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Internal Point Solutions for Displacements and Stresses in
3D Anisotropic Elastic Solids Using the Boundary Element

Method
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Abstract: In this paper, fully explicit, algebraic expressions are derived for the
first and second derivatives of the Green’s function for the displacements in a three
dimensional anisotropic, linear elastic body. These quantities are required in the
direct formulation of the boundary element method (BEM) for determining the
stresses at internal points in the body. To the authors’ knowledge, similar quantities
have never previously been presented in the literature because of their mathematical
complexity. Although the BEM is a boundary solution numerical technique, solu-
tions for the displacements and stresses at internal points are sometimes required
for some engineering applications. To this end, the availability of the derivatives
of the fundamental solution in closed, algebraic form enables their implementation
into an existing BEM code in a relatively straightforward manner. Some examples
are presented to demonstrate the veracity of these expressions and their successful
implementation for determining interior point solutions in 3D general anisotropic
elastostatics in BEM.

Keywords: Boundary element method, Green’s functions, boundary integral equa-
tions, Somigliana’s identity, anisotropic elasticity, Stroh’s eigenvalues.

1 Introduction

A distinctive feature of the boundary element method (BEM), as a computational
tool for engineering stress analysis of elastic bodies, is that only the boundary or
the surface of the numerical solution domain needs to be modeled. With this tech-
nique, it is also well known that interior point solutions for the displacements and
the stresses at an interior point are obtained as a secondary exercise in the anal-
ysis, only if required. It involves the numerical evaluation of the Somigliana’s
identities, after the boundary integral equation (BIE) has been solved for all the un-
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known displacements and tractions on the surface of the domain. In the integrals of
these identities, the integrands contain terms with up to second order derivatives of
the Green’s function, or fundamental solution, for the displacements of the elastic
problem.

The Green’s function for displacements and that for tractions are necessary items
for the direct formulation of the BEM for elastic stress analysis. For 3D general
anisotropic solids, the Green’s function for displacements has been presented many
years ago by Lifshitz and Rosenzweig (1947). It was expressed as a contour integral
around a unit circle on an oblique plane at the field point and the integrand contains
the Christoffel tensor defined in terms of the material elastic constants. However, in
the development of the BEM to treat such bodies, the numerical evaluation of these
fundamental solutions has remained a subject of investigation over the past few
decades; see, e.g. Wilson and Cruse (1978), Sales and Gray (1998), Pan and Yuan
(2000), Tonon et al (2001), Phan et al (2004), Wang and Denda (2007), Shiah et al
(2008), Tan et al (2009). This is because of their mathematical complexity. In the
BEM formulation presented by the present authors very recently, Shiah et al (2008)
and Tan et al (2009), the fundamental solutions employed in the BIE are expressed
in exact, algebraic, real-variable explicit forms, unlike those used by the other au-
thors previously. They were derived by Ting and Lee (1997) for displacements,
and Lee (2003) for their first derivatives which are then utilized for the derivation
of the traction solution, respectively. These Green’s functions were used for the
first time in a BEM formulation for general anisotropy. Because of their algebraic
forms, they can be numerically evaluated in a fairly straightforward manner. Their
implementation into an existing BEM code, based on the quadratic isoparametric
element formulation which had been developed for 3D isotropic elastostatics, was
also carried out without any difficulty. It was, however, discovered that, when com-
puting the kernels of the BIE, a significant proportion of the computational effort is
spent on evaluating high-order tensor terms which appear in Lee’s (2003) solution.
Following the collaborative work in Shiah et al (2008), Lee (2009) re-examined
her solution and showed how a simpler analytical form for the first derivatives of
the displacement Green’s function could be obtained without the high-order ten-
sors. This can be achieved by carrying out the partial differentiation in a spherical
coordinate system as an intermediate step instead of the direct differentiation with
respect to the Cartesian coordinates. In the paper, however, the explicit expressions
are presented only for the special case of transverse isotropy. As a result of this de-
velopment, the present authors derived the corresponding fully explicit forms of the
solution for the displacement first derivatives in general anisotropy. Their validity
and superior efficiency of using these alternative, fully explicit forms of the funda-
mental solutions in the BIE is demonstrated very recently in Shiah et al (2010); the
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expressions, unfortunately, were not presented in the conference paper because of
the page limit.

Of significance to note too is that Lee’s (2009) revised approach also lends itself
readily to obtaining higher order derivatives of the Green’s function for the dis-
placements without the need to introduce high-order tensor quantities. The present
authors have further derived the expressions, in fully explicit algebraic forms, of
the second derivatives of the fundamental solution. This enables the extension of
the BEM for the numerical determination of the displacements and stresses at an
interior point of a 3D generally anisotropic solid. To the authors’ knowledge, this
development has never been reported previously in the literature and is the focus
of the present paper. Although the BEM is a boundary solution technique for engi-
neering analysis, interior point displacements and stresses are sometimes required,
such as in the evaluation of contour integrals within the body around a crack front
for determining fracture parameters in fracture mechanics analysis.

It should be remarked here that other algorithms for computing the higher-order
derivatives of the displacement Green’s function for BEM implementation have
been presented before. For example, they were recently computed in a BEM for-
mulation by Benedetti et al (2009). However, the focus of their work was on the
development of a fast dual BEM for 3D anisotropic crack problems and not on
the development of new forms of the Green’s function, or the BEM computation
of internal point solutions. The Green’s function they used was that by Lifshitz
and Rosenzweig (1947), and the approximations for the numerical values of this
Green’s function and its derivatives were obtained using interpolation, following
the approach originally developed by Wilson and Cruse (1978). In that scheme,
a relatively large database of numerically evaluated point load solutions and their
derivatives is first established for the given material being analyzed. When per-
forming the integration of the kernel functions over the boundary elements during
the collocation process, the required values of the Green’s function and its deriva-
tives are obtained by interpolation of the pre-calculated ones retrieved from the
database. The possible difficulty of maintaining the accuracy of the interpolated
values using this approach, particularly for cases of highly anisotropic materials,
was noted by Schclar (1994), and Sales and Gray (1998). The latter, and Phan et al
(2004), have also presented an alternative numerical scheme using residue calculus
that offers significant improvements in computational efficiency over the Wilson-
Cruse approach. It should be emphasized again, however, that in all these work
described, the fundamental solutions are not of closed-form, unlike those used in
the present study. It should also be noted that very recently, Buroni and Saez (2010)
have derived a general algebraic expression for the second-order derivatives of the
Green’s function following Lee’s (2003) original approach. As expected, it contains
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terms that are 10th-order tensors which were not evaluated for the explicit algebraic
forms in the paper, however. The avoidance of these high-order tensors is a key
motivation for the formulation used in the present work; this has been discussed
earlier.

Because of their explicit algebraic form, it is relatively straightforward to imple-
ment the Green’s function and its derivatives used in the present work into an ex-
isting BEM code which had been developed for three-dimensional isotropic elas-
tostatics. This has been successfully achieved; there being no specific issue that
requires special attention in this regard. Thus, in what follows, the numerical for-
mulation of the BEM will not be discussed as it is well established in the literature.
A review of the Green’s function for displacements and its derivatives for a 3D
anisotropic elastic body that are used in the present study is presented. The explicit
expressions for the higher order derivatives of the Green’s function, required for the
determination of the stresses at an interior point of an anisotropic body, are derived
in this study. Some examples are then presented to demonstrate their validity. The
numerical solutions obtained are compared with those obtained using the FEM or
by a finite difference approach.

2 Fundamental solutions of 3D anisotropic elasticity

The boundary integral equation (BIE), which relates the nodal displacements u j

and tractions t j at the boundary S of the homogeneous elastic domain, is written in
indicial notation as

Ci jui(P)+
∫

S
ui(Q)Ti j(P,Q)dS =

∫
S

ti(Q)Ui j(P,Q)dS (1)

where the leading coefficient Ci j(P) depends upon the local geometry of S at the
source point P; Ui j(P,Q)≡ U, and Ti j(P,Q) represent the fundamental solutions of
displacements and tractions, respectively, in the xi-direction at the field point Q due
to a unit load in the x j-direction at P in a homogeneous infinite body. Computation
of the fundamental solution of displacements for generally anisotropic materials
proposed in Ting and Lee (1997) has been discussed in Shiah et al (2008). It is
presented here again for completeness.

Referring to Figure 1, let n and m be two mutually perpendicular unit vectors on
the oblique plane at Q normal to the position vector x; the vectors [n, m, x/r]
forms a right-angle triad. By considering a spherical coordinate system as shown,
the explicit form of the Green’s function can be expressed as

U(x) =
1

4πr
1
|κκκ|

4

∑
n = 0

qnΓ̂ΓΓ
(n)

, (2)
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Figure 1: Unit circle on the oblique plane at the field point Q 
 
 
Referring to Figure 1, let n and m be two mutually perpendicular unit vectors on the 
oblique plane at Q normal to the position vector x; the vectors [n, m, x/r] forms a right-
angle triad.  By considering a spherical coordinate system as shown, the explicit form of 
the Green’s function can be expressed as 

 
4

( )

0

1 1 ˆ( )
4 nq

rπ ∑ n

n=
U x = ,                             (2) 

x1 

φ 

θ 

r 

x2 

x3 m 

n 
Field Pt. 

Source Pt. 

Figure 1: Unit circle on the oblique plane at the field point Q

where r represents the radial distance between the source point P and the field point
Q; qn, Γ̂ΓΓ

(n)
, and κκκ are given by

qn =


−1

2β1β2β3

[
Re
{

∑
3
t = 1

pn
t

(pt−p̄t + 1)(pt−p̄t + 2)

}
−δn2

]
f or n = 0,1,2,

1
2β1β2β3

Re
{

∑
3
t = 1

pn - 2
t p̄t+1p̄t+2

(pt−p̄t + 1)(pt−p̄t + 2)

}
f or n = 3, 4,

(3a)

Γ̂
(n)
ij = Γ̃

(n)
(i+1)( j+1)(i+2)( j+2)− Γ̃

(n)
(i+1)( j+2)(i+2)( j+1), (i, j = 1, 2, 3), (3b)

κik = Cijksmjms, m = (−sinθ , cosθ , 0). (3c)

In Eq. (3a), the Stroh eigenvalues, pi, are the roots of the sextic equation. They are
complex for positive strain energy and appear as three pairs of complex conjugates.
These quantities are expressed as

pv = αv + iβv, βv > 0, (ν = 1, 2, 3) (4)

with an overbar on it denoting the corresponding conjugate. Also, in Eq. (3c),
Ci jks are the stiffness coefficients of material. It has been demonstrated in Shiah
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et al (2008) and Tan et al (2009) that the numerical evaluation of this Green’s
function is relatively straightforward; there is no issue that arises concerning its
direct computation.

In addition to U, numerical evaluation of Ti j is also required in Eq. (1). This may
be carried out as follows. First, the relationship between tractions and stresses,
namely,

T =
i j σ

( j)
ik Nk, (5)

is used, where σ
( j)
ik are the stresses at a field point due to a unit concentrated force

applied in the x j direction at the source point, and Nk are components of the outward
normal vector of the surface at Q. The generalized Hooke’s law is then invoked,
viz,

σ
( j)
ik = Cikmn (Um j,n +Un j,m)/2. (6)

From Eqs.(5) and (6), it is clear that the 1st-order derivatives of Umust first be
obtained in order to evaluate the fundamental solution for stresses or tractions. This
will be addressed next.

3 1st-order derivatives of the fundamental solution for displacements

In the earlier work by Lee (2003), the differentiation of the above Green’s func-
tion is carried out directly in the Cartesian coordinate system. The derivatives so
obtained can be expressed as

Ui j,l =
1

4π2r2

[
−π yl Hi j +Cpqrs

(
ysMlqipr j + yqMslipr j

)]
, (7)

where yi are the components of a unit position vector y = x/r in the spherical coor-
dinate system, expressed in terms of the spherical angles (θ , φ) defined in Figure
1; Mi jklmn can be shown to be as follows:

Mi jklmn =
2π i

|κ|2
3

∑
t=1

1

(pt − pt+1)
2 (pt − pt+2)

2[
Φ
′
i jklmn(pt)−2Φi jklmn(pt)

(
1

pt − pt+1
+

1
pt − pt+2

)]
. (8)

The full algebraic expression of Φi jklmn may be found in Shiah et al (2008) and Tan
et al (2009). In the course of carrying out more extensive tests and analysis using
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these fundamental solutions (Tan et al, 2009), it was discovered that a significant
proportion of the computational effort is devoted to evaluating the terms in eq. (7)
and eq. (8). Their evaluation involves numerous arithmetic operations due to the
presence of the high-order tensors even though it is a relatively direct and simple
exercise. In addition, in some instances of the case degenerate roots in transverse
isotropy, it was found that serious truncation errors may occur in computing these
derivatives; these errors may be easily rectified by using double precision arith-
metic, however.

Lee (2009) revisited the problem and very recently re-derived Ui j,l into a differ-
ent algebraic form which removes the high-order tensors shown above. This was
achieved by differentiating with respect to spherical coordinates as an intermediate
step, separating the terms associated with the radial distance, and then applying the
chain rule for the total derivative. Although the procedures are valid for the gen-
eral case, as mentioned earlier, only the explicit expressions for transverse isotropy
were presented in the paper. Those for the former are derived here following this
approach. The 1st-order derivatives of displacements can be expressed in the spher-
ical coordinate system as

Ui j,l =
∂Ui j

∂ r
∂ r
∂xl

+
∂Ui j

∂θ

∂θ

∂xl
+

∂Ui j

∂ϕ

∂ϕ

∂xl
(9)

The partial derivatives of Ui j with respect to r, θ , and φ are given by

∂Ui j

∂ r
=
−Ui j

r
,

∂Ui j

∂θ
=

I′i j− J′i j

4π2r
,

∂Ui j

∂ϕ
=

I′′i j− J”i j

4π2r
, (10)

where I′i j, I′i j, J′′i j, J′′i j can be expressed as

I′i j =
π

|κκκ|

4

∑
n=0

qn
∂ Γ̂

(n)
i j

∂θ
, I”i j =

π

|κκκ|

4

∑
n=0

qn
∂ Γ̂

(n)
i j

∂ϕ
, (11a)

J′i j =
4π2r
|κκκ|

∂ |κκκ|
∂θ

Ui j +
π

|κκκ|

∫
∞

−∞

Γ̂i j(p) ·∂ f (p)/∂θ

f (p)2 d p, (11b)

J”i j =
π

|κκκ|

∫
∞

−∞

Γ̂i j(p) ·∂ f (p)/∂ϕ

f (p)2 d p. (11c)

In eq. (11b), |κκκ| can be shown to be given by

|κκκ|= k1 +
3

∑
n=1

(k2n cos2nθ + k3n sin2nθ), (12)
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where the expressions for the coefficients are listed in Appendix A. It should be
noted that, although |κκκ|may be computed using eq. (3c) directly, it is more efficient
to use eq.(12) since its coefficients are related to the material properties and they
need to be computed only once. In eq.(11b), ∂ |κκκ|/∂θ can thus be obtained by
direct differentiation to give

∂ |κκκ|
∂θ

= 2n
3

∑
n=1

(−k2n sin2nθ + k3n cos2nθ). (13)

In eq.(11b) and (11c), f (p) is the sextic equation, written as

f (p) = p6 +
5

∑
m=0

αm(θ ,ϕ)
α6(θ ,ϕ)

pm, (14)

the coefficients α0(θ ,ϕ)∼ α6(θ ,ϕ) of which are given by

α0(θ ,ϕ) = A0 + cos6
ϕ (B0 cos6θ +C0 sin6θ)

+ cos5
ϕ sinϕ (D0 cos5θ +E0 sin5θ)

+
1

∑
k=0

{
cos4 ϕ [cos4θ (F0k cos2kϕ)+ sin4θ (G0k cos2kϕ)]
+cos3 ϕ sinϕ [cos3θ (H0k cos2kϕ)+ sin3θ (I0k cos2kϕ)]

}
+

2

∑
k=0

{
cos2 ϕ [cos2θ (J0k cos2kϕ)+ sin2θ (K0k cos2kϕ)]
+sinθ sin2ϕ [L0k cos2kϕ]

}
+ cosθ

3

∑
k=1

(M0k sin2kϕ +N0k cos2kϕ)

,

(15a)

α1(θ ,ϕ) = cos5
ϕ (A1 cos6θ +B1 sin6θ)+ cos4

ϕ sinϕ (C1 cos5θ +D1 sin5θ)

+
1

∑
k=0

{
cos3 ϕ [cos4θ (E1k cos2kϕ)+ sin4θ (F1k cos2kϕ)]
+cos2 ϕ sinϕ [cos3θ (G1k cos2kϕ)+ sin3θ (H1k cos2kϕ)]

}
+

2

∑
k=0
{cosϕ sin2θ [I1k cos2kϕ]+ sinϕ sinθ [J1k cos2kϕ]}

+
3

∑
k=1
{cosθ [K1k sin(2k−1)ϕ]+ cos2θ [L1k cos(2k−1)ϕ]}

,

(15b)
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α2(θ ,ϕ) = A2 + cos4
ϕ (B2 cos6θ +C2 sin6θ)

+ cos3
ϕ sinϕ (D2 cos5θ +E2 sin5θ)

+
2

∑
k=1

 sin2ϕ

[
cos2ϕ (F2k cos(2k−1)θ +G2k sin(2k−1)θ)
+H2k cos(2k−1)θ + I2k sin(2k−1)θ

]
+cos2kϕ ∑

2
m=0 K2km cos2mθ + J2k cos2kθ


+ sin2θ

2

∑
k=0

L2k cos2kϕ + cos2
ϕ sin4θ

1

∑
k=0

M2k cos2kϕ

,

(15c)

α3(θ ,ϕ) = cos3 ϕ (A3 cos6θ +B3 sin6θ)
+∑

1
k=0 cosϕ sin2θ [D3k cos2kϕ]+∑

2
k=1 cos2θ [C3k cos(2k−1)ϕ]

+sinϕ


∑

2
k=1 [E3k cos(2k−1)θ +F3k sin(2k−1)θ ]

+∑
2
k=1 [cos2ϕ (G3k cos(2k−1)θ +H3k sin(2k−1)θ)]

+cosϕ

[
cosϕ (I3 cos5θ + J3 sin5θ)
+sinϕ (K3 cos4θ +L3 sin4θ)

]


, (15d)

α4(θ ,ϕ) = A4 +∑
3
k=1 {B4k cos2kθ +C4k sin2kθ}

+cos2ϕ
[
D4 +∑

6
k=1 (E4k coskθ +F4k sinkθ)

] , (15e)

α5(θ ,ϕ) =
3

∑
k=1

{
cosϕ [A5k cos2kθ +B5k sin2kθ ]
+sinϕ [C5k cos(2k−1)θ +D5k sin(2k−1)θ ]

}
, (15f)

α6(θ ,ϕ) = A6 +
3

∑
k=1
{B6k cos2kθ +C6k sin2kθ}. (15g)

Although analytical expressions for the coefficients in eqs.(15a)-(15g) have been
derived in the present work, they are not provided herein due to their elaborate
forms. An alternative means of evaluating these coefficients numerically was car-
ried out instead in the implementation, as follows. Take the case of determining
those coefficients of α5(θ ,ϕ) as an example, where there are 12 unknowns- A2k,,
B2k,,C2k,, , and D2k,, (k =1, 2, or 3). One may arbitrarily prescribe 12 sample values
of(θ ,φ), followed by the numerical evaluation of the corresponding coefficients of
the sextic equation. The 12 unknown coefficients may be computed by solving the
12 simultaneous equations. The same approach may be applied to determine all
other coefficients ofαn(θ ,ϕ). Since the determination of these constants is carried
out only once for a given material, the computational effort involved is relatively
trivial.

It is also evident that all the partial derivatives in eqs.(11a) need also to be obtained
in explicit forms for the implementation into the BEM code. Following a relatively
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tedious process of algebraic manipulations, the various terms of Γ̂
(n)
i j have been

derived and are shown below:

Γ̂
(4)
i j = a(4)

i j +
2

∑
k=1

[
b(4)

i jk cos2kθ + c(4)
i jk sin2kθ

]
, (16a)

Γ̂
(3)
i j = a(3)

i j cosϕ +
2

∑
k=1

 cosϕ

[
b(3)

i jk cos2kθ + c(3)
i jk sin2kθ

]
+sinϕ

[
d(3)

i jk cos(2k−1)θ + e(3)
i jk sin(2k−1)θ

] , (16b)

Γ̂
(2)
i j = a(2)

i j +b(2)
i j cos2ϕ + cos2 ϕ

[
c(2)

i j cos4θ +d(2)
i j sin4ϕ

]
+sin2

ϕ

[
e(2)

i j cos2θ + f (2)
i j sin2θ

]
+∑

2
k=1

{
sin2ϕ

[
g(2)

i jk cos(2k−1)θ +h(2)
i jk sin(2k−1)θ

]} , (16c)

Γ̂
(1)
i j = cos3 ϕ

[
a(1)

i j cos4θ +b(1)
i j sin4θ

]
+cosϕ

[
c(1)

i j cos2θ +d(1)
i j sin2θ + cos2ϕ

(
e(1)

i j cos2θ + f (1)
i j sin2θ

)]
+sinϕ

 g(1)
i j cosθ +h(1)

i j sinθ + cos2ϕ

(
i(1)
i j cosθ + j(1)

i j sinθ

)
+cos2 ϕ

(
k(1)

i j cos3θ + l(1)
i j sin3θ

)  , (16d)

Γ̂
(0)
i j = a(0)

i j +b(0)
i j cos2θ + cos2 ϕ sin2θ

[
c(0)

i j +d(0)
i j cos2ϕ

]
+cos4 ϕ

[
e(0)

i j cos4θ + f (0)
i j sin4θ

]
+cos3 ϕ sinϕ

[
g(0)

i j cos3θ +h(0)
i j sin3θ

]
+∑

2
k=1

[
i(0)
i jk cos2kϕ + j(0)

i jk cos2ϕ cos2kθ

+k(0)
i jk cosθ sin2kθ + l(0)

i jk sinθ sin2kϕ

] (16e)

In eqs.(16a)-(16e), all the coefficients can be numerically computed in the same
manner described above forαn(θ ,ϕ).With these explicit expressions forΓ̂(n)

i j , their
partial differentiations with respect to θ and φ may thus be obtained in a straight-
forward manner. For computing the 1st-order derivatives of Ui j, there remain the
integrals in eqs.(11b) and (11c) that need to be evaluated. As derived in Lee (2009),
application of Cauchy residue theorem to these integrals yields

∫
∞

−∞

Γ̂i j(p) ∂ f (p)
∂θ

f 2(p)
d p =

5

∑
m=0

4

∑
n=0

Γ̂
(n)
i j

∂ fm

∂θ
Sm+n, (17a)

∫
∞

−∞

Γ̂i j(p) ∂ f (p)
∂ϕ

f 2(p)
d p =

5

∑
m=0

4

∑
n=0

Γ̂
(n)
i j

∂ fm

∂ϕ
Sm+n, (17b)
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where fm is defined by

fm =
αm(θ ,ϕ)
α6(θ ,ϕ)

, (m = 0∼ 5). (18)

and S is given by (Lee, 2009)

Sn = 2πi
3

∑
k=1

1

(pk− pk+1)
2 (pk− pk+2)

2

[
Φ
′
n(pk)−

2Φn(pk)
(pk− pk+1)

− 2Φn(pk)
(pk− pk+2)

]
,

(n = 0 ∼ 9), (19)

To evaluate these integrals using eqs.(17a)-(17b), partial differentiation of fm with
respect to θ and φ is performed to give

∂ fm

∂θ
=

∂αm

∂θ
α
−1
6 −αmα

−2
6

∂α6

∂θ
, (20a)

∂ fm

∂ϕ
=

∂αm

∂ϕ
α
−1
6 −αmα

−2
6

∂α6

∂ϕ
. (20b)

In eq. (20), the explicit expressions for ∂αn/∂θ and ∂αn/∂φ may be obtained by
directly differentiating eqs. (15a)-(15g). Thus, it can be seen that all the related
functions presented in the foregoing can be used to determine the 1st-order deriva-
tives by eq. (9) without any difficulty, and no high-order tensor terms are present.
The 2nd-order derivatives, required for computing stresses at internal points, will
now be discussed, in the following section.

4 2nd-order derivatives of the fundamental solution for displacements

Somigliana’s identity for determining the displacements at an internal point pin an
elastic body may be written as

Ci jui(P)+
∫

S
ui(Q)Ti j(P,Q)dS =

∫
S

ti(Q)Ui j(P,Q)dS. (21)

The stresses at the internal point can be found using the generalized Hooke’s law

σi j = Ci jmn (um,n +un,m)/2, (22)

where the 1st-order derivatives of displacements are obtained by differentiation of
eq. (21), viz,

Ci jui(P)+
∫

S
ui(Q)Ti j(P,Q)dS =

∫
S

ti(Q)Ui j(P,Q)dS. (23)
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The 1st-order derivatives of the Green’s function which appear in eq. (23) have
been discussed in the previous section above. From eqs.(5) and (6), it is apparent
that 2nd-order derivatives of the fundamental solution will be present in Ti j,k. The
expressions for the 2nd-order derivatives may be obtained using the chain rule as
follows

∂ 2Ui j

∂xk∂xl
=

∂Ui j,k

∂ r
∂ r
∂xl

+
∂Ui j,k

∂θ

∂θ

∂xl
+

∂Ui j,k

∂ϕ

∂ϕ

∂xl
(24)

In eq.(24), the partial differentiations of Ui j,k with respect to the spherical coordi-
nates are expressed as

∂Ui j,k

∂ r
=

∂ 2Ui j

∂ r2
∂ r
∂xk

+
∂Ui j

∂ r
∂

∂ r

(
∂ r
∂xk

)
+

∂ 2Ui j

∂ r∂θ

∂θ

∂xk

+
∂Ui j

∂θ

∂

∂ r

(
∂θ

∂xk

)
+

∂ 2Ui j

∂ r∂ϕ

∂ϕ

∂xk
+

∂Ui j

∂ϕ

∂

∂ r

(
∂ϕ

∂xk

)
(25a)

∂Ui j,k

∂θ
=

∂ 2Ui j

∂ r∂θ

∂ r
∂xk

+
∂Ui j

∂ r
∂

∂θ

(
∂ r
∂xk

)
+

∂ 2Ui j

∂θ 2
∂θ

∂xk

+
∂Ui j

∂θ

∂

∂θ

(
∂θ

∂xk

)
+

∂ 2Ui j

∂θ∂ϕ

∂ϕ

∂xk
+

∂Ui j

∂ϕ

∂

∂θ

(
∂ϕ

∂xk

)
(25b)

∂Ui j,k

∂ϕ
=

∂ 2Ui j

∂ r∂ϕ

∂ r
∂xk

+
∂Ui j

∂ r
∂

∂ϕ

(
∂ r
∂xk

)
+

∂ 2Ui j

∂θ∂ϕ

∂θ

∂xk

+
∂Ui j

∂θ

∂

∂ϕ

(
∂θ

∂xk

)
+

∂ 2Ui j

∂ϕ2
∂ϕ

∂xk
+

∂Ui j

∂ϕ

∂

∂ϕ

(
∂ϕ

∂xk

)
(25c)

In eqs. (25a)-(25c), all 1st-order derivatives of displacements have been discussed
in the previous section and∂θ/∂xk, ∂ϕ/∂xk can be easily obtained (see, e.g. Lee,
2009). Differentiating Ui j twice with respect to the spherical coordinates r, θ , and
φ results in the following:

∂ 2Ui j

∂ r2 =
Ui j

r2 −
∂Ui j

∂ r
,

∂ 2Ui j

∂ r∂θ
=− 1

r2
∂Ui j

∂θ
,

∂ 2Ui j

∂ r∂ϕ
=− 1

r2
∂Ui j

∂ϕ
, (26a)

∂ 2Ui j

∂θ 2 =
1

4π2r

(
∂ I′i j

∂θ
−

∂J′i j

∂θ

)
,

∂ 2Ui j

∂ϕ2 =
1

4π2r

(
∂ I”i j

∂ϕ
−

∂J”i j

∂ϕ

)
,

∂ 2Ui j

∂θ∂ϕ
=

1
4π2r

(
∂ I”i j

∂θ
−

∂J”i j

∂θ

) (26b)
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The task of analytically differentiating I′, I′′, J′ and J′′ with respect to θ and φ

remains. It should be noted that eqs.(11a) and (11b) cannot be directly used to
perform the partial differentiations since qn is an implicit function of the spherical
angles. The differentiations are therefore taken on their original integral forms. By
differentiating the original integral form of I′ with respect to θ and φ yields (Lee,
2009)

∂ I′i j

∂θ
=− 1

|κκκ|2
∂ |κκκ|
∂θ

∫
∞

−∞

∑
4
n=0 pn ∂ Γ̂

(n)
i j

∂θ

f (p)
d p+

1
|κκκ|

∫
∞

−∞

∑
4
n=0 pn ∂ 2Γ̂

(n)
i j

∂θ 2

f (p)

d p

− 1
|κκκ|

∫
∞

−∞

 ∂ f (p)
∂θ

∑
4
n=0 pn ∂ Γ̂

(n)
i j

∂θ

f 2(p)

d p. (27)

Applying the residue theorem to the above, eq. (27) is rewritten as

∂ I′i j

∂θ
=− 1
|κκκ|

(
∂ |κκκ|
∂θ

I1−π

4

∑
n=0

qn
∂ 2Γ̂

(n)
i j

∂θ 2 +
5

∑
m=0

4

∑
n=0

∂ Γ̂
(n)
i j

∂θ

∂ fm

∂θ
Sm+n

)
, (28)

where explicit expressions for ∂ Γ̂
(n)
i j /∂θ , ∂ 2Γ̂

(n)
i j /∂θ 2and ∂ fm/∂θ can be analyt-

ically derived using eqs.(15a)-(15e) and eq.(20a), respectively. Similarly, partial
differentiation of I′i j with respect to φ yields

∂ I′i j

∂φ
=− 1
|κκκ|

(
∂ |κκκ|
∂φ

I1−π

4

∑
n=0

qn
∂ 2Γ̂

(n)
i j

∂θ ∂φ
+

5

∑
m=0

4

∑
n=0

∂ Γ̂
(n)
i j

∂θ

∂ fm

∂φ
Sm+n

)
. (29)

Since |κκκ| is independent ofφ , eq.(29) becomes

∂ I′i j

∂φ
=

1
|κκκ|

(
π

4

∑
n=0

qn
∂ 2Γ̂

(n)
i j

∂θ ∂φ
−

5

∑
m=0

4

∑
n=0

∂ Γ̂
(n)
i j

∂θ

∂ fm

∂φ
Sm+n

)
. (30)

The same procedure may be applied to obtain the corresponding derivatives ofI”i j,
the result of which are

∂ I”i j

∂θ
=− 1
|κκκ|

(
∂ |κκκ|
∂θ

I”
i j−π

4

∑
n=0

qn
∂ 2Γ̂

(n)
i j

∂θ ∂φ
+

5

∑
m=0

4

∑
n=0

∂ Γ̂
(n)
i j

∂φ

∂ fm

∂θ
Sm+n

)
, (31a)

∂ I”i j

∂φ
=

1
|κκκ|

(
π

4

∑
n=0

qn
∂ 2Γ̂

(n)
i j

∂φ 2 −
5

∑
m=0

4

∑
n=0

∂ Γ̂
(n)
i j

∂φ

∂ fm

∂φ
Sm+n

)
. (31b)
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Due to the presence of high-order poles, the process of differentiatingJ′i jandJ”i jwith
respect to the two spherical angles is somewhat more involved. Using the chain
rule, the partial differentiation of eq. (11b) with respect to θ gives

∂J′i j

∂θ
=

4π2r
|κκκ|

{
Ui j

[
∂ 2 |κκκ|
∂θ 2 −

1
|κκκ|

(
∂ |κκκ|
∂θ

)2
]

+
∂ |κκκ|
∂θ

∂Ui j

∂θ

}

− 1

|κκκ|2
∂ |κκκ|
∂θ

∫
∞

−∞

Γ̂i j(p) ∂ f (p)
∂θ

f (p)2 d p+
1
|κκκ|

∫
∞

−∞

∂

∂θ

[
Γ̂i j(p) ∂ f (p)

∂θ

f 2(p)

]
d p

. (32)

In eq. (32), the first integral on the right hand side of eq.(32) has been given
eq.(17a); the second one is rewritten as∫

∞

−∞

∂

∂θ

(
Γ̂i j(p) ∂ f (p)

∂θ

f 2(p)

)
d p

=
∫

∞

−∞

 ∂ Γ̂i j(p)
∂θ

∂ f (p)
∂θ

+ Γ̂i j(p) ∂ 2 f (p)
∂θ 2

f 2(p)

d p−2
∫

∞

−∞

Γ̂i j(p) ∂ 2 f (p)
∂θ 2

f 3(p)
d p

. (33)

Applying again the residue theorem to the first integral, it becomes

∫
∞

−∞

∂ Γ̂i j(p)
∂θ

∂ f (p)
∂θ

+ Γ̂i j(p) ∂ 2 f (p)
∂θ 2

f 2(p)
d p =

5

∑
m=0

4

∑
n=0

[
∂ Γ̂

(n)
i j

∂θ

∂ fm

∂θ
+ Γ̂

(n)
i j

∂ 2 fm

∂θ 2

]
Sm+n, (34)

where the partial derivatives of Γ̂
(n)
i j and fm may again be readily obtained by dif-

ferentiating eqs.(16a)-(16e), and eqs.(15a)-(15g) along with eq.(20a), respectively.
For treating the second integral in eq.(33), consider the following integral:

S′n =
∫

∞

−∞

Φ′n(p)
(p− p1)3(p− p2)3(p− p3)3 d p, (35)

where Φ′n(p)is defined by

Φ
′
n(p) =

pn

(p− p̄1)3(p− p̄2)3(p− p̄3)3 . (36)

Using the residue theorem for higher order poles,

S′n = 2πi
3

∑
k=1

1
2!

limp→pk

d2

d p2

[
(p− pk)

3 Φ′n(p)
(p− p1)3(p− p2)3(p− p3)3

]

= πilimp→pk

3

∑
k=1

d2

d p2

[
3

∑
j=1

Φ′n(p)
(p− p j)3(p− p j+1)3 , (p j = p j−3 when j > 3)

],
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(37)

the integral of eq.(35) can then be written as

S′n = πi
3

∑
k=1


d2

d p2 [Φ′n(pk)]

(pk−pk+1)
3(pk−pk+2)

3 +
6(−2pk+pk+1+pk+2) d

d p [Φ′n(pk)]

(pk−pk+1)
4(pk−pk+2)

4

+
6Φ′n(pk)[7p2

k−7pk(pk+1+pk+2)+2(p2
k+1+p2

k+2)]
(pk−pk+1)

5(pk−pk+2)
5

 . (38)

Further use of eq.(17a) and eqs.(32)-(34) results in

∂J′i j

∂θ
=

4π2r
|κκκ|

{
Ui j

[
∂ 2 |κκκ|
∂θ 2 −

1
|κκκ|

(
∂ |κκκ|
∂θ

)2
]

+
∂ |κκκ|
∂θ

∂Ui j

∂θ

}

− 1

|κκκ|2
∂ |κκκ|
∂θ

5

∑
m=0

4

∑
n=0

Γ̂
(n)
i j
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∂θ
Sm+n +

1
|κκκ|

5

∑
m=0

4

∑
n=0

[
∂ Γ̂

(n)
i j

∂θ

∂ fm

∂θ
+ Γ̂

(n)
i j

∂ 2 fm

∂θ 2

]
Sm+n

− 2
|κκκ|

5

∑
m=0

4

∑
n=0

[
Γ̂

(n)
i j

(
∂ fm

∂θ

)2
]

S′m+n

.

(39)

In eq.(39), the term ∂Ui j/∂θ has been discussed in the Section 2 for the 1st-order
derivatives. Following the same procedures as described above, one may derive the
expressions for ∂J′i j/∂ϕ , ∂J”i j/∂θ , and ∂J”i j/∂ϕ , as

∂J′i j

∂ϕ
=

4π2r
|κκκ|

∂ |κκκ|
∂θ

∂Ui j

∂ϕ
+

1
|κκκ|

5

∑
m=0

4

∑
n=0

[
∂ Γ̂

(n)
i j

∂ϕ

∂ fm

∂θ
+ Γ̂

(n)
i j

∂ 2 fm

∂θ ∂ϕ

]
Sm+n

− 2
|κκκ|

5

∑
m=0

4

∑
n=0

[
Γ̂

(n)
i j

∂ fm

∂θ

∂ fm

∂ϕ

]
S′m+n

, (40a)

∂J”i j
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4
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n=0
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+
1
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4
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[
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∂θ
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∂φ ∂θ

]
Sm+n

− 2
|κκκ|

5

∑
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4

∑
n = 0

[
Γ̂

(n)
i j
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∂ fm

∂θ

]
S′m+n

, (40b)



182 Copyright © 2010 Tech Science Press CMES, vol.69, no.2, pp.167-197, 2010

∂J”i j

∂ϕ
=

1
|κκκ|
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∑
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[
∂ Γ̂

(n)
i j
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∂ fm
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4

∑
n=0

[
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i j
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)2
]

S′m+n

. (40c)

5 Numerical examples

Three numerical examples are presented here to demonstrate the successful imple-
mentation of the above formulations for obtaining the displacements and stresses at
an interior point in a 3D anisotropic elastic body using the BEM via Somigliana’s
identity. In the first example, a rectangular prism of alumina crystal (Al2O3) is
subjected to pure shear. This problem has an exact analytical solution for the dis-
placements with which the BEM numerical solutions obtained can be verified. The
second example is a niobium (Nb) beam subjected to a transverse distributed load.
The computed displacements and stresses at its internal points are compared with
a corresponding analysis using the commercial finite element method (FEM) code
ANSYS. Finally, the stress concentration problem of a circular bar with a spheri-
cal cavity that was considered by the authors in Tan et al (2009) for the boundary
solutions is re-analyzed for the displacements and stresses at points in the domain
away from the cavity. The solutions are again compared with those obtained using
the FEM with ANSYS.

Problem A

Figure 2(a) shows a rectangular alumina (Al2O3) crystal prism subjected to a uni-
form shear stress τ23 = τo= 1 on four of its sides. For this problem, the exact
analytical solution for the displacements in the body can be found in Lekhnitskii
(1963). This problem has also been treated by the present authors recently (Tan et
al, 2009) as a test case to demonstrate the BEM implementation for its boundary
solutions using the fundamental solutions of Ting and Lee (1997) and Lee (2003).
In the present work, the displacements and all stress components are obtained for
five arbitrarily selected points inside the prism. The elastic stiffness coefficients for
the Al2O3 crystal are taken to be as follows (Huntington, 1958):

C11= 465 GPa; C33= 563 GPa; C44= 233 GPa; C12= 124 GPa;

C13= 117 GPa; C14= 101 GPa.

All the stiffness coefficients defined are arranged in accordance with the general-
ized stress/strain relation:

(σ11 σ22 σ33 σ23 σ13 σ12)
T = C (ε11 ε22 ε33 γ23 γ13 γ12)

T . (41)
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The BEM mesh employed has 10 quadratic boundary elements with a total of 32
nodes, as shown in Fig. 2(b). Table 1 shows the comparison of all the BEM-
computed displacements and stresses with analytical solutions for the sample in-
ternal points. It can be seen that the agreement of the two corresponding sets of
results is excellent.
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Figure 2: (a) A rectangular prism under uniform shear stress: Problem A 
(b) BEM mesh with a total of 10 elements, 32 nodes. 
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Figure 2: (a) A rectangular prism under uniform shear stress: Problem A (b) BEM
mesh with a total of 10 elements, 32 nodes.

Problem B

In the second example, a relatively short Nb-crystal beam of length 12L with a
square cross-section of side-lengths of 2L is subjected to a uniformly distributed
pressure load, σ22= -P, on its top surface. The ends of the beam are fully con-
strained in all the three coordinate directions. As an additional check on the imple-
mentation of the formulations, a relatively coarse BEM mesh is first used to treat
an isotropic beam problem. The analysis is, however, carried out through the BEM
algorithm based on the anisotropic numerical formulation, with the stiffness coeffi-
cients corresponding to an isotropic material. To allow proper comparison with the
“one-dimensional” simple beam theory solution, the length of the beam should be
long relative to the dimensions of the cross-section. Thus, the isotropic beam con-
sidered is one of length 24L instead with the same cross-section, and is subjected
to the same load and end-conditions as the anisotropic



184 Copyright © 2010 Tech Science Press CMES, vol.69, no.2, pp.167-197, 2010
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beam. In the numerical model, advantage is then taken about the plane of symmetry
at x3 = 12L and with Poisson’s ratio set to zero. The transverse displacements along
the x3-axis, at x3 = L, 2L,. . . 11L are computed. Similarly, the longitudinal stress
σ33 at the internal points across the sections at x3= 4L, 6L, and 8L, corresponding
to x2 = ± 0.5L, ± 0.1L, andx2= 0 are obtained. For comparison, the problem
is also analyzed by BEM using the algorithm for 3D isotropy. Figure 3 shows
the BEM mesh used for the analysis; it has 56 quadratic elements and a total of
170 boundary nodes. The computed normalized transverse x2-displacements are
shown in Figure 4(a). The longitudinal stresses, σ33, across the sections at the three
planes with the corresponding analytical solutions from simple beam theory can
also be shown in Figure 4(b); the values at the boundary nodes in these sections
are included for completeness. It can be seen that even with the relatively coarse
mesh employed, very good agreement between the BEM and analytical results are
obtained. The discrepancy between the results for the maximum displacement, at
x3= 12L, is 4.5%, while for the maximum bending stress, at x3= 0, it is 1.7%.
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Figure 3: BEM mesh for isotropic beam analysis: Problem B

Next, the material for the beam is taken to be a niobium crystal which has the
following elastic stiffness constants (Huntington, 1958):

C∗11 = 246GPa; C∗12= 134 GPa; C∗44= 28.7 GPa,

where the asterisks denote properties defined in the directions of the principal axes
of the material. For the analysis, however, these material axes are deliberately ro-
tated successively about the global Cartesian x1-, x2-, and x3-axes counterclockwise
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Figure 4: Isotropic beam results, Problem B: (a) variation of the normalized transverse 
(x2-) displacements; (b) variation of the normalized normal stress. (** anisotropic 
algorithm; * isotropic algorithm) 
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by 15o, 30o, and 45o, respectively. This is to demonstrate the capability of the al-
gorithm to treat general anisotropy of the material properties. The rotations of the
material principal axes yield the following fully populated stiffness matrix:

C =



218.7606 153.5152 141.7240 - 10.0099 0.4012 7.2133
153.5152 209.8947 150.5900 - 2.2110 0.9611 - 0.1750
141.7240 150.5900 221.6859 12.2208 - 1.3623 - 7.0383
- 10.0099 −2.2110 12.2208 45.2900 - 7.0383 0.9611
0.4012 0.9611 - 1.3623 - 7.0383 36.4241 - 10.0099
7.2133 −0.1750 - 7.0383 0.9611 - 10.0099 48.2152

GPa

which has features of a generally anisotropic solid with respect to the global coordi-
nate system. For verification of the BEM results, the problem was also analyzed by
the FEM using the commercial code ANSYS. Of interest to note is that under this
general anisotropic condition for this problem, a relatively dense mesh is found to
be required for both the BEM and FEM analysis. A series of tests with increasingly
refined mesh to establish convergence of the results obtained for both numerical ap-
proaches was performed. Figure 5 shows the final mesh designs used; there are 224
elements with 674 nodes for the BEM model, while for the FEM, there are 24576
SOLID186 (20-node quadratic) elements with 108545 nodes. The displacements
and stresses at the same internal points as those treated in the isotropic analysis
above are obtained by BEM. The computed normalized displacements along the
x3-axis of both BEM and FEM are plotted in Fig. 6 for comparison, where ex-
cellent agreement of all displacement components is observed. The results from
both numerical approaches for the normalized longitudinal stresses, σ33/P, and the
normalized equivalent stress, σeq/P, according to von Mises criterion, across the
sections at the three planes, x3= 4L, 6L and 8L, are also listed in Table 2; the lat-
ter being also shown because of the presence of the other significant shear stress
components due to anisotropy. The discrepancies of these results obtained from the
BEM and FEM can again be seen to be very small indeed. As expected, the stresses
are no longer symmetric about the x2-axis because of the material anisotropy.

Problem C

The third problem considered is a cylindrical bar with a spherical cavity, fixed at
one end and subjected to remote unit tension, σo= 1 at the other end, as shown
in Fig. 7. With reference to this figure, two cases corresponding to a/R=0.4 and
0.5, are analyzed, where a and R are the radii of the cavity and the cylindrical bar,
respectively; the half-length of the bar is taken to be H = 2R. The material of the
cylinder is taken to be the same Nb crystal with the material principal axes rotated
by the same amounts with respect to the Cartesian axes as in Problem B treated
above. The same fully populated elastic stiffness coefficient matrix shown earlier
applies. The displacements and stresses at sample internal points around a circle of



188 Copyright © 2010 Tech Science Press CMES, vol.69, no.2, pp.167-197, 2010

Table
2:V

ariations
ofthe

norm
alized

norm
alstress

and
von

M
ises

equivalentstress
across

the
sections

atx
3 =4L,6L,and

8L;
x

1 =
0.

x
2 =-L

x
2 =-0.5L

x
2 =0

x
2 =0.5L

x
2 =+L

σ
33 /P

x
3 =4L

FE
M

6.5941
2.7092

-0.5490
-3.2832

-5.5895
B

E
M

6.7179
2.6989

-0.5462
-3.2570

-5.7046
|%

D
iff.)|

1.88
0.38

0.51
0.80

2.06

x
3 =6L

FE
M

8.8671
4.2660

-0.2315
-4.7287

-9.3288
B

E
M

8.9934
4.2522

-0.2318
-4.7123

-9.4545
|%

D
iff.|

1.42
0.32

0.13
0.35

1.35

x
3 =8L

FE
M

5.1379
2.8249

0.0855
-3.1759

-7.0633
B

E
M

5.2536
2.8027

0.0825
-3.1646

-7.1857
|%

D
iff.|

2.25
0.79

3.51
0.36

1.73

σ
eq /P

x
3 =4L

FE
M

6.5756
3.2262

2.4541
3.4874

5.1179
B

E
M

6.68
3.22

2.46
3.48

5.20
|%

D
iff.|

1.57
0.13

0.09
0.17

1.68

x
3 =6L

A
N

SY
S

8.8311
4.3283

0.4334
4.3451

8.8294
B

E
M

8.9359
4.3150

0.4333
4.3323

8.9292
|%

D
iff.|

1.19
0.31

0.02
0.29

1.13

x
3 =8L

FE
M

5.1048
3.4532

2.4537
3.2698

6.5957
B

E
M

5.1990
3.4454

2.4565
3.2654

6.6916
|%

D
iff.|

1.85
0.23

0.1141
0.13

1.45



Internal Point Solutions for Displacements and Stresses 189

(Revised Manuscript) 22 

 
 
 
 
 
 
 
 
 
 

 
(a)                             (b) 

                                   
Figure 5:  Numerical models for the anisotropic beam in Problem B:  
(a) BEM- 224 elements 674 nodes; (b) ANSYS- 24576 elements 108545 nodes.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Variations of the normalized displacements along the x3-axis of the anisotropic 
beam for Problem B. 
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Figure 5: Numerical models for the anisotropic beam in Problem B: (a) BEM- 224
elements 674 nodes; (b) ANSYS- 24576 elements 108545 nodes.

relative radius r/R = 0.75 lying on the same plane as the equator of the cavity. Be-
cause of the presence of the various components of the displacements and stresses,

the absolute resultant displacement (δ =
√

u2
1 +u2

2 +u2
3) and the normalized von

Mises equivalent stress, σeq/σo, at each of these points are shown here instead.
They are again compared with the corresponding values from FEM analysis using
ANSYS. Figures 8(a) and 8(b) show the models employed of the both computa-
tional methods, where 88 boundary elements and 2940 SOLID186 elements are
employed for the BEM and FEM analyses, respectively. These numerical results
are listed in Tables 3 and 4 where, again, it can be seen that there is very good
agreement indeed between the solutions obtained from both analyses.

6 Conclusions

Advances in the development of the boundary element method (BEM) for the stress
analysis of three-dimensional generally anisotropic elastic solids have been rel-
atively slow and sporadic over the past several decades. This is because of the
mathematical complexity of the Green’s function and its derivatives; they are re-
quired items in the BEM formulation. Based on the approach suggested by Lee
(2009) very recently, an alternative, explicit algebraic form of the first and second
derivatives for three-dimensional generally anisotropic elasticity have been derived
and presented in this paper. They do not contain the very high order tensor terms
that are present in the BEM formulation reported recently by the authors. They are
also relatively simpler and computationally more efficient to evaluate in the BEM
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Figure 6: Variations of the normalized displacements along the x3-axis of the
anisotropic beam for Problem B.

implementation. Of significance is that it enables the numerical evaluation of dis-
placements and stresses at the interior points of the three-dimensional anisotropic
body using Somigliana’s identity and its derivatives. These solutions are sometimes
necessary at the internal points, and are carried out as a secondary procedure that
is well established in BEM. The alternative formulations for the derivatives of the
Green’s function have been successfully implemented in the present work in BEM.
Three numerical examples have been presented to demonstrate their veracity. As
far as the authors are aware of, this development has never been reported previously
in the literature.
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displacements and stresses, the absolute resultant displacement ( 2 2 2
1 2 3u u uδ = + + ) and 

the normalized von Mises equivalent stress, σeq/σo, at each of these points are shown here 
instead.  They are again compared with the corresponding values from FEM analysis 
using ANSYS. Figures 8(a) and 8(b) show the models employed of the both 
computational methods, where 88 boundary elements and 2940 SOLID186 elements are 
employed for the BEM and FEM analyses, respectively.   These numerical results are 
listed in Tables 3 and 4 where, again, it can be seen that there is very good agreement 
indeed between the solutions obtained from both analyses. 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure 7: A cylinder with a spherical cavity under remote tension- Problem C. 
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Figure 7: A cylinder with a spherical cavity under remote tension- Problem C.

Table 3: Resultant displacements δ =
√

u2
1 +u2

2 +u2
3 (*10−9) at points on the circle

at r/R =0.75 on the plane of the equator of the spherical cavity

a/R=0.4 a/R=0.5
θ FEM BEM |%Diff.| FEM BEM |%Diff.|
00 0.1104 0.1078 2.39 0.1240 0.1213 2.15

450 0.1236 0.1209 2.16 0.1390 0.1363 1.91
900 0.1362 0.1335 1.99 0.1529 0.1502 1.74
1350 0.1381 0.1351 2.15 0.1562 0.1531 2.01
1800 0.1203 0.1175 2.30 0.1349 0.1322 2.03
2250 0.1040 0.1011 2.80 0.1161 0.1131 2.58
2700 0.1033 0.1003 2.91 0.1167 0.1133 2.92
3150 0.1064 0.1036 2.63 0.1200 0.1169 2.63

from the National Science Council of Taiwan, R.O.C. (NSC 99-2221-E-035-027-MY3)
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Figure 8:  Mesh designs for Problem C: (a) 88 elements with 228 nodes for BEM; (b) 

2940 SOLID186 elements with 6826 nodes for ANSYS FEM.         
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Figure 8: Mesh designs for Problem C: (a) 88 elements with 228 nodes for BEM;
(b) 2940 SOLID186 elements with 6826 nodes for ANSYS FEM.

Table 4: Normalized von Mises equivalent stress σeq/σo at points on the circle at
r/R =0.75 on the plane of the equator of the spherical cavity

a/R=0.4 a/R=0.5
θ FEM BEM |%Diff.| FEM BEM |%Diff.|
00 1.1268 1.1218 0.44 1.3093 1.3015 0.60

450 1.1168 1.1080 0.79 1.3036 1.2916 0.93
900 1.0919 1.0844 0.69 1.2722 1.2625 0.75
1350 1.0799 1.0737 0.58 1.2881 1.2777 0.82
1800 1.1192 1.1107 0.76 1.2989 1.2869 0.93
2250 1.1172 1.1098 0.64 1.3063 1.2959 0.80
2700 1.1054 1.0998 0.50 1.3022 1.2916 0.82
3150 1.0824 1.0781 0.39 1.2899 1.2805 0.73

and the National Science & Engineering Research Council of Canada.
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Appendix A Coefficients list of |κκκ|

k11 =
−1
16

C44
(
C2

12−C11C22 +C2
16−2C16C26 +5C2

26

)
+2C22 (C14C56 +C15C46 )

−4C45 [C16 (C22−C12)+C26 (C11−C12)]
+2C46 [C24 (C16−5C26)+C25 (C11−C12)]
+C55

(
C2

12−C11C22 +5C2
16 - 2C16C26 +C2

26

)
+C2

14(C22 +C66)
+C2

15(C22 +5C66)
+2C56C24 (C11−C12)+2C25C56 (C16−C26)+C11

(
C2

24 +C2
25

)
+C2

56 (5C11−2C12 +C22)+2C24 (2C25C16−C14C66)
+C2

46 (C11−2C12 +5C22)
+C66

[
5C2

24 +C2
25 +2C12(C44 +C55) - C22(5C44 +C55)−C11(C44 +5C55)

]
−2C14 [C26(−2C15 +C25−C46)+C16(C25 +C46)+C12(C24 +C56)]
−2C15 [C24C26 +C12(C25 +C46)+C16(C24 +5C56)−C26C56 +C25C66]


(A.1)
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k21 =
1
32

C11C2
25 +C2

14(C66−C22)+C2
15(C22 +15C66)−C24 (C11C24 +4C16C25)

+C44
(
C2

16−C2
12 +C11C22 +2C16C26

)
+4C45 [C16 (C12 +C22)−C26 (C11 +C12)]
+C55

(
C2

12 +15C2
16−C11C22−2C16C26

)
−C2

26 (C55 +15C44)
+C46 [2C24 (15C26−C16)+2C25 (C11 +C12)+C46 (C11 + 2C12−15C22)]
+C56 [2C24 (C11 +C12)+2C25 (C16 +C26)+C56 (15C11−2C12−C22)]
−C66

[
15C2

24 +C2
25 +(C11 +2C12−15C22)C44− (−15C11 +2C12 +C22) C55

]
+2C14[C26(2C15 +C25−C46)−C16(C25 +C46)+C12(C24−C56)
−C22C56 +C24C66]
−2C15[C22C46 +C12(C25 +C46)−C26(C24 +C56)
+C16(C24 +15C56)+C25C66]


(A.2)

k22 =
1
16

C11C2
24 +C2

15(C22−3C66)+C2
14(C22 +C66)+C25 (4C16C24 +C11C25)

+C44
(
C2

12 +C2
16−C11C22−2C16C26−3C2

26

)
+4C45 [C16 (C12−C22)+C26 (C12−C11)]
+C55

(
C2

12−3C2
16−C11C22−2C16C26 +C2

26

)
+C46 [2C24 (C16 +3C26)+2C25 (C11−C12)+C46 (C11−2C12−3C22)]
+C56 [2C24 (C11−C12)+2C25 (C16−C26)−C56 (3C11−2C12 +C22)]
+C66

[
−3C2

24 +C2
25−C44 (C11−2C12−3C22)+C55 (3C11 +2C12−C22)

]
−2C14[C26(−2C15 +C25−C46)+C16(C25 +C46)−C22C56
+C12(C24 +C56)+C24C66]
−2C15[C24(C16 +C26)−C22C46 +C12(C25 +C46)
−(3C16 +C26)C56 +C25C66]


(A.3)
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k23 =
1
32

C11C2
24 +C25 (4C16C24−C11C25)

+C44
(
C2

12−C2
16−C11C22−2C16C26−C2

26

)
+4C45 [C26 (C11 +C12)−C16 (C12 +C22)]
+C55

(
C2

16−C2
12 +C11C22 +2C16C26 +C2

26

)
+C46 [2C24 (C16 +C26)−2C25 (C11 +C12)−C46 (C11 +2C12 +C22)]
−C56 [2C24 (C11 +C12)+2C25 (C16 +C26)−C56 (C11 +2C12 +C22)]
+C2

14(C22−C66)+C2
15(−C22 +C66)

+C66
[
−C2

24 +C2
25 +(C11 +2C12 +C22)(C44−C55)

]
+2C14[C26(−2C15−C25 +C46)+C16(C25 +C46)+C22C56
+C12(−C24 +C56)−C24 C66]
+2C15 [C22C46 +C12(C25 +C46)+C16(C24−C56)−C26(C24 +C56)+C25C66]


(A.4)

k31 =
1
16

C24 (5C16C24 +3C11C25)−C16C25 (5C15−3C25)
+C26

(
3C2

14 +5C2
15−3C15C25

)
−C44 (5C16C22 +3C11C26)
+C45

(
3C2

12 +5C2
16−3C11C22−6C16C26 +5C2

26

)
+C46 [3C11C24−C16 (5C15−3C25)+C26 (3C15−5C25)]
−C55 (3C16C22 +5C11C26)
+C56 [3C15C22 +C24 (3C16−5C26)+5C11C25 +5C46 (C11 +C22)]
−C66 [3C15C24−5C24C25 +5(C11 +C22)C45]

+C14

[
C22 (3C15 +5C46)−C24 (3C16 +5C26)−3C12(C25 +C46)
−C56 (5C16−3C26)+C66 (5C15−3C25)

]
+C12

[
−C24 (3C15 +5C46)+C44 (3C16 +5C26)+C55 (5C16 +3C26)
−C56 (5C15 +3C25 +6C46)+6C45C66

]


(A.5)
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k32 =
1
4

C26
(
C12C44−C2

15−C14C24
)
−C45

(
C2

16−C2
26

)
+C46 (C14C22−C12C24)

−C26 (C25C46−C11C55)
+C56 (C12C15−C11C25−C24C26−C11C46 +C22C46)
+C16

[
C2

24−C22C44 +C15(C25 +C46)−C12C55 +C14C56
]

−C66 (C14C15−C24C25−C11C45 +C22C45)

 ,

(A.6)

k33 =
−1
16

C16
(
C15C25−C2

24
)
+C25 (C11C24 +C16C25)

−C66 [C24 (C15 +C25)−C45 (C11 +C22)]
+C44 (C16C22−C11C26)+C45

(
C2

12−C2
16−C11C22−2C16C26−C2

26

)
+C46 [C16 (C15 +C25)+C11C24 +C26 (C15 +C25)]
+C26

(
C2

14−C2
15−C15C25

)
−C55 (C16C22−C11C26)
+C56 [C15C22−C11C25 +C24 (C26 +C16)−C46 (C11 +C22)]
+C14[C22(C15−C46)−C12(C25 +C46)+C16(−C24 +C56)
+C26(C24 +C56)− (C15 +C25)C66]
+C12[C24C46 +(C16−C26)(C44−C55)− (C25 +2C46)C56
+C15(−C24 +C56)+2C45C66]


(A.7)




