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The Hybrid Boundary Node Method Accelerated by Fast
Multipole Expansion Technique for 3D Elasticity

Qiao Wang1, Yu Miao1,2 and Junjie Zheng1

Abstract: In this paper, a fast formulation of the hybrid boundary node method
(Hybrid BNM) for solving 3D elasticity is presented. Coupling modified varia-
tional principle with the Moving Least Squares (MLS) approximation, the Hybrid
BNM only requires discrete nodes constructed on the surface of a domain. The
preconditioned GMERS is employed to solve the resulting system of equations.
At each iteration step of the GMERS, the matrix-vector multiplication is accel-
erated by the fast multipole method (FMM). The fundamental solution of three-
dimensional elasticity problem is expanded in terms of series. An oct-tree data
structure is adopted to subdivide the computational domain into well-separated
cells hierarchically and to invoke the multipole expansion approximation. Formu-
lations for the local and multipole expansions and conversion of multipole to local
expansion are given. Nearly one million of total unknowns can be computed on
a PC with 2.67GHz CPU and 2.0GB RAM. All the formulations are implemented
in a computer code written in C++. Numerical examples demonstrate the accuracy
and efficiency of the proposed approach.

Keywords: meshless method; hybrid boundary node method; modified varia-
tional principle, moving least squares approximation; fast multipole method; 3D
elasticity

1 Introduction

There are two representative methods for numerical analysis. The first one is
the finite element method (FEM) and the second is the boundary element method
(BEM). The FEM is a very powerful method and has been well-developed, while a
discretization of the domain is needed, which will result in difficulties with remesh-
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ing in problems involving moving boundaries, large deformations or crack propa-
gation. When dealing with complex geometries, it is often time-consuming and
prone to errors while meshing. The BEM can reduce the dimensionality of a prob-
lem by one and requires a discretization of the boundary only. However, the BEM
will lead to a dense and unsymmetrical N ×N system of linear equation, where
N is the total number of degrees of freedom (DOF). The computational cost and
memory requirement for directly factoring

such system increase with O(N3) and O(N2), respectively, which limits the devel-
opment of the BEM.

In the past decades, a new class of numerical methods, namely, the meshfree or
meshless methods were developed. This kind of methods can reduce the human-
labor costs required for meshing the domains of complex-shape. There are a num-
ber of meshless methods been investigated by several researchers and they can be
classified into two categories: the domain type and the boundary type. The element
free Galerkin method (EFG) (Belytschko et al., 1994) is a representative method
of the domain type, which uses a global symmetric weak form and the shape func-
tion comes from the moving least-squares (MLS) approximation (Belytschko et al.,
1996). However, the EFG method needs background cells for the integration. An-
other domain type method is the meshless local Petrov-Galerkin (MLPG) approach
(Atluri and Zhu, 1998; Atluri and Shen, 2002a,b; Atluri, 2004). The method uses
local weak form over local sub-domains to avoid the generation of the background
cells. The MLPG method has also been applied to boundary integral equations,
as MLPG/BIE (Atluri, Han and Shen, 2003; Han and Atluri, 2003). In a series of
efforts to simplify and speed up the meshless implementation, the so-called MLPG
“mixed” finite volume method was proposed (Atluri, Han and Rajendran, 2004).
Recently, Atluri et al. proposed a MLPG “mixed” collocation method (Atluri, Liu
and Han, 2006a) and a MLPG “mixed” finite difference method (Atluri, Liu and
Han, 2006b).

One of the boundary type meshless methods is the boundary node method (BNM)
(Mukherjee and Mukherjee, 1997; Chati, Mukherjee and Mukherjee, 1999), which
inserts the MLS approximation into the boundary integral equations (BIE). How-
ever, the method needs cell structure for numerical integration like the EFG. An-
other boundary type meshless method is the hybrid boundary node method (Hy-
brid BNM). The Hybrid BNM (Zhang and Yao, 2001) is proposed by Zhang et
al. for potential problems (Zhang, Tanaka, M and Matsumoto, 2004) and elasticity
problems (Zhang and Yao, 2004) and has been developed by Miao et al. (2005,
2006, 2009), which combines the MLS approximation scheme with the hybrid dis-
placement variational formula. The Hybrid BNM not only has the advantage of
reducing the spatial dimensions like BEM or BNM, but also does not require any
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cells for interpolation nor for integration. However, like the traditional BEM, the
Hybrid BNM has a dense and unsymmetrical system matrix, which requires O(N2)
memory and O(N3) operations. Therefore, the Hybrid BNM must be speeded up
while dealing with large scale problems. The fast multipole method (FMM) was
introduced by Rokhlin (1985) as a fast solution method for integral equations for
two dimensional Laplace’s equation and then developed by Greengard and Rokhlin
(1987) as an algorithm for the rapid evaluation of potential and force fields in a
large scale ensemble of charged particles. It can reduce the computational cost for
the pair-wise force calculation from O(N2) to O(N), the computation for large scale
problems becomes possible.

Applying the FMM to accelerate the BEM computation has been investigated by
many researchers in potential problems (Nabors et al., 1994; Nishida and Hayami,
1997; Liu and Nishimura, 2006), and the computational cost of the FM-BEM, in-
cluding the memory and CPU time, have been successfully reduced to O(N). How-
ever, the implementation of FMM for elasticity problems is more difficult than
that for potential problems as the fundamental solution is much more complex
to expand in terms of series. There are mainly two types of expansions: Taylor
series and spherical harmonic series. Peiece and Napier (1995) developed a Tay-
lor series multipole expansion algorithm to solve the two-dimensional problem of
multi-cracks in elastic media. Hayami and Sauter (1998a) presented an efficient
algorithm for 3D elastostatics use Taylor series. Popov et al. (2001) developed
an O(N) Taylor series multipole boundary element methods for three-dimensional
elasticity problems. The algorithms for 3D elasticity problems, which based on
spherical harmonic expansions, were also investigated. Fu et al. (1998) decom-
posed the original 3D elasticity fundamental solution into five terms and each of
them can be expanded in terms of spherical harmonic series with their correspond-
ing duality principle. Hayami and Sauter (1998b) proposed an expansion in terms
of the spherical harmonic expansion of 1/R and the derivatives of R. Starting from
the kernel expansion of the fundamental solution of the Laplacian, Yoshida et al.
(2001) obtained a new multipole expansion together with the corresponding trans-
lations for the fundamental solution of linear elastostatics. The FMM also has some
implementations in boundary-based meshfree methods. Kulkarni et al. (2003) com-
bined the BNM with FMM for 2D potential problems, in which high accuracy and
efficiency are observed.

The Hybrid BNM accelerated by FMM for 3D potential problems has been pro-
posed by Zhang et al. (2005), called FM-HBNM. Zhang also has used the FM-
HBNM to study the thermal behavior of carbon nanotubes (CNT) composites (Zhang
and Tanaka, 2007; Zhang and Tanaka, 2008), which is a very complex problem and
almost impossible to obtain a reasonable discretization for the geometry with FEM.
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In this paper, the Hybrid BNM for 3D elasticity problems accelerated by the FMM
using the spherical harmonic series is proposed, and an efficient algorithm that can
reduce both the computer costs and the human-labor costs is derived.

The paper is organized as follows. In the second part, the Hybrid BNM for three-
dimensional elasticity problems is reviewed. The detail of the FM-HBNM is pre-
sented next. This is followed by the procedure of the FM-HBNM in practical im-
plementation. Finally, in the fifth part, numerical results are given. Results from
the Hybrid BNM and the FM-HBNM are compared, with respect to accuracy and
computational efficiency.

2 The Hybrid Boundary Node Method for 3D Elasticity

In this section, the Hybrid BNM for 3D elasticity is reviewed. The Hybrid BNM is
based on a modified variational principle (DeFigueredo and Brebbia, 1989). In 3D
elasticity, the functions in the modified variational principle that assumed to be in-
dependent are: displacements ũi and tractions t̃i on the boundary and displacements
ui inside the domain. Consider a domain Ω enclosed by Γ = Γu + Γt with ūi and
t̄i are the prescribed displacements and tractions, respectively. The corresponding
variational functional ΠHB is defined as follows:

ΠHB =
∫

Ω

1
2

ui, jCi jkluk,ldΩ−
∫

Γ

t̃i(ui− ũi)dΓ−
∫

Γt

t̄iũidΓ (1)

where, the boundary displacements ũi satisfy the essential boundary conditions, i.e.
ũi = ūi on Γu.

The integral equations can be obtained by δ ΠHB = 0 over the domain and its
boundary as follows:∫

Γ

(ti− t̃i)δuidΓ−
∫

Ω

σi j, jδuidΩ = 0 (2)

∫
Γ

(ui− ũi)δ t̃idΓ = 0 (3)∫
Γ

(t̃i− t̄i)δ ũidΓ = 0 (4)

Equation (4) will be satisfied if the traction boundary conditions t̃i = t̄i are imposed.
So it can be ignored in the following discussion.

The modified variational principle holds both in the whole domain Ω and any sub-
domain ΩI with its boundary ΓI and LI . Define the sub-domain ΩI as an inter-
section of the domain and a small sphere centered at node sI , with ΓI = ∂ΩI ∩Γ
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and LI = ∂ΩI −ΓI , respectively. We can obtain the following weak forms for the
sub-domains and its boundaries to replace Equations (2) and (3):∫

ΓI +LI

(ti− t̃i)hIdΓ−
∫

ΩI

σi j, jhIdΩ = 0 (5)

∫
ΓI+LI

(ui− ũi)hIdΓ = 0 (6)

where hI is a weight function.

The displacements ũ and tractions t̃ at the boundary Γ are approximated by the
MLS approximation as follows:

ũ(s) =
n

∑
J=1

ΦJ(s)ûJ (7)

t̃(s) =
n

∑
J=1

ΦJ(s)t̂J (8)

where n is the number of nodes for MLS approximation which located on the sur-
face; ûJ and t̂J are nodal values, and ΦJ(s) is the shape function of the MLS ap-
proximation, corresponding to node sJ , which is given by

ΦJ(s) =
m

∑
j=1

p j(s)[A−1(s)B(s)] jJ (9)

and the matrices A(s) and B(s) are defined by

A(s) =
n

∑
J=1

wJ(s)p(sJ)pT(sJ) (10)

B(s) = [w1(s)p(s1),w2(s)p(s2), ...,wn(s)p(sn)] (11)

In the above three equations, p j(s) provide a basis of order m consisting of mono-
mials in(s1,s2), which is the represent parametric coordinates on a surface. In this
paper, we take m as 6, namely, pT(s) = [1,s1,s2,s2

1,s1s2,s2
2]. In Equations (10) and

(11), wJ(s) are the weight functions and in this paper we choose Gaussian weight
function (Zhang andYao, 2004).

In Equations (5) and (6), ũi and t̃i on ΓI can be expressed by Equations (7) and
(8) since ΓI is a portion of Γ, but ũi and t̃i on LI has not been defined yet. In
order to solve this problem, we deliberately select hI such that all integrals over
LI vanished. This can be easily accomplished by using the weight function in the
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MLS approximation for hI , with replacing the radius of the support of the weight
function by the radius rI of the sub-domain ΩI , i.e.

hI(Q) =

{
exp[−(dI/cI)2]−exp[−(rI/cI)2]

1−exp[−(rI/cI)2] , 0≤ dI ≤ rI

0, dI ≥ rI
(12)

where dI is the distance between a field point Q and the nodal point sI; cI is a
constant controlling the shape of the function. With hI vanishing at LI , the integrals
over LI in Equations (5) and (6) are zero and the two equations can be rewritten as∫

ΓI

(ti− t̃i)hIdΓ−
∫

ΩI

σi j, jhIdΩ = 0 (13)

∫
ΓI

(ui− ũi)hIdΓ = 0 (14)

The u and t inside the domain can be approximated by fundamental solutions as

u =


u1
u2
u3

 =
N

∑
J=1

uJ
11 uJ

12 uJ
13

uJ
21 uJ

22 uJ
23

uJ
31 uJ

32 uJ
33


xJ

1
xJ

2
xJ

3

 (15)

t =


t1
t2
t3

 =
N

∑
J=1

tJ
11 tJ

12 tJ
13

tJ
21 tJ

22 tJ
23

tJ
31 tJ

32 tJ
33


xJ

1
xJ

2
xJ

3

 (16)

where uJ
i j = ui j(sJ,Q) and tJ

i j = ti j(sJ,Q) are the fundamental solutions; xJ
i are un-

known parameters; N is the total number of boundary nodes for approximation of u
and t and this set of nodes is contained by the set of nodes for MLS approximation,
so we have N ≤ n. For 3D elasticity problems, the fundamental solutions are

uJ
i j =

−1
16πr(1− v)µ

{(3−4v)δi j− r,ir, j} (17)

tJ
i j =

−1
8π(1− v)r2 {[(1−2v)δi j +3r,ir, j]

∂ r
∂n

+(1−2v)(r,in j− r, jni)} (18)

where r = r(sJ,Q) and Q is the field point while sJ is the source point.

From the fundamental solution, one can see that it leads to singularities in the inte-
grals of Equations (13) and (14) if the field point Q and source point sJ are coincide.
The singularities in Equation (14) are weak and can be evaluated directly. However,
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the integrals in Equation (13) are strong singularities, in order to avoid direct nu-
merical integration of these terms, the rigid body movement is utilized (Miao and
Wang, 2006).

By substituting Equations (7), (8), (12), (15) and (16) into Equations (13) and (14),
we can obtain

N
∑

J=1

∫
ΓI

uJ
11 uJ

12 uJ
13

uJ
21 uJ

22 uJ
23

uJ
31 uJ

32 uJ
33


xJ

1
xJ

2
xJ

3

hI(Q)dΓ

=
N
∑

J=1

∫
ΓI

ΦJ(s) 0 0
0 ΦJ(s) 0
0 0 ΦJ(s)


ûJ

1
ûJ

2
ûJ

3

hI(Q)dΓ

(19)

N
∑

J=1

∫
ΓI

tJ
11 tJ

12 tJ
13

tJ
21 tJ

22 tJ
23

tJ
31 tJ

32 tJ
33


xJ

1
xJ

2
xJ

3

hI(Q)dΓ

=
N
∑

J=1

∫
ΓI

ΦJ(s) 0 0
0 ΦJ(s) 0
0 0 ΦJ(s)


t̂J
1

t̂J
2

t̂J
3

hI(Q)dΓ

(20)

Using Equations (19) and (20) for all nodes, the final system equations in matrix
form can be written as

Ux = Hû (21)

Tx = Ht̂ (22)

where

UIJ =
∫

ΓI

uJ
11 uJ

12 uJ
13

uJ
21 uJ

22 uJ
23

uJ
31 uJ

32 uJ
33

hI(Q)dΓ (23)

TIJ =
∫

ΓI

tJ
11 tJ

12 tJ
13

tJ
21 tJ

22 tJ
23

tJ
31 tJ

32 tJ
33

hI(Q)dΓ (24)

HIJ =
∫

ΓI

ΦJ(s) 0 0
0 ΦJ(s) 0
0 0 ΦJ(s)

hI(Q)dΓ (25)

xT = [x1
1,x

1
2,x

1
3, · · · ,xN

1 ,xN
2 ,xN

3 ] (26)

ûT = [û1
1, û

1
2, û

1
3, · · · , ûN

1 , ûN
2 , ûN

3 ] (27)
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t̂T = [t̂1
1 , t̂1

2 , t̂1
3 , · · · , t̂N

1 , t̂N
2 , t̂N

3 ] (28)

For a well-posed problem, either ũi or t̃i are known at each nodes on the boundary.
For the faces where ũi are prescribed, ûI

i can be computed by

ûI
i =

N

∑
J=1

RIJ ũJ
i =

N

∑
J=1

RIJ ūJ
i (29)

and for the faces where t̃i are prescribed, t̂I
i can be computed by

t̂I
i =

N

∑
J=1

RIJ t̃J
i =

N

∑
J=1

RIJ t̄J
i (30)

where RIJ = [ΦJ(sI)]−1 (Atluri, Kim and Cho, 1999).

For a general problem, either ũi or t̃i are known at each node on the boundary and
by rearranging Equations (21) and (22), a final algebraic equation in terms of x only
can be obtained as below:

Ax = d (31)

For the node sI , if ũi is known, select the correspond row in U to A, otherwise,
select the correspond row in T to A, and the corresponding term of d comes from
the matrix-vector product of Hû or Ht̂. Then the unknown vector x is obtained
by solving the final algebraic equation. The nodal values û and t̂ on the boundary
can be computed by the back-substitution of x into Equations (21) and (22), then
use Equations (7) and (8) the displacements and tractions on the boundary can be
obtained. The displacements and tractions at interior points can be evaluated by the
traditional boundary integral equations.

3 The Formulations of Hybrid BNM With FMM

The Hybrid BNM has a dense and unsymmetrical system matrix, which will re-
strict the method in small scale problems if we use the conventional direct solvers,
such as, Gaussian elimination to solve the system matrix. For 3D elasticity, every
node has three degrees of freedom which makes it take more memory and time
than potential problems. It is quite necessary to combine the Hybrid BNM for 3D
elasticity with the FMM, which can dramatically reduce the computational cost. In
this section, the detail of the implementation of FMM techniques in Hybrid BNM
for 3D elasticity is presented.

The FMM is an algorithm which can achieve fast products for particular dense
matrices with vectors, and also reduce the memory complexity. The FMM uses
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multipole expansions to approximate the effects of a distant group of particles (in
Hybrid BNM they are nodes) on a local group, and thus achieve faster summation.
However, it bounds the error analytically and can achieve a certain guaranteed level
of accuracy by determining how many terms in a multipole expansion. The FMM
uses a hierarchical decomposition of space to define ever-larger groups as distances
increase. In 3D problems, an oct-tree is usually employed to decompose the do-
main.

In this paper, in order to utilize the FMM, an iterative equation solver is necessary,
and the restarted preconditioned GMRES (1986) is employed. An adaptive ver-
sion of the FMM (Greegard, 1988) is adopted; a hierarchy of boxes which refine
the computational domain is constructed first. The refinement level 0 contains the
entire computational domain. Refinement level l + 1 is obtained from level l by
subdividing of a box into eight equal boxes. The eight boxes at level l +1 obtained
by subdivision of the box at level l are considered as its children. Stop the sub-
division of a box while the number of nodes included in the box is smaller than a
prescribed number. Delete the child box if it contains no node. A childless box we
call it leaf.

Here we have some definitions first.

Definition 1

Two boxes are said to be neighbors if they are at the same level and share at least a
vertex (and we also said a box is a neighbor of itself).

Definition 2

Two boxes are said to be well separated if they are at the same level but not neigh-
bors.

Definition 3

We said each box b has an interaction list, whose members are the children of the
neighbors of b’s parent which are well separated from box b.

Now consider the formula below, it is the inner product between one row of the
matrix A in Equation (31) and an iteration vector x′ corresponding to the solution
vector x, which is given by either

N

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q) (32)

or

N

∑
J=1

∫
ΓI

tJ
i jhI(Q)x′JidΓ(Q) (33)
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The first formula will be computed for convenience. Suppose that the boundary
node sI belongs to a leaf of boxes in the oct-tree structure. The sum of expression
(32) can be divided into two parts. The first part is the sum of the contributions of
the nodes contained in the neighborhoods of the leaf (we call them near nodes); the
other part is the sum of all the rest nodes (we call them far nodes). The sum of (31)
can be expressed as

N

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q) =

Nnear

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)+

Nfar

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

(34)

where Nnear and Nfar are the numbers of the near nodes and far nodes, respectively.

The sum of the near nodes’ contributions will be computed directly, while the far
nodes’ contributions will be computed by multipole expansion to speed up. Con-
sider a leaf Blocal contains node sI and another leaf B f ar which is on the interaction
list of Blocal contains Nb nodes. The node sJ is one of the Nb nodes.

Bfar

Blocal

center

Is

IΓ
Q

Js

center

 

Figure 1: Conventional evaluation of contribution from node sJ

Figure 1 is the conventional evaluation of the contribution from node sJ . In FM-
HBNM it will be computed indirectly with the tree structure.
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In Hybrid BNM of 3D elasticity, the expansion of the fundamental solution used
in this paper has some difference from that in BEM (Yoshida, Nishimura and
Kobayashi,2001; Liu, Nishimura, Otani and Takahashi, 2005). We will derive the
expansion and all the other formulations needed in the following text.

Start with the following form of the fundamental solution:

uJ
i j = ui j(sJ,Q) =

1
8πµ

(δi j
2

r(sJ,Q)
− λ + µ

λ +2µ

∂

∂Qi

∂

∂Q j
r(sJ,Q)) (35)

Rewrite the above equation as

ui j(sJ,Q) =
1

8πµ
(δi j

2
r(sJ,Q)

− λ + µ

λ +2µ

∂

∂Q j

Qi− sJi

r(sJ,Q)
) (36)

Set the centre of B f ar as the origin of a spherical co-ordinates system (see Figure
2). Since the condition |O1sJ|< |O1Q| holds, the following identity holds:

r(sJ,Q) =
∞

∑
n=0

n

∑
m=−n

Sn,m(
−−→
O1Q)Rn,m(

−−→
O1sJ) (37)

By substituting Equation (37) into Equation (36), one can obtain

ui j =
1

8πµ

∞

∑
n=0

n

∑
m=−n

(Fs
i j,n,m(

−−→
O1Q)Rn,m(

−−→
O1sJ)+Gs

j,n,m(
−−→
O1Q)(

−−→
O1sJ)iRn,m(

−−→
O1sJ))

(38)

where

Fs
i j,n,m(

−→
Ox) =

λ +3µ

λ +2µ
δi jSn,m(

−→
Ox)− λ + µ

λ +2µ
(
−→
Ox)i

∂

∂x j
Sn,m(

−→
Ox) (39)

Gs
j,n,m(
−→
Ox) =

λ + µ

λ +2µ

∂

∂x j
Sn,m(

−→
Ox) (40)

Rn,m(
−→
Ox) =

1
(n+m)!

Pm
n (cosθ)eimϕrn

Sn,m(
−→
Ox) = (n−m)!Pm

n (cosθ)eimϕ 1
rn+1
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Here (r,θ ,ϕ) are the polar coordinates of the point x, Pm
n is the associated Legendre

function and a superposed bar indicates the complex conjugate, respectively.

Similarly, we have

FR
i j,n,m(

−→
Ox) =

λ +3µ

λ +2µ
δi jRn,m(

−→
Ox)− λ + µ

λ +2µ
(
−→
Ox)i

∂

∂x j
Rn,m(

−→
Ox) (41)

GR
j,n,m(
−→
Ox) =

λ + µ

λ +2µ

∂

∂x j
Rn,m(

−→
Ox) (42)

The functions Rn,m and Sn,m satisfy the relations given by the next two equations.

If
−→
Ox and

−→
Oy are two vectors such that |−→Oy|< |−→Ox|, then

Sn,m(−→yx) =
∞

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−→
Oy)Sn+n′,m+m′(

−→
Ox) (43)

If
−→
Ox and

−→
Oy are two arbitrary vectors, then

Rn,m(−→yx) =
n

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−→
yO)Rn−n′,m−m′(

−→
Ox) (44)

Using Equation (38), the sum in Equation (34) for the nodes included in B f ar can
be expressed by

Nb

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n=0

n

∑
m=−n

(
∫

ΓI

Fs
i j,n,m(

−−→
O1Q)hI(Q)dΓ(Q)M1

i,n,m(O1)

+
∫

ΓI

Gs
j,n,m(
−−→
O1Q)hI(Q)dΓ(Q)M2

i,n,m(O1))

(45)

where M1
i,n,m(O1) and M2

i,n,m(O1) are multipole moments centered at O1, expressed
as

M1
i,n,m(O1) =

Nb

∑
J=1

Rn,m(
−−→
O1sJ)x′Ji (46)

M2
i,n,m(O1) =

Nb

∑
J=1

(
−−→
O1sJ)iRn,m(

−−→
O1sJ)x′Ji (47)
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Figure 3: Co-ordinate system for local expansion
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Move the origin of the spherical co-ordinate system to Blocal’s center (see Figure
3). The Equation (43) is used to obtain the following series

Fs
i j,n,m(

−−→
O1Q)

=(−1)n
∞

∑
n′=0

n′

∑
m′=−n′

Sn+n′,m+m′(
−−−→
O2O1)(

λ +3µ

λ +2µ
δi jRn′,m′(

−−→
O2Q)

+
λ + µ

λ +2µ
(
−−−→
O2O1) j

∂

∂xi
Rn′,m′(

−−→
O2Q)− λ + µ

λ +2µ
(
−−→
O2Q) j

∂

∂xi
Rn′,m′(

−−→
O2Q))

(48)

Gs
j,n,m(
−−→
O1Q)

= (−1)n
∞

∑
n′=0

n′

∑
m′=−n′

Sn+n′,m+m′(
−−−→
O2O1)

λ + µ

λ +2µ

∂

∂x j
Rn′,m′(

−−→
O2Q)

(49)

Substituting Equations (48) and (49) into Equation (45), we can obtain

Nb

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

∫
ΓI

FR
i j,n′,m′(

−−→
O2Q)hI(Q)dΓ(Q)L1

i,n′,m′(O2)

+
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

∫
ΓI

GR
j,n′,m′(

−−→
O2Q)hI(Q)dΓ(Q)L2

i,n′,m′(O2)

(50)

where

L1
i,n′,m′(O2) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sn+n′,m+m′(
−−−→
O1O2)M1

i,n,m(O1) (51)

L2
i,n′,m′(O2) =

∞

∑
n=0

n

∑
m=−n

(−1)n′Sn+n′,m+m′(
−−−→
O1O2)(M2

i,n,m(O1)− (
−−−→
O1O2)iM1

i,n,m(O1))

(52)

The above two equations are known as the multipole to local (M2L) translation (see
Figure 3).

It has been so far discussed the evaluation of influences of a cluster of far nodes
included in a leaf B f ar on a node of another leaf Blocal , where B f ar is on Blocal’s
interaction list.
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If B f ar’s parent belongs to the interaction list of Blocal’s parent (see Figure 4), we
first translate the multipole moments about the center of B f ar to the center of B f ar’s
parent by using the following two equations, which can be obtained from Equations
(44), (46) and (47):

M1
i,n,m(O′) =

n

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−−→
O′O)M1

i,n−n′,m−m′(O) (53)

M2
i,n,m(O′) =

n

∑
n′=0

n′

∑
m′=−n′

Rn′,m′(
−−→
O′O)(M2

i,n−n′,m−m′(O)−(
−−→
OO′)iM1

i,n−n′,m−m′(O)) (54)

The above two equations are known as multipole to multipole (M2M) translation.

Bfar
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M2M=Multipole to multipole translation

M2L=Multipole to local translation
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Figure 4: Conversions of multipole to local expansions

Then by using Equations (51) and (52), we translate the multipole moments about
the center of B f ar’s parent to the local moments of Blocal’s parent. Finally the center
of the local moments will be shift from the center of Blocal’s parent to Blocal . It can
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be obtained from Equations (44) and (50):

Nb

∑
J=1

∫
ΓI

uJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n=0

n

∑
m=−n

A1
i j,n′,m′L

1
i,n′,m′(O3)+

1
8πµ

∞

∑
n′=0

n′

∑
m′=−n′

A2
j,n′,m′L

2
i,n′,m′(O3)

(55)

where

A1
i j,n′,m′ =

∫
ΓI

FR
i j,n′,m′(

−−→
O3Q)hI(Q)dΓ(Q) (56)

A2
j,n′,m′ =

∫
ΓI

GR
j,n′,m′(

−−→
O3Q)hI(Q)dΓ(Q) (57)

L1
i,n′,m′(O3) =

∞

∑
n=n′

n

∑
m=−n

Rn−n′,m−m′(
−−−→
O2O3)L1

i,n,m(O2) (58)

L2
i,n′,m′(O3) =

∞

∑
n=n′

n

∑
m=−n

Rn−n′,m−m′(
−−−→
O2O3)(L2

i,n,m(O2)− (
−−−→
O2O3)iL1

i,n,m(O2)) (59)

The above Equations (58) and (59) are used to shift the center of the local moments
from the center of Blocal’s parent to Blocal , which are known as local to local (L2L)
translation.

If B f ar’s grandparent belongs to the interactions list of Blocal’s grandparent, we first
translate the multipole moments M1

i,n,m and M2
i,n,m from the centre of B f ar to the

centre of B f ar’s parent, then from the centre of B f ar’s parent to the centre of B f ar’s
grandparent by Equations (53) and (54). Then, we convert the multipole moments
M1

i,n,m and M2
i,n,m into L1

i,n,m and L2
i,n,m from the centre of B f ar’s grandparent to the

centre of Blocal’s grandparent by Equations (51) and (52). Finally, we translate the
local moments L1

i,n,m and L2
i,n,m from the centre of Blocal’s grandparent to the centre

of Blocal’s parent, and next to the centre of Blocal , by Equations (58) and (59). In
general, if one of B f ar’s ancestors at level l belongs to the interaction list of one of
Blocal’s ancestors, the above process is repeated recursively until level l.

The process for computing the sum (33) is exactly the same as the sum (32). Using
the relation between tJ

i j and uJ
i j:

tJ
i j(sJ,Q) =

∂

∂Ql
uJ

ik(sJ,Q)ckl p jnp(Q) (60)

where

ckl p j = λδklδp j + µ(δkpδl j +δk jδl p)
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it can obtain exactly the same formulations about the multipole moments and M2M,
M2L and L2L translations, and Equation (55) is replaced by

Nb

∑
J=1

∫
ΓI

tJ
i jhI(Q)x′JidΓ(Q)

=
1

8πµ

∞

∑
n′=0

n′

∑
m′=−n′

B1
i j,n′,m′L

1
i,n′,m′(O2)+

1
8πµ

∞

∑
n′=0

n′

∑
m′=−n′

B2
j,n′,m′L

2
i,n′,m′(O2)

(61)

where

B1
i j,n′,m′ =

∫
ΓI

∂

∂Ql
FR

ik,n′,m′(
−−→
O2Q)ckl p jnp(Q)hI(Q)dΓ(Q) (62)

B2
j,n′,m′ =

∫
ΓI

∂

∂Ql
GR

k,n′,m′(
−−→
O2Q)ckl p jnp(Q)hI(Q)dΓ(Q) (63)

In practical computations, the sum in the infinite series (51), (52), (53), (54), (55),
(58), (59) and (61) are truncated after p terms. The estimation of errors and proofs
can be found in the work of Greegard (1988).

4 The Algorithm for FM-HBNM

In this section, the detail of the procedure for the algorithm proposed is summa-
rized. The restarted preconditioned GMRES is employed as the iterative equation
solver. An adaptive version of the FMM (Greegard, 1988) with a hierarchy of boxes
which refine the computational domain is used.

Step 1: Discretization: Create nodes which disturbed on the boundary of the do-
main in the same manner as in the original Hybrid BNM.

Step 2: Construction of oct-tree structure: Consider a smallest cube that can contain
the entire domain needed to compute. Use it as the root box (which is considered
as level 0) of the hierarchical decomposition of the domain. Choose the maximum
number of nodes contained in a leaf. Construct the hierarchy of boxes using an
oct-tree data structure.

Step 3: Determination of matrixes associated with some boxes: Choose the desired
multipole expansion order p. With each box that l > 1, associate six p× p matrixes
which describe the multipole moments M1

i,n,m and M2
i,n,m about the box center. With

each box that l > 2, associate six p× p matrixes which describe the multipole mo-
ments L1

i,n,m and L2
i,n,m about the box center. With each leaf associate two matrices

of size p× p× 3× 3×Nb described A1
i j,n′,m′ and B1

i j,n′,m′ and two matrices of size
p× p×3×Nb described A2

j,n′,m′ and B2
j,n′,m′ , where Nb is the number of nodes con-

tained in that leaf. Associate other two matrices UL and TL of size 3×3×Nb×Nn
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to the leaf described the near-field coefficients of U and T which will be computed
directly, with Nn being the number of nodes contained in the neighborhood of that
leaf.

Step 4: Computational of the integral associated with leaf : For each leaf, compute
UL, TL, A1

i j,n′,m′ , A2
j,n′,m′ , B1

i j,n′,m′ and B2
j,n′,m′ by Equations (23), (24), (56), (57), (62)

and (63), respectively.

Step 5: computation of the multipole moments (upward): For an iteration vector x′Ji
form multipole moments M1

i,n,m and M2
i,n,m about the centre of each leaf from all the

nodes included in that leaf by Equations (46) and (47). Now consider a non leaf box
of level l. Compute multipole moments M1

i,n,m and M2
i,n,m about the centre of each

box at level l by merging multipole moments from its children using Equations (53)
and (54) (M2M in Figure 4). This procedure is repeated for l ≥ 2 tracing the tree
structure of boxes obtained in step upward (decreasing l).

Step 6: Computation of the coefficients of the local expansions (downward): Con-
sider boxes at level l from level 2 to the finest level. For each box a at level l,
convert the multipole moments M1

i,n,m and M2
i,n,m of each box b in the interaction

list of box a to a local expansion about the centre of box a, using Equations (51)
and (52) (M2L in Figure 4).

If l > 2, then shift the local expansion of a’s parent to itself, using Equations (58)
and (59) (L2L in Figure 4).

Add these two local expansions together.

Step 7: Evaluation of the integral in sum (32) and (33): The contribution of the
far field is computed by Equations (55) and (61) while the contribution of the near
field deduced by the nodes contained in the neighborhood of the leaf is computed
directly. Add the two parts.

Step 8: Update: Update the candidate vector and go back to step 5.

In the above algorithm, the multipole and local moments associated with a box at
each level are reused to the full extent. The local expansion of a leaf is reused for all
the nodes belonging to the leaf in Equations (55) and (61); and in the conversion of
multipole moments into a local expansion (Equations (51) and (52)), the multipole
moments of a box is repeatedly used for the boxes whose interaction list contains
that box.

5 Numerical Results

The proposed techniques have been implemented in C++. In this section, three
numerical examples are presented to demonstrate the performance of the method.
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For the purpose of error estimation, a formula is defined as

e =
1
|u|max

√
1
N

N

∑
i=1

(u(e)
i −u(n)

i )2 (64)

where u(e)
i and u(n)

i refer to the exact and numerical solutions respectively and |u|max
is the maximum value of uover N nodes.

In all three examples, the properties are given by: Young’s modules E=1.0 and
Poisson’s ratio v=0.25. The problems are solved using two solvers: direct (Gaus-
sian elimination method) and indirect (FMM). The Gaussian elimination method is
adopted when it is capable of solving the problem. In the FMM, a restarted pre-
conditioned GMRES(m) with m=25 is employed as the preconditioner being the
inverse of the blocked diagonal matrix corresponding to the nodes in leaves. All
the infinite expansions are truncated after p=8 and the maximum number of bound-
ary nodes in a leaf box is set to be 60. The iteration is terminated when the relative
error is less than 10−5. All the computations are performed on a PC with a 2.67
GHz CPU and 2.0 GB RAM.

5.1 One-dimensional strain problem

Figure 5 describes the one-dimensional strain problem in a cube. The cube is
bounded by the planes x = ±1,y = ±1,z = ±1. In Figure 5, the boundary con-
ditions on the faces are:

On the face z = 1: uz = 0, tx = 0 and ty = 0;

On the face y = 1: uy = 0, tx = 0 and tz = 0;

On the face x =−1: ux = 0, ty = 0 and tz = 0;

On the face x = 1: tx = σ0 = 1.0, ty = 0 and tz = 0;

On the other faces: tx = 0, ty = 0 and tz = 0.

Table 1: Results for the one-dimensional strain problem
DOF Levels Iterations TFMM(s) Tdir(s) EFMM Edir T_iter(s)
1 800 3 24 35 7 4.1×10−4 4.1×10−4 1.5
4 050 3 31 43 85 2.7×10−4 2.7×10−4 1.4
7 200 4 38 64 477 2.3×10−4 2.3×10−4 1.7
16 200 4 46 197 (5 440) 2.1×10−4 —— 4.3
28 800 5 56 553 (30 565) 1.3×10−4 —— 9.9
64 800 5 62 963 (347 130) 9.6×10−5 —— 15.5
115 200 6 68 2 796 (1 956 191) 6.8×10−5 —— 41.1
180 000 6 76 4 023 (7 462 277) 4.9×10−5 —— 52.9
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Figure 5: One-dimensional strain problem

Table 1 shows the results of the one-dimensional strain problem solved by direct
and indirect solvers. The first, second and third columns list the degrees of freedom
(DOF), number of levels used in the multipole hierarchy, and number of iterations
of GMRES, respectively. The fourth and fifth columns indicate the time consump-
tion of FM-HBNM and the conventional Hybrid BNM with direct solver. Only the
cases, of which the unknowns are less than 10000, were considered in the computa-
tion when the direct solver was used. The stated times in parentheses are estimated
by extrapolation. In the sixth and seventh columns, the relative errors of ux are pre-
sented. The relative error is evaluated over 20 sample points uniformly distributed
along a line segment from (0.0, 0.0, 0.0) to (1.0, 0.0, 0.0). In the eighth column, the
time of FM-HBNM for per iteration is presented. From Table 1, we can see that
when the DOF is more than 4050, the FM-HBNM has an advantage over the con-
ventional Hybrid BNM. The results demonstrate that the FM-HBNM is extremely
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effective for large-scale computation and the computational cost is nearly propor-
tional to the problem size. It can also be concluded that FM-HBNM overcomes the
restriction of the memory.

5.2 Thick-walled cylindrical pressure vessel

The problem of a thick-walled pressure vessel provides another test case for the
validation of the FM-HBNM. Consider a thick-walled cylinder with an open end as
shown in Figure 6(a). It is loaded by internal pressure pi and external pressure po

as shown in Figure 6(b). It has inner radius ri and outer radius ro.

ir
or

ip

op

 
Figure 6: Thick-walled cylindrical pressure vessel

The analytical solution for the circumferential stress (σθ ) of a thick-walled cylin-
drical pressure vessel is

σθ =− r2
i r2

o

r2
o− r2

i

po− pi

r2 +
r2

i pi− r2
o po

r2
o− r2

i
(65)

The problem was solved with ri = 10, r0 = 25, h = 10, po = 0, pi = 10. Due to the
symmetry, only one quarter of the geometry is considered (see Figure 6(c)).

The results of the thick-walled cylindrical pressure vessel problem are shown in Ta-
ble 2, which has the same structure as Table 1. In the sixth and seventh columns, the
relative error of σθ is evaluated over 20 sample points uniformly distributed along
the radius from 10 to 25 and the high accuracy of FM-HBNM can be observed. In
Table 2, it can be seen that when the DOF is more than 1878, the FM-HBNM is
more effective than the conventional Hybrid BNM. Compare the results in Table 1
with that in Table 2, we can see that there is a little difference in the last columns.
In Table 1, the time consumption per iteration for the case of 1800 DOF is much
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Table 2: Results for the thick-walled cylindrical pressure vessel problem
DOF Levels Iterations TFMM(s) Tdir(s) EFMM Edir T_iter(s)
1 878 4 25 6 8 9.3×10−3 9.3×10−3 0.24
5 154 5 22 29 172 5.1×10−3 5.1×10−3 1.3
11 724 5 23 129 (2 024) 3.2×10−3 —— 5.6
20 496 6 33 234 (10 816) 2.4×10−3 —— 7.1
46 050 6 37 830 (122 682) 1.5×10−3 —— 22.4
81 786 7 40 987 (687 277) 1.1×10−3 —— 24.7
183 876 7 52 3 863 (7 810 347) 7.6×10−4 —— 74.3

larger than that of 1878 DOF in Table 2. One of the reasons may due to the numbers
of boxes in the interaction lists. In the first case, the max number of boxes in the
interaction lists is 49 while that is 8 in the second case. Actually, if one truncates
the infinite series in the multipole expansion taking p terms then the computational
costs for M2M, M2L and L2L translations are proportional to O(p4), O(np4) and
O(p4), respectively, where n is the number of boxes in the interaction list. In the
worst case, n will be 189 and the M2L translation would be the bottleneck in the
algorithm of FMM. This may explain the results discussed above. However, Green-
gard and Rokhlin (1997) have developed a new version of FMM, in which they use
a new diagonal form for translation operators and further reduce the computational
cost of M2L translation to O(p3).

5.3 Cubes with holes

In order to show the advantages of FM-HBNM further, the third example deals with
complicated geometries. The models are cubes with different number of spherical
holes, which are distributed uniformly (Figure 7) or randomly (Figure 8). Models
of the cubes with increasing number of holes, are considered. Each model of the
cube has the same dimension of 2×2×2, containing a total of m×m×m holes, with
m=2, 4, 6, 8, 10 and 12. The radiuses of the holes are 0.4/m for the models contain
m×m×m holes. In each model, only unit displacement along the direction of the
outer normal is applied on the boundary of the cube (the boundary conditions of the
other directions are traction-free). Traction-free boundary conditions are applied on
all edges of the holes.

Table 3 shows the results of different cases for cubes with holes by FM-HBNM.
The first, second and third columns list the number of holes, the total DOF and
the different models (uniformly distributed holes or randomly distributed holes),
respectively. The fourth and fifth columns indicate the number of levels used in the
multipole hierarchy and iteration steps of GMRES. In the sixth column, the total
time consumption of FM-HBNM is presented. From Table 3, one can observe that
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Figure 7: A cube with 1728 uniformly distributed holes

Table 3: Results for FM-HBNM for cubes with many holes

Holes DOF Case Levels Iterations TFMM(s)

8 5 928
uniform 3 12 24
random 4 16 35

64 34 824
uniform 4 16 549
random 5 18 470

216 113 256
uniform 6 16 1 108
random 6 19 1 442

512 265 992
uniform 6 16 4 388
random 6 19 3 623

1000 517 800
uniform 7 19 7 898
random 7 20 7 274

1728 893 448
uniform 7 23 14 941
random 7 21 13 114
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Figure 8: A cube with 1728 randomly distributed holes

the algorithm proposed converged fast: in the largest model with a total DOF of
893448, the iteration steps are 23 and 21 for the uniform case and random case,
respectively. Figure 9 shows the CPU time per iteration with different number of
unknowns.

6 Conclusions and Discussion

In this paper, the FMM has been successfully implemented into the Hybrid BNM
for 3D elasticity problems. Formulations for the local and multipole expansions and
the conversion of multipole to local expansion are presented. The proposed tech-
niques have been implemented in C++. Three numerical examples are presented to
demonstrate the nearly linear complexity of the FM-HBNM and high accuracy.

The FM-HBNM for 3D elasticity in this paper retains the advantages of both the
meshless method and the fast solver. It not only can save computing time and mem-
ory, but also can simplify the discretization tasks for problems with complicated ge-
ometries. Therefore, the proposed method is especially applicable for large-scale
problems and problems with complicated geometries. The research work in this
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Figure 9: CPU time (sce) per iteration with different number of unknowns

paper is a basis for the implementation of the FM-HBNM for 3D elasticity to more
complex problems.

As it can be seen in the numerical examples, the conventional FMM used in this
paper has one bottleneck, that is, the M2L translation. The new version of FMM can
further reduce the computational time of the M2L translation. The incorporation of
the new FMM into Hybrid BNM is a subject of our future research.
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