 0.01 are presented in figure 3. As it is
observed from this figure, excellent agreements exist between the two methods.

5 Results and Discussions

The proposed code is now applied to investigate the characteristics of the mixed
convection heat transfer in the square cavity with a wavy bottom wall filled with
the Al2O3-water nanofluid (Fig. 1). The calculations performed are for Gr = 104,
for a range of Ri from 0.01 to 100, and three volume fractions of the nanoparticles,
namely, 0.03, 0.06, and 0.1.

Figure 4 shows the streamlines inside the cavity for different Richardson number
and volume fractions of the nanoparticles in comparison with the same cavity when
filled with only the base fluid, water, (ϕ = 0). For Ri = 0.01, the fluid flow in the
cavity is established by the shear action of the moving lid, and the buoyancy effect
is not significant. A large primary clockwise eddy is generated inside the cavity as a
result of the nanofluid moving next to the lid (Fig. 4-a). As the figure shows, a small
counter-clockwise eddy referred to as the DSE (downstream eddy) develops in the
bottom right corner of the cavity as a result of the stagnation pressure and frictional
losses. Another smaller contour-clockwise eddy, called the USE (upstream eddy) is
generated in the bottom left corner of the cavity as a result of the negative pressure
gradient generate by the primary recirculating nanofluid as it deflects upward over
the left vertical wall (Fig. 4-a). The negative pressure gradient is due to decreasing
the horizontal velocity component and the corresponding increase of the pressure
as the nanofluid close to the bottom of the cavity approaches the left vertical wall.

As it can be seen from Fig. 4, the effect of the natural convection on the fluid flow
and heat transfer inside the cavity intensifies with increasing the Richardson num-
ber while keeping the volume fraction of the nanoparticles and the Grashof number
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Figure 2: Streamlines and isotherms, comparison between the MLPG method and
the FVM results by Moallemi and Jang [1992] for Ri = 1.0, (Gr = 106, Re =1000),
Pr = 1.0 (a) streamlines (b) isotherms

constant. Consequently, the nanofluid adjacent to the hot wall of the cavity moves
from the bottom right corner upwards enlarging the DSE, so that, it would occupy
a good portion of the lower half of the cavity (Figs. 4-c and d). However, for Ri =
100, the lid-induced fluid flow is weak (Re = 10), hence the DSE disappears. The
natural convection, in this case, assists the shear action of the moving lid resulting
in a single clockwise eddy inside the cavity (Fig. 4-e).

As far as the volume fraction of the nanoparticles, Fig. 4 shows that the DSE dimin-
ishes in size and strength with increasing the volume fraction of the nanoparticles.



106 Copyright © 2010 Tech Science Press CMES, vol.69, no.2, pp.91-117, 2010

X

N
u

0 0.25 0.5 0.75

10

20

30

40

50

60

70

80

hot wall
cold wall

 

 (a) 

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (b) 

                              hot wa
                                  cold wa

all 
all 

Figure 3: Local Nusselt numbers, comparison between the MLPG method and the
FVM results by Moallemi and Jang [1992] for Ri = 1.0, (Gr = 106, Re =1000), Pr
= 1.0 (a) MLPG method (b) Moallemi and Jang [1992]

 Ri = 0.01 Ri = 0. 1 Ri = 1 Ri = 10 Ri = 100 

 

 

 

 

 

 

 

 
 (a) (b) (c) (d) (e) 

 

 φ = 0 

 φ = 0.03 

 φ = 0.06 

 φ = 0.1 

Figure 4: Streamlines for Al2O3-water nanofluid inside the cavity (Gr = 104)
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This effect, which can be observed from Figs. 4-c and d for Ri = 1 and 10, re-
spectively, is due to an increase in the effective viscosity of the nanofluid. This
suppresses the natural convection, and diminishes the DSE for a constant Grashof
number. Moreover, the primary recirculating eddy enlarges as a result of the di-
minishing DSE. For Ri = 0.01, the DSE, which is quite small, is due to the shear
action of the moving lid, and, as such, it is not very sensitive to the volume frac-
tion changes of the nanoparticles, as it can be seen in Fig. 4-a. In fact, for low Ri
values, variations of the nanofluid viscosity do not have significant effects on the
streamlines patterns (Figs. 4-a and b).

Figure 5 shows the isotherms inside the cavity for different Richardson numbers
and volume fractions of the nanoparticles, with ϕ = 0 representing the base fluid,
water only. For Ri = 0.01, the forced convection-dominated regime in Fig. 5-a is
of the boundary layer type. This can be seen from the distinct thermal boundary
layers formed along the top and bottom walls of the cavity. The relatively large core
region of the cavity in this case is nearly isothermal. The isotherms at the bottom
of the cavity follow the wavy pattern of the wall, i.e. they converge by moving
towards the hills, and diverge by moving towards the valleys of the wavy wall. As
the figure also indicates, the isotherms are less dense within the downstream and
the upstream eddies (Fig. 5-a).

With increasing the Richardson number, while keeping the volume fraction of the
nanoparticles constant, the DSE enlarges, and the thermal boundary layers thicken
(Figs. 5-b and c). However, the core region of the primary eddy remains nearly
isothermal. For Ri = 10, the primary and the downstream eddies are of comparable
sizes, and as it is observed from Fig 5-d, a denser distribution of the isotherms
exist close to the right side of the middle portion of the cavity. For Ri = 100, the
isotherms in Fig. 5-e show a natural convection-dominated heat transfer regime
for all the considered nanoparticles volume fractions. Therefore, the developed
thermal boundary layers along the hot and the cold walls grow by moving towards
the left and the right sides of the cavity, respectively. The core region in this case is
nearly stratified.

Figures 6 and 7 show the variations of the dimensionless horizontal and vertical
velocity components along the vertical and horizontal centerlines of the cavity, re-
spectively, for different volume fractions of the nanoparticles (ϕ = 0 represents
the base fluid, water). For Ri = 0.01 and 0.1, the fluid flow is established by the
shear action of the moving upper lid. Hence, the upstream and downstream eddies
are quite small, and the centerline velocity components are nearly independent of
the volume fraction of the nanoparticles (Figs. 6-a and b, and 7-a and b). With
increasing the Richardson number, Ri = 1 and 10, the DSE enlarges due to the
enhancement of the natural convection. Hence, the horizontal centerline velocity
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Figure 5: Isotherms for Al2O3-water nanofluid inside the cavity (Gr = 104)

component becomes positive in the vicinity of the bottom wavy wall, and its mag-
nitude increases in this area with increasing the Richardson number (Figs. 6-c and
d). For Ri = 100, the fluid flow is dominated by the natural convection which as-
sists the relatively weak lid-induced forced convection. Hence, as Figs. 6-e and 7-e
show, the centerline velocity components in some parts of the cavity can be much
higher than the lid-velocity.

As far as the effects of the volume fraction of the nanoparticles on the horizontal
and vertical centerline velocity components for moderate Richardson numbers (Ri
= 1 and 10), in the area close to the bottom wavy wall, the horizontal centerline
velocity component decreases with increasing the volume fraction as a result of
suppression of the natural convection (Figs. 6-c and d). Also, as it is observed from
Figs. 6-c and d, in the region from the center of the primary eddy to the vicinity
where the two primary eddy and the DSE meet, the horizontal centerline velocity
component in the primary eddy decreases with increasing the volume fraction of
the nanoparticles as a result of the primary eddy enlargement. A reversed trend
is observed in the upper portion of the DSE (from its center upwards) due to its
shrinkage with increasing the volume fraction of the nanoparticles (Figs. 6-c and
d). As it can be observed from Figs. 6-e and 7-e, for Ri = 100, increasing the vol-



MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer 109

ume fraction of the nanoparticles decreases the natural convection effects, and, in
turn, reduces the centerline velocity component. For Ri = 1, the vertical centerline
velocity component increases with increasing the volume fraction of the nanopar-
ticles due to the shrinkage of the DSE (Fig. 7-c). However, for Ri = 10, as Fig
7-d shows the sign and the magnitude of the vertical centerline velocity component
change drastically with the volume fraction of the nanoparticles depending on the
relative sizes of the primary and the downstream eddies.

The local Nusselt number distributions along the hot and the cold walls of the cavity
for different Richardson numbers and volume fractions of the nanofluid are shown
in Figs. 8 and 9, respectively, with ϕ = 0 representing only water. As it is observed
from Fig. 8, the Nusselt number distributions along the wavy bottom wall somehow
follow the pattern of the wavy wall’s geometry. The local Nusselt numbers max-
ima and minima occur in close proximity of the respective crests and troughs of the
wavy wall, respectively. For Ri = 0.01 and 0.1, the maximum local Nusselt number
occurs close to the middle portion of the wavy wall. Since the downstream and up-
stream eddies would result in decreasing the temperature gradient close to the right
and the left bottom corners of the cavity (Figs. 8-a and b). For these Richardson
numbers, the local Nusselt number increases with increasing the thermal conduc-
tivity of the nanofluid, and the shrinking downstream and upstream eddies (Figs.
8-a and b). Some similar observations could be made for the local Nusselt number
for Ri = 1 as a result of the suppression of the DSE with increasing the volume
fraction of the nanoparticles, (Fig. 8-c). Moreover, for Ri = 1, with decreasing the
volume fraction of the nanoparticles, the DSE enlarges due to enhancement of the
natural convection. This reduces the local Nusselt number along the entire length
of the wavy wall (Fig. 8-c).

Fig. 8-d shows that, the location of the local Nusselt numbers maximum all shift to
the left bottom corner of the cavity since as it was seen in Fig. 4-d, for Ri = 10, the
DSE occupied a good lower portion of the cavity. For Ri = 100, the heat transfer
inside the cavity occurs mainly through the natural convection, as the distribution of
the isotherms in Fig. 5-e demonstrate. Hence, the maximum local Nusselt number
occurs near to the crest closest to the right side wall (Fig. 8-e). Moreover, as Fig.
8-e shows the local Nusselt numbers drop sharply right after the closest crest to the
right side wall due to the separation of the isotherms.

As the isotherms adjacent to the lid in Fig. 5 indicate, by moving from the left to
the right along the lid of the cavity, the thermal boundary layer thickens, therefore,
the local Nusselt number decreases (Fig. 9). It is also observed from Fig. 9, that
by increasing the Richardson number, i.e. shifting the heat transfer to the natural
convection-dominated regime, the local Nusselt number decreases. Moreover, the
local Nusselt number, in general, increases with increasing the volume fraction of
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Figure 6: Variations of the dimensionless horizontal velocity component along the
cavity vertical centerline for different nanoparticles volume fractions



MLPG Application of Nanofluid Flow Mixed Convection Heat Transfer 111

 
(a) (b) 

 
(c) (d) 

(e)
 

X

V
(X

,0
.5

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Ri = 0.01

X
V

(X
,0

.5
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Ri = 0.1

X

V
(X

,0
.5

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Ri = 1

X

V
(X

,0
.5

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Ri = 10

X

V
(X

,0
.5

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Ri = 100

Figure 7: Variations of the dimensionless vertical velocity component along the
cavity horizontal centerline for different nanoparticles volume fractions
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Figure 8: Variations of the local Nusselt number along the wavy wall for different
nanoparticles volume fractions
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Figure 9: Variations of the local Nusselt number along the lid-driven wall for dif-
ferent nanoparticles volume fractions
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Figure 10: Variations of the average Nusselt number of the wavy wall with the
volume fraction of the nanoparticles for different Richardson numbers

the nanoparticles as a result of increasing the thermal conductivity of the nanofluid
and the shrinkage of the DSE (Fig. 9).

Figure 10 shows the variations of the average Nusselt number of the wavy hot wall
with the volume fraction of the nanoparticles for different Richardson numbers. As
it is observed from this figure, in general, heat transfer enhancement occurs with
increasing the volume fraction of the nanoparticles. Also, as the figure shows, the
enhancement of the heat transfer is quite substantial for lower Richardson numbers.

6 Conclusions

The applicability of the meshless local Petrov-Galerkin method to handle mixed
convection heat transfer in a complex geometry containing a nanofluid is investi-
gated. The validity of the meshless technique is demonstrated through the consent-
ing results of the MLPG and the FVM.

Implications of some governing parameters such as nanoparticles volume fraction,
and the Richardson number on the streamlines and isotherms contours, and on the
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local and average Nusselt numbers were determined through the proposed method.

The local Nusselt number distribution picks up the waviness geometry of the wavy
hot wall with the distribution maximum and minimum locations occurring at differ-
ent spots of the hot wall length, depending on the value of the Richardson number.
The average Nusselt number, however, in general, shows linearity with respect to
the variation of the nanoparticles volume fraction for most of the implemented
Richardson numbers.

Illustratively showing enhancement of convection heat transfer by increasing the
nanoparticles volume fraction, in detail capturing all the respective corner eddies,
and distinctively showing the effects of the natural versus forced convection heat
transfer within the cavity demonstrate the competency of the present meshless tech-
nique for the application.
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