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Development of Intrinsic Formulation of W.-Z. Chien of
the Geometrically Nonlinear Theory of Thin Elastic Shells

W. Pietraszkiewicz1

Abstract: Chien Wei-Zhang (1944) derived three equilibrium equations and three
compatibility conditions of the nonlinear theory of thin, isotropic elastic shells en-
tirely in terms of the surface stress and strain measures associated with the shell
base surface. This allowed Him to divide the complex boundary value problem
(BVP) of nonlinear shell analysis into two disjoint and supposedly simpler steps: I)
finding the surface stress and strain measures from the intrinsic BVP, and II) estab-
lishing position in space of the deformed base surface from already known surface
strain measures. In the present paper some achievements of this formulation ob-
tained during the last 66 years are reviewed, with special account of the results
obtained by the author.
In the first part, using the error of the constitutive equations, we remind some con-
sistent intrinsic BVPs proposed in the literature. These are, in particular: 1) the
intrinsic BVP in terms of the surface strain measures, 2) the refined intrinsic BVP
in terms of the surface stress resultants and the surface bendings, 3) the almost inex-
tensional bending BVP, 4) the almost membrane BVP, and 5) the intrinsic bending
BVP reduced to two PDE for the stress and deformation functions. The alternative
set of the refined intrinsic shell equations formulated in the rotated surface base is
also presented. All discussed BVPs contain the corresponding natural intrinsic and
deformational boundary conditions.
In the second part, recent achievements on determination of position in space of
the deformed shell base surface from the surface strains and bendings are reviewed.
Three methods of finding such a position are presented: a) by direct solving some
vector ODE, b) through establishing the surface deformation gradient, and c) ap-
plying the right polar decomposition to the deformation gradient and then solving
some ODE for the rotation tensor field.
Finally, we briefly discuss some problems related to the intrinsic formulation of
thin shell theory. These are: i) determination of position of a surface in space from
components of two fundamental forms, ii) bifurcation buckling of the axially com-
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pressed circular cylinder, iii) determination of position of the deformed shell base
surface from the surface strains and a height function, and iv) basic assumptions of
the special class of flexible shells.
In conclusion, two open problems of the intrinsic nonlinear theory of shells are
pointed out.

Keywords: thin shell, nonlinear theory, intrinsic formulation, equilibrium equa-
tions, compatibility conditions, position of surface.

1 Introduction

The term “intrinsic theory of shells” was introduced by Synge and Chien (1941)
for the formulation of nonlinear boundary value problem (BVP) of thin, isotropic
elastic shells expressed in terms of two-dimensional (2D) strains and bendings of
the shell base surface alone. In this way the solution process of the nonlinear shell
BVP was divided into two steps, in which the solution of intrinsic shell equations
for the surface strains and bendings was disjoined from finding translations of the
shell base surface. Roots of such formulation within the linear shell theory can
be traced back to the paper by Reissner (1912) on the spherical shell and to Lur’e
(1940), who formulated the equilibrium equations and compatibility conditions in
the invariant tensor notation.

In the following paper Chien (1944) expanded all 3D fields of nonlinear elastic-
ity into the normal coordinate and used order-of-magnitude estimates valid under
assumptions of small 3D strains and small shell thickness. As a result, consis-
tently approximated three non-linear equilibrium equations and three compatibility
conditions were derived in terms of the surface strains and bendings of the base sur-
face alone. These two sets of equations were then considered by Chien (1944) on
an equal footing. Under additional assumptions about orders of curvatures, strains
and bendings of the shell midsurface relative to the small shell thickness, 35 types
of simplified approximate versions of the intrinsic shell equations and 12 simplified
versions of intrinsic plate equations were given. Some of them became linear, but
some remained nonlinear in the surface strain measures. This formal mathematical
classification revealed that the behavior of thin shell structures may be governed by
a variety of systems of PDE depending on the type of shell problem under consid-
eration.

Generality of the intrinsic formulation of the nonlinear theory of shells gained con-
siderable attention among leading shell specialists of those post-war times. But it
was soon recognized that only some shell problems can be formulated and solved
directly in the intrinsic form, primarily because the corresponding intrinsic bound-
ary conditions were not formulated by Chien (1944). In engineering applications
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it was difficult to predict in advance the orders of 2D strains and bendings in the
whole shell region and to choose correctly one of 35 approximate versions of the
shell equations most appropriate for the solution of problem at hands. Moreover,
Goldenveiser and Lur’e (1947) noted that when the shell thickness tends to zero
some 3D fields in the limit may change their orders upon surface differentiation
(for example, in the boundary zone or at asymptotic lines of the midsurface). Such
an assumption was not used by Chien (1944). Mushtari (1949a) proposed simpler
classification using notions of the small or medium bending and the small, moder-
ate, or finite curvature of the midsurface, which led to only six versions of nonlinear
intrinsic shell equations more understandable to the engineering shell community.
Mushtari (1949a,b) also proposed intrinsic relations describing the nonlinear edge
effect in thin shells under small and large bending. Finally, many shell problems
require the translations of the shell midsurface as the final outcome of the solution,
not only the strains and bendings. But the problem how to recover the translation
field from known surface strains and bendings was not discussed by Chien (1944)
as well.

In the present paper we review and summarize some achievements of intrinsic for-
mulation of the nonlinear theory of thin, isotropic elastic shells which have been
obtained during the last 66 years, with special reference to the results obtained by
the author.

2 Notation and basic shell relations

Let P be a region of the three-dimensional (3D) Euclidean point space E occupied
by the shell in its undeformed configuration. In P we introduce the normal system
of curvilinear coordinates (θ α ,ζ ) , α = 1,2, such that −h/2 ≤ ζ ≤ h/2 is the
distance from the shell middle surface M to points in P , and h is the undeformed
shell thickness assumed here to be constant. The surface M is described by the
position vector r = r(θ α) relative to a point O ∈ E . With each point M ∈M we
associate the natural covariant base vectors aα = ∂/∂θ α(r) ≡ r,α , the covariant
components aαβ = aα ·aβ of the surface metric tensor a with a = det(aαβ ) > 0, the
contravariant components εεεαβ of the surface permutation tensor ε such that ε12 =
−ε21 = 1/

√
a, ε11 = ε22 = 0, the unit normal vector n = 1/2εαβ aα ×aβ orienting

M , and the covariant components bαβ =−aα ·n,β of the surface curvature tensor
b. The contravariant components aαβ of a satisfying the relations aαγaβγ = δ α

β
are

used to raise indices of components of the surface vectors and tensors.

The boundary contour ∂M of M consists of a finite number of piecewise smooth
Jordan curves given by r(s) = rα [θ(s)], where s is the arc length along ∂M . With
each regular point M ∈ ∂M we associate the unit tangent vector τττ = dr/ds ≡
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r′ = ταaα and the outward unit normal vector ννν ≡ r,ν = τττ ×n = ναaα . For other
geometric definitions and relations we refer to Eisenhart (1947); Green and Zerna
(1968); Chernykh (1964); Pietraszkiewicz (1977,1980a).

The deformed configuration M of the surface M is described by the position vec-
tor r̄(θ α) = χ[r(θ α)] = r(θ α) + u(θ α) relative to the same point O ∈ E , where
θ α are the same surface curvilinear convected coordinates, and u is the transla-
tion field. In the convected coordinates all geometric quantities and relations on
the deformed surface M are defined analogously as their counterparts in the unde-
formed configuration; they will be marked here by an additional dash, for example
āα , āαβ , b̄αβ , n̄, ν̄νν , τττ, etc. The dashed quantities on M can be expressed through
analogous undashed quantities defined on M and the translation field u with the
help of formulae given, for example, in Pietraszkiewicz (1980a,1989).

The deformation of the shell base surface from M to M is described by the surface
Green type strain tensor γγγ and the bending tensor κκκ defined through their covariant
components by

γαβ =
1
2
(
āαβ −aαβ

)
, καβ =−

(
b̄αβ −bαβ

)
. (1)

The surface strain measures (1) have to satisfy the following exact compatibility
conditions, see Chien (1944); Galimov (1953); Koiter (1966):

ε
αβ

ε
λ µ
[
κβλ |µ + āκρ (bκλ −κκλ )γρβ µ

]
= 0 ,

ε
αβ

ε
λ µ

[
γαµ|βλ −bαµκβλ +

1
2
(
καµκβλ + āκρ

γκαµγρβλ

)]
+Kγ

κ
κ = 0 ,

(2)

where K is the Gaussian curvature of M , (.)|α is the covariant derivative in the
metric aαβ , and γρβ µ = γρβ |µ + γρµ|β − γβ µ|ρ .

Applying order estimates of many small terms, Chien (1944) confirmed the as-
sumption used already by Aron (1874) that within the geometrically nonlinear
range of deformation the behavior of an interior domain of a thin elastic shell
can be described with a sufficient accuracy by the behavior of the shell middle
surface alone. This physically well understood property of shell deformation was
used in many later papers to formulate various versions of the nonlinear theory of
thin elastic shells, see for example Galimov (1951); Sanders (1963); Koiter (1966);
Pietraszkiewicz (1974,1980a,1984), and the survey by Pietraszkiewicz (1989).

Let the base surface M of a deformed shell in an equilibrium state be loaded by the
surface force p(θ α) = pα āα + pn̄ and static moment h = mα āα vectors, both per
unit area of M , and by the boundary force N∗(s) = N∗νν̄νν + N∗τ τ̄ττ + N∗n̄ and static
moment H∗(s) = M∗νν̄νν + M∗τ τ̄ττ vectors, both per unit length of ∂M f . Then for all
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kinematically admissible virtual translations δu the equilibrium conditions for M
are given by the principle of virtual work (PVW),

∫∫
M

(
Nαβ

δγαβ +Mαβ
δκαβ

)
dA

=
∫∫

M
(p ·δu+h ·δ n̄)dA+

∫
∂M f

(N∗ ·δu+H∗ ·δ n̄)ds . (3)

Here Nαβ and Mαβ are components of the symmetric surface stress resultants and
couples of the Kirchhoff type, while δγαβ and δκαβ are virtual changes of the
surface strain measures (1).

The principle (3) can be transformed with the help of Stokes’ theorem in M and in-
tegration by parts along ∂M , which leads to, see Galimov (1951); Pietraszkiewicz
(1989),

−
∫∫

M

(
Tβ |β + p+(mβ n̄)|β

)
·δudA+ ∑

Mn∈∂M f

(ΦΦΦn−ΦΦΦ
∗
n) ·δun

+
∫

∂M f

[(
Tβ

νβ +ΦΦΦ
′+mβ

νβ n̄−N∗−ΦΦΦ
′∗
)
·δu+(K−M∗ν)ν̄νν ·δ n̄

]
ds = 0 , (4)

where

Tβ =
(

Nαβ − b̄α

λ
Mλβ

)
āα +

(
Mαβ |α + āβκ

γκλ µMλ µ

)
n̄ ,

ΦΦΦ =
1
a2

τ

ννναMαβ āβλτττ
λ n̄ , ΦΦΦ

∗ =
1
aτ

M∗τ n̄ , K =
1
aτ

√
ā
a

ννναMαβ
νννβ ,

ΦΦΦn = ΦΦΦ(sn +0)−ΦΦΦ(sn−0) , δun = δu(sn) ,

aτ =
√

1+2γττ , γττ = γαβτττ
α

τττ
β .

(5)

For any kinematically admissible δu from (4) the following vector equilibrium
equations, natural boundary conditions, and natural conditions at the boundary cor-
ners can be derived, see Pietraszkiewicz (1989); Opoka and Pietraszkiewicz (2004):

Tβ |β +p+(mβ n̄)|β = 0 in M ,

Tβ
νννβ +ΦΦΦ

′+mβ
νννβ n̄−N∗−ΦΦΦ

′∗ = 0 , K−M∗ν = 0 along ∂M f ,

ΦΦΦn−ΦΦΦ
∗
n = 0 at each corner Mn ∈ ∂M f .

(6)

With (5)1 the equilibrium equations (6)1, when written in components relative to
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the deformed basis āα , n̄, become(
Nαβ − b̄α

κ Mκβ

)
|β + āακ

γκλβ

(
Nλβ − b̄λ

µMµβ

)
− b̄α

β

(
Mλβ |λ + āβκ

γκλ µMλ µ

)
+ pα − b̄α

β
mβ = 0 ,

Mαβ |αβ +
(

āβκ
γκλ µMλ µ

)
|β + b̄αβ

(
Nαβ − b̄α

κ Mκβ

)
+ p+mβ |β = 0 .

(7)

Please note that the equilibrium equations (7) and components of the natural bound-
ary conditions (6)2,3 in the deformed boundary base ν̄νν , τ̄ττ, n̄ are expressible entirely
through the surface stress and strain measures as well as known load components.
It can easily be shown that all 35 versions of the equilibrium equations of Chien
(1944) are just appropriately simplified versions of (7).

The natural boundary quantities (6)2,3 perform in (4) the virtual work on δu and
ν̄νν ·δ n̄, respectively, not on kinematic quantities expressed through δγαβ and δκαβ

alone. Pietraszkiewicz (1980a,b) applied twice the integration by parts to the bound-
ary terms in (4). After transformations given in Pietraszkiewicz (1989) and Opoka
and Pietraszkiewicz (2004) the boundary integral in (4) was replaced by

−
∫

∂M f

[
(B−B∗) ·ωωω ′τ +

1
aτ

(A−A∗) · τ̄ττ δγττ

]
ds

+ ∑
Mn∈∂M f

{[(ΦΦΦn−ΦΦΦ
∗
n)− (An−A∗n)] ·δun− (Bn−B∗n) ·ωωωτn} ,

(8)

where

A = A0 +
∫ s

s0

(
Tβ

νννβ +ΦΦΦ
′+mβ

νννβ n̄
)

ds , ωωωτn = ωωωτ(sn) ,

B(O) = B0(O)+
∫ s

s0

[
r̄×
(

Tβ
νννβ +ΦΦΦ

′+mβ
νννβ n̄

)
+Kτ̄ττ

]
ds− r̄×A .

(9)

In (9), A and B(O) are the total force and the total couple about the origin O ∈ E
of internal interactions along ∂M , while A0 and B0(O) are their initial values at
s0 ∈ ∂M , respectively.

In (8), the virtual rotation vector ωωωτ along ∂M follows from the relations, see
Pietraszkiewicz (1989),

Rτ = ν̄νν⊗ννν + τ̄ττ⊗τττ + n̄⊗n , RT
τ Rτ = kτ ×1 , δRT

τ Rτ = ωωωτ ×1 ,

kτ =−kττννν + kνττ− knτn , ωωω
′
τ =−δkττν̄νν +δkνττ̄ττ−δknτ n̄ ,

kντ = kαβννν
α

τττ
β , etc.

(10)
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The vector kτ of change of curvature of the shell boundary contour was first intro-
duced by Novozhilov and Shamina (1975), and with components expressed through
physical components of γαβ and καβ along ∂M by Pietraszkiewicz (1977,1980a).
It is expressed entirely through the surface strain measures. Now the deformational
boundary conditions appropriate for the intrinsic shell equations take the form

kττ = k∗ττ , kντ = k∗ντττ , knτ = k∗nτ , γττ = γ
∗
ττ along ∂Md . (11)

All the relations (3) to (11) are two-dimensionally exact for the shell base surface.

An alternative intrinsic theory for nonlinear dynamics of double curved shells was
proposed by Libai (1981,1983).

3 Constitutive equations of the first-approximation theory of shells

The geometrically nonlinear first-approximation theory of thin elastic shells is ap-
plicable when:

1. the shell is made of a homogeneous, isotropic and elastic material;

2. the shell is thin, i.e. h/R << 1, where h is the constant thickness of the unde-
formed shell and R is the smallest radius of curvature of its middle surface;

3. the undeformed shell middle surface is smooth, i.e. (h/l)2 << 1, where l is
the smallest wave length of geometric patterns of M ;

4. the shell deformation is smooth, i.e. (h/L)2 << 1, where L is the smallest
wave length of deformation patterns on M ;

5. the strains are small everywhere , i.e. η << 1, where η is the largest strain
in the shell space.

Within the assumptions given above, the strain energy density Σ, per unit area of
M , is given by the sum of two quadratic functions describing the stretching and
bending energies associated with the shell middle surface. The accuracy of such an
approximation was discussed in a number of papers, among others by Novozhilov
and Finkel’shtein (1943) and Koiter (1960), leading to the strain energy density of
the form

Σ =
h
2

Hαβλ µ

(
γαβ γλ µ +

h2

12
καβ κλ µ

)
+O

(
Ehη

2
θ

2) . (12)

Here the symbol O(. . .) describes the order of maximal error and

Hαβλ µ =
E

2(1+ννν)

(
aαλ aβ µ +aαµaβλ +

2ννν

1−ννν
aαβ aλ µ

)
, (13)
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θ = max

(
h
d
,
h
l
,

h
L

,

√
h
R

,
√

η

)
,

where E is the Young modulus and ννν is the Poisson ratio of the isotropic linearly-
elastic material, while d is the distance from the lateral shell boundary. From (12)
follow the constitutive equations

Nαβ = C
[
(1−ννν)γ

αβ +νννaαβ
γ

λ

λ

]
+O

(
Ehηθ

2) , C =
Eh

1−ννν2 ,

Mαβ = D
[
(1−ννν)κ

αβ +νννaαβ
γ

λ

λ

]
+O

(
Eh2

ηθ
2) , D =

Eh3

12(1−ννν2)
.

(14)

The inverse of (14) leads to

γαβ = A
[
(1+ννν)Nαβ −νννaαβ Nλ

λ

]
+O

(
ηθ

2) , A =
1

Eh
,

καβ =
12

Eh3

[
(1+ννν)Mαβ −νννaαβ Mλ

λ

]
+O

(
ηθ 2

h

)
.

(15)

Within the indicated error of (12) one can modify the bending tensor καβ by adding
subtracting terms of the order of η/R, for example bλ

αγλβ or bαβ γλ

λ
. This allows

one to formulate other energetically equivalent versions of the theory of thin elastic
shells, see for example Budiansky and Sanders (1963); Koiter (1960,1966); Bu-
diansky (1968); Koiter and Simmonds (1973); Pietraszkiewicz and Szwabowicz
(1981); etc.

4 Intrinsic shell equations in terms of the surface strain measures

In the case of bending strain state in the shell, the small strains η caused by stretch-
ing and bending of its base surface are regarded to be of comparable order in the
interior shell domain, γαβ ∼ hκαβ ∼ η , where ∼ means “of the same order as”. To
obtain the shell relations in terms of γαβ and καβ as suggested by Chien (1944),
one has to introduce (14) into (7) and omit in the resulting equilibrium equations
as well as in the compatibility conditions (2) all small terms of the order of errors
indicated in (14) and (15). Then we obtain the following consistently reduced set
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of six intrinsic bending shell equations in M , see Pietraszkiewicz (1977):

C
[
(1−ννν)γβ

α |β + νννγ
β

β
|α
]
+ pα = O

(
Eh

ηθ 2

λ

)
,

Dκ
α
α |

β

β
+C(bα

β
−κ

α

β
)
[
(1−ννν)γβ

α +νννδ
β

α γ
λ

λ

]
+ p+mα |α = O

(
Eh2 ηθ 2

λ 2

)
,

κ
β

α |β −κ
β

β
|α = O

(
ηθ 2

hλ

)
,

γ
β

α |αβ − γ
α
α |

β

β
−
(

bβ

ακ
α

β
−bα

ακ
β

β

)
+

1
2

(
κ

β

α κ
α

β
−κ

α
α κ

β

β

)
= O

(
ηθ 2

λ 2

)
.

(16)

In the estimation procedure used above covariant surface derivatives of the surface
fields are estimated by dividing their maximal value by a large parameter λ defined
by

λ =
h
θ

= min
(

d, l, L,
√

hR,
1
√

η

)
. (17)

Appropriately reduced four natural intrinsic boundary conditions along ∂M f take
the form, see Pietraszkiewicz (1989),

C(γνν +νννγττ) = N∗ν +O(Ehηθ
2) , C(1−ννν)γντ = N∗τ +O(Ehηθ

2) ,

D
[
κνν ,ν +κττ ,ν +(1−ννν)κ ′ντ

]
+mν = N∗+M

′∗
τ +O

(
Eh2 ηθ 2

λ

)
,

D(κνν +νννκττ) = M∗ν +O(Eh2
ηθ

2) ,

(.),ν≡
∂

∂θ α
(.)νννα , γνν = γαβννν

α
ννν

β , κντ = καβννν
α

ννν
β , etc. ,

(18)

and the corresponding reduced four deformational boundary conditions along ∂Md
are

κττ = k∗ττ +O
(

ηθ 2

h

)
, κντ = k∗ντ +O

(
ηθ 2

h

)
,

2γ
′
ντ − γττ ,ν +2ρνγντ +ρτ(γνν − γττ) = k∗nτ +O

(
ηθ 3

h

)
,

γττ = γ
∗
ττ +O

(
ηθ

2) .

(19)

In (19), ρτ = τττανννα |βτττβ and ρν = νννατττα |βνννβ are the geodesic curvatures of ∂M
and the surface curve orthogonal to it, respectively.
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The resulting set of intrinsic relations (16) to (19) is very simple. Four field equa-
tions (16)1,3 are linear while the remaining two (16)2,4 are quadratic in terms of γαβ

and καβ . All intrinsic boundary conditions (18) and (19) are linear in the surface
strain measures.

5 Refined intrinsic shell equations

In some nonlinear problems of shells the small strains caused by membrane stress
resultants may be of essentially different order (higher or smaller by the factor θ 2)
from those caused by the stress couples. In those cases the tangential intrinsic shell
equations (16)1,3 should be approximated with a greater accuracy, because within
the accuracy indicated in the constitutive equations (14) and (15) these tangen-
tial equations contain only terms of one kind: either the surface strains γαβ or the
surface bendings καβ , respectively. In particular, the use of equations (16) in the
buckling problem of long axially compressed circular cylinder leads to overesti-
mated buckling load, see for example Opoka and Pietraszkiewicz (2009b).

The refinement of intrinsic bending shell equations (16) may be achieved by se-
lecting the stress resultants Nαβ and bendings καβ as the basic independent field
variables of the shell BVP. The estimation procedure was originally proposed by
Danielson (1970), and developed by Koiter and Simmonds (1973) with the help of
concrete error estimates of some shell fields and their surface derivatives given by
John (1965). In the papers by Danielson (1970) and Koiter and Simmonds (1973)
alternative energetically modified definitions of stress resultants and bendings were
used in order to obtain in the limit the “best” formulation of the linear theory of
shells proposed by Budiansky and Sanders (1963). But Pietraszkiewicz (1989)
found that the same “best” version of the linear shell theory in the limit may be re-
covered from the two-dimensionally exact shell relations formulated in the rotated
basis, with appropriate modification of all field variables. This modified version of
the refined intrinsic shell equations (RISEs) will be concisely presented in section
7.

If Nαβ and καβ are chosen as the basic independent field variables, then using re-
sults of Pietraszkiewicz (1977,1980a,1989) and Opoka and Pietraszkiewicz (2004)
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from (7) and (2) we obtain the following RISEs in M :

Nβ

α |β +2A
(

Nλ
α Nβ

λ

)
|β −

1
2

A
[
(1−ννν)Nλ

β
Nβ

λ
+νννNλ

λ
Nβ

β

]
|α

−D
{(

bλ
α −κ

λ
α

)[
(1−ννν)κβ

λ
+νννδ

β

λ
κ

µ

µ

]}
|β

−
(

bβ

α −κ
β

α

)(
Dκ

λ

λ
|β +mβ

)
+2A

[
(1+ v)Nβ

α pβ −νννNν
ν pα

]
+ pα = O

(
Eh

ηθ 4

λ

)
,

Dκ
α
α |

β

β
+
(

bβ

α −κ
β

α

)
Nα

β
+ p+mα |α = O

(
Eh2 ηθ 2

λ 2

)
,

(20)

κ
β

α |β −κ
β

β
|α −A(1+ννν)

[(
bλ

β
−κ

λ

β

)
Nβ

λ
|α +

(
bβ

α −κ
β

α

)
Nλ

λ
|α
]

−2A(1+ννν)
(

bβ

α −κ
β

α

)
pβ = O

(
ηθ 4

hλ

)
,

ANα
α |

β

β
+
(

bβ

α −
1
2

κ
β

α

)
κ

α

β
−
(

bα
α −

1
2

κ
α
α

)
κ

β

β
+A(1+ννν)pα |α = O

(
ηθ 2

λ 2

)
.

(21)

Note that now (20) and (21) are all quadratic in the independent field variables.
Pietraszkiewicz (1989) and Opoka and Pietraszkiewicz (2004) also derived the ap-
propriately reduced four natural intrinsic boundary conditions along ∂M f compat-
ible with (20) and (21) (two quadratic and two linear)

[1+A(Nνν −νννNττ)]Nνν −D(σν −κνν)(κνν +νννκττ)+2D(1−ννν)(ττττ +κντ)κντ

= N∗ν +(ττττ +κντ)M∗τ +O
(
Ehηθ

4) ,

[1+A(Nττ −νννNνν)]Nντ +2A(1+ννν)NννNντ +D(κνν +νννκττ)(ττττ +κντ)

−2D(1−ννν)(στ −κττ)κντ = N∗τ − (στ −κττ)M∗τ +O
(
Ehηθ

4) ,

D
[
κνν ,ν +κττ ,ν +(1−ννν)κ ′ντ

]
+mν = N∗+M′∗τ +O

(
Eh

ηθ 2

λ

)
,

D(κνν +νννκττ) = M∗ν +O
(
Eh2

ηθ
2) ,

(22)

and four deformational boundary conditions along ∂Md (again two quadratic and
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two linear)

κττ +A(στ −κττ)(Nττ −νννNνν) = k∗ττ +O
(

ηθ 4

h

)
,

κντ +2A(1+ννν)(στ −κττ)Nντ −A(ττττ +κντ)(Nνν −νννNττ) = k∗ντ +O
(

ηθ 4

h

)
,

2A(1+ν)N′ντ −A(Nττ ,ν−νννNνν ,ν)+2A(1+ννν)ρνNντ +A(1+ννν)ρτ (Nνν −Nττ)

= k∗nτ +O
(

ηθ 3

h

)
, A(Nττ −νννNνν) = γ

∗
ττ +O

(
ηθ

2) .

(23)

In (22) and (23), στ = ττταbα

β
τττβ and ττττ = −ννναbα

β
τττβ are the normal curvature and

the geodesic torsion of ∂M , while σν = ννναbα

β
νννβ is the normal curvature of the

surface curve orthogonal to ∂M in the outward normal direction. The RISEs (20)
and (21) with intrinsic boundary conditions (22) and (23) are valid for unrestricted
translations and rotations of the shell material elements.

It follows from the above transformations that the refined intrinsic BVP (20) to (23)
can be used if:

1. the surface and boundary forces and couples are given through components
in the deformed bases āα , n̄ and ν̄νν , τ̄ττ, n̄, respectively;

2. at the shell boundary contour without corners the boundary conditions are
prescribed only in terms of the intrinsic fields discussed above;

3. at the shell boundary contour with corners only the deformational boundary
conditions are prescribed, or the boundary contour is divided by corner points
into an even number of intervals along which alternately either only natural
intrinsic or only deformational boundary conditions are prescribed.

These requirements put additional constraints on the range of applications of the
RISEs.

6 Some special cases of the refined intrinsic shell equations

Let γ and κ denote the greatest values of the surface strains and bendings at M ∈M ,
respectively, so that the estimates γαβ = O(γ) and καβ = O(κ) give us upper
bounds for the measures. Let also Lγ and Lκ be the local smallest wave lengths
of deformation patterns on M associated with the surface strains and bendings,
respectively, so that the estimates γ

β

α |λ = O(γ/Lγ) and κ
β

α |λ = O(κ/Lκ) can be
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used. Let us also remind that the surface curvatures and their spatial derivatives
can be estimated as bβ

α = O(1/R) and bβ

α |λ = O(1/Rl), while components of the
surface force and moment vectors by pα = O(Ehγ/Lγ), p = O(Ehγ/R), and mα =
O(Eh3κ/Lκ). Then it is easy to see that all terms in the RISEs can be estimated by
some products of six different small parameters: h/R, (h/l)2,γ, hκ ,(h/Lγ)2, (h/Lκ)2.

Within the accuracy of the first approximation to the strain energy density (12)
it has already been assumed that such small terms can be omitted with regard to
terms of order unity. However, in different types of shell problems real magnitudes
of some of the small terms may be much lower than their upper bounds indicated
above. If we are able to predict in advance the type of solution behavior in the
whole shell region and propose in advance corresponding proportions between all
the small parameters, then it is possible to distinguish in the RISEs the principal
terms responsible for the predicted type of shell behavior, and to omit all secondary
terms. In this way a number of simplified special versions of the RISEs describing
various types of shell behavior can be constructed. We remind here explicitly only
three special cases of the RISEs which seem to be most important in applications.

6.1 The almost inextensional bending nonlinear theory of shells

This version of shell theory describes the behavior of shell problems in which the
membrane strains are much smaller than the strains associated with bending. In
such problems the spatial variability of bendings should also be lower than in the
general case of deformation. Thus, if ε is a reference small parameter such that
1+ε2 ' 1, then the six small parameters can be related to ε by h/R∼ hκ ∼ h/Lκ ∼
ε2, γ ∼ ε4, h/l ∼ h/Lγ ∼ ε . If we apply these relations to estimate all terms in the
RISEs and omit all those terms, whose relative error with regard to the principal
terms is ε2 or less, we obtain the following consistently simplified set of equations
of the almost inextensional bending nonlinear theory of shells (less error terms):

Nβ

α |β −D
{(

bλ
α −κ

λ
α

)[
(1−ννν)κβ

λ
+νννδ

β

λ
κ

µ

µ

]}
|β

−
(

bβ

α −κ
β

α

)(
Dκ

λ

λ
|β + mβ

)
+ pα = 0 ,

Dκ
α
α |

β

β
+
(

bβ

α −κ
β

α

)
Nα

β
+ p+mα |α = 0 ,

κ
β

α |β −κ
β

β
|α = 0 ,

(
bβ

α −
1
2

κ
β

α

)
κ

α

β
−
(

bα
α −

1
2

κ
α
α

)
κ

β

β
= 0 .

(24)

Appropriately reduced four intrinsic natural and deformational boundary condi-
tions are given by Opoka and Pietraszkiewicz (2004).

Note that three compatibility conditions (24)3,4 do not depend on Nαβ . Thus, for
some combinations of the shell geometry and boundary conditions these compati-
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bility conditions can be solved independently of the membrane state generated by
Nαβ , so that such problems may be kinematically determined. If bαβ → 0 the
relations (24) transform smoothly to the almost inextensional bending theory of
plates.

Koiter (1980, Section 6) suggested that the geometrically nonlinear inextensional
bending theory of shells should be defined by taking the limit A → 0 in (24).
Simmonds (1979, Section 4.1) obtained such a version of shell theory by non-
dimensionalising all the fields, with the non-dimensional stress resultants defined
as Ñα

β
= R2D−1Nα

β
, and then taking the limit AD/R2→ 0. Wempner and Talaslidis

(2003) applied an estimation procedure similar to ours, but used a common wave
length of deformation patterns defined by L = min(l,Lγ ,Lκ ). Under all the three
different procedures mentioned above these authors obtained the almost inexten-
sional bending intrinsic shell equations energetically equivalent to (24). But nei-
ther of the above papers discussed the corresponding intrinsic boundary conditions
associated with the almost inextensional bending shell equations.

In shell structures designed for strength the almost inextensional bending state
should rather be avoided, because it is usually associated with occurrence of larger
translations of the base surface. However, some shell structures working in this
state are specially designed either to allow maximal flexibility (toroidal compen-
sators, bellows, etc.) or the shell shape is imposed by its function (turbine and
compressor blades, ship propellers, etc.).

6.2 The almost membrane nonlinear theory of shells

This version of shell theory describes the behavior of shell problems in which the
membrane strains are much larger than the strains associated with bending. In
such problems the spatial variability of the membrane strains should also be lower
than in the general case of deformation. Thus, the six small parameters can be
related to ε by h/R ∼ γ ∼ h/Lγ ∼ ε2, hκ ∼ ε4, h/l ∼ h/Lκ ∼ ε . Again, applying
these relations to estimate all terms in the RISEs (20) and (21), and omitting all
small terms, we obtain the following consistently simplified equations of the almost
membrane theory of shells (less error terms):

Nβ

α |β + pα = 0 , bβ

αNα

β
+ p = 0 ,

κ
β

α |β −κ
β

β
|α −A(1+ννν)

(
bλ

β
Nβ

λ
|α + bβ

αNλ

λ
|α
)

+Aνννbβ

β
Nλ

λ
|α −2A(1+ννν)bβ

α pβ = 0 ,

ANα
α |

β

β
+bβ

ακ
α

β
−bβ

β
κ

α
α +A(1+ννν)pα |α = 0 .

(25)

Notice that all intrinsic equations (25) are linear with regard to Nβ

α and κ
β

α . Appro-
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priately reduced four natural intrinsic and deformational boundary conditions are
given by Opoka and Pietraszkiewicz (2004), and they are linear in these variables
as well.

The equilibrium equations (25)1,2 do not depend on κ
β

α , which indicates that some
shell problems of the almost membrane type can be statically determined. However,
if bβ

α → 0, the principal term of (25)2 disappears in the limit and this equilibrium
equation becomes irrelevant for the almost membrane nonlinear theory of plates.
In order to remove such a degenerate behavior, if necessary, in (25)2 we might take
into account also terms of higher order smallness, which then replaces this equation
by

Dκ
α
α |

β

β
+
(

bβ

α −κ
β

α

)
Nα

β
+ p+mα |α = 0 . (26)

As a result, the BVP consisting of six linear PDE (25)1,3,4 and the nonlinear one
(26) as well as of appropriate four linear boundary conditions might now be trans-
formed smoothly to the almost membrane intrinsic theory of plates. However, such
a supplemented BVP is not statically determined any more.

Koiter (1980, Section 6) suggested that the geometrically nonlinear almost mem-
brane theory should be defined by taking the limit D→ 0 in (20) to (23). Simmonds
(1979, Section 4.5) derived six equations for the membrane shell theory again by
non-dimensionalising all the fields, but with the non-dimensional stress resultants
defined as Ñβ

α = ANβ

α , and then by taking the limit AD/R2 → 0. Wempner and
Talaslidis (2003) applied an estimation procedure similar to ours, but used a com-
mon length L defined above and without correcting degeneration when bβ

α → 0.
Unfortunately, each of the three alternative procedures mentioned above lead to
the almost membrane intrinsic shell equations slightly different from (25) with or
without (26) presented here and energetically inequivalent to each other. Neither of
the above authors discussed the intrinsic boundary conditions associated with the
almost membrane intrinsic shell equations as well.

6.3 Intrinsic bending nonlinear theory of shells

In terms of Nβ

α and κ
β

α the intrinsic bending theory of shells can be characterized
by the following range of the bending-to-strain ratio:

max
(

hκ
Lκ

Lγ

,
h
R

Lκ

Lγ

)
<<

hκ

γ
<< min

(
l

Lγ

R
h
,

Lκ

Lγ

1
hκ

,
Lκ

Lγ

R
h

)
. (27)

Within this range of shell deformation the RISEs (20) and (21) can be reduced to
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the following set of six PDE (less error terms):

Nβ

α |β + pα = 0 , Dκ
α
α |

β

β
+
(

bβ

α −κ
β

α

)
Nα

β
+ p+mα |α = 0 ,

κ
β

α |β −κ
β

β
|α = 0 ,

ANα
α |

β

β
+
(

bβ

α −
1
2

κ
β

α

)
κ

α

β
−
(

bβ

β
− 1

2
κ

β

β

)
κ

α
α +A(1+ννν)pα |α = 0 .

(28)

The corresponding reduced intrinsic boundary conditions were given first by Pietra-
szkiewicz (1980a) and modified by Opoka and Pietraszkiewicz (2004). Note that
four equations (28)1,3 and all boundary conditions are linear while only two equa-
tions (28)2,4 are quadratic in the intrinsic field variables Nβ

α , κ
β

α .

The intrinsic bending shell equations in the form equivalent to (28), but without
mα |α and often also without A(1+ννν)pα |α was proposed in a number of papers and
reproduced in several books. Let us mention here the classical papers by Mushtari
(1949), Alumyae (1949), and Koiter (1966). However, neither of these authors
discussed the corresponding intrinsic boundary conditions.

Please note that the four equations (28)1,3 have a divergent structure with regard to
one field variable. This allows one to satisfy these equations within the estimated
error by

Nβ

α = εαλ ε
βρ

(
F |λρ +δ

λ
ρ KF

)
+Pβ

α , κ
β

α = W |βα +δ
β

α KW , (29)

provided that the Gaussian curvature K of M satisfies the relations

Lγ

l
|K|L2

γ << 1 ,
Lκ

l
|K|L2

κ << 1 . (30)

In (29), F is the stress function, W is the deformation function, and Pβ

α is a partic-
ular solution of Pβ

α |β + pα = 0. Introducing (29) into (28)2,4 we obtain

D(W |αα + 2KW ) |β
β

+
(

bβ

α −W |βα − δ
β

α KW
)[

ε
αλ

εβρ

(
F |ρ

λ
+ δ

ρ

λ
KF
)
+Pα

β

]
+ p+mα |α = 0 ,

A(F |αα + 2KF) |β
β
− ε

αλ
εβρ

(
bβ

α −
1
2

W |βα −
1
2

δ
β

α KW
)(

W |ρ
λ

+ δ
ρ

λ
KW

)
+A

[
Pα

α |
β

β
− (1+ννν)Pβ

α |αβ
]

= 0 .

(31)

These are the nonlinear intrinsic bending equations for shells of slowly varying
curvatures proposed by Rychter (1988) and Pietraszkiewicz (1989). The intrinsic
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boundary conditions to be used with (31) are given by Opoka and Pietraszkiewicz
(2004).

Under the more restrictive assumption |K|L2 << 1, which seem to be used already
by Aron (1874) and also proposed by Chien (1944), section 12, we can also omit
all terms with K in (31). This leads to the nonlinear intrinsic bending equations
of quasi-shallow shells discussed by Koiter (1966). Appropriate intrinsic bound-
ary conditions follow then directly from reduction of those given in Opoka and
Pietraszkiewicz (2004).

7 Refined intrinsic shell equations in the rotated base

Let ∇s be the surface gradient operator at M ∈M . Then the surface deformation
gradient tensor F ∈ E⊗TMM is defined by

F = ∇sχ(r) = r̄,α⊗aα , (32)

where ⊗ is the tensor product and χ : M →M is the deformation function. Due
to the relation r̄,α = āα ∈ TM̄M the field F maps dr ∈ TMM into dr̄ ∈ TM̄M , so
that dr̄ = Fdr. Since the tangent planes TMM and TM̄M lie in the same 3D Eu-
clidean space E , there is a rotation R ∈ SO(3) that takes one plane to the other.
This in conjunction with the theorem of Tissot given in do Carmo (1976) and dis-
cussion by Pietraszkiewicz, Szwabowicz, and Vallée (2008) justifies the following
representation of F:

F = VR, rα = Raα = V−1āα , (33)

where V ∈ TM̄M ⊗TM̄M is the left surface stretch tensor, and rα are the surface
rotated non-holonomic base vectors. The fields R and V satisfy the relations

R = rα ⊗aα + n̄⊗n , RT = R−1 ,

detR = +1 , V = āα ⊗ rα , detV =

√
ā
a

> 1 . (34)

The relative surface strain measures associated with the base rα , n̄ are introduced
through the following formulae, see Pietraszkiewicz (1989):

ε = V− ā =
(
aβ +u,β −rβ

)
⊗ rβ = εβ ⊗ rβ , εβ = ηαβ rα , ηαβ = ηβα ,

λλλ =
(
n̄,β −Rn,β

)
⊗ rβ = R,β n⊗ rβ = λλλ β ⊗ rβ , λλλ β = µαβ rα , µαβ 6= µβα .

(35)
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The components ηαβ and µαβ are related to γαβ and καβ by

γαβ = ηαβ +
1
2

η
λ
α ηλβ ,

καβ =
1
2

[(
δ

λ
α +η

λ
α

)
µλβ +

(
δ

λ

β
+η

λ

β

)
µλα

]
− 1

2

(
bλ

αηλβ +bλ

β
ηλα

)
.

(36)

In the nonlinear theory of thin shells the rotation tensor R depends upon the surface
gradient of the translation field ∇su by explicit formulae given by Pietraszkiewicz
(1977,1980a,b). In order to use the virtual rotations δR as independent field vari-
ables in the PVW (3), dependence of R upon ∇su can be inforced implicitly through
three constraint conditions put on the virtual strains δηαβ :

ε
αβ rα ·δηλβ rλ = 0 , n̄ ·δηλβ rλ = 0 . (37)

In the interior domain of M the constraints (37) can be introduced into the surface
integral (3) of the PVW with the help of respective Lagrange multipliers S and Qβ .
It was shown in Pietraszkiewicz (1989) that, in order to express also the boundary
terms at each ∂M explicitly through now independent virtual rotations, it is neces-
sary to introduce into (3) a curvilinear integral over ∂M with the constraints (37)1
multiplied by the Lagrange multiplier Bτττβ . Additionally, in (3) the external virtual
work performed by the static moments h and H∗ should be expressed directly in
terms of now independent virtual rotations. As a result, the PVW (3) should be
modified to the form∫∫
M

(
Nβ ·δηλβ rλ +Hαβ rα ·δ µλβ rλ

)
dA+

∫
∂M

Bτττ
β n̄ ·δηλβ rλ ds

=
∫∫
M

(p ·δu+m ·ωωω)dA+
∫

∂M f

(N∗ ·δu+M∗ ·ωωωτ)ds , (38)

where now

Nβ = Rαβ rα +Qβ n̄ , Mβ = n̄×Hαβ rα , Rαβ = Sαβ + ε
αβ S ,

M∗ = n̄×H∗ , m = n̄×h ,
(39)

ωωω =
1
2

(1×1) ·
(
δRRT )=

1
2

(rα ×δrα + n̄×δ n̄) ,

ωωωτ =
1
2

(1×1) ·
(
δRτRT

τ

)
=

1
2

(ν̄νν×δν̄νν + τ̄ττ×δτ̄ττ + n̄×δ n̄) .

(40)

Here Sαβ and εαβ S are symmetric and skew parts of Rαβ , 1 is the metric tensor
of the 3D Euclidean space, w and wτ are the virtual rotation vectors in the interior
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of M and along ∂M , respectively, and for any 2nd-order tensors C,D we have
C ·D = tr (CT D). Please note that all surface couple vectors Mβ ,M∗ and m in (15)
do not have normal components, that is Mβ · n̄ = M∗ · n̄ = m · n̄ = 0. This is the
fundamental property of the nonlinear theory of thin shells.

For kinematically admissible virtual deformation the fields δu and ωτ vanish iden-
tically along ∂Md , and the principle of virtual work (38) leads to the modified local
equilibrium equations

Nβ |β + p = 0 , Mβ |β + āβ ×Nβ +m = 0 at each regular M ∈M , (41)

the five natural boundary conditions

Nν −N∗ = 0 , Kν −M∗ = 0 along regular parts of ∂M f , (42)

with the corresponding five work-conjugate kinematic boundary conditions

u−u∗ = 0 , Rτn−R∗τn = 0 along ∂Md . (43)

In (42), we have defined Nν = Nβνννβ and Kν = Mβνννβ +aτBRτννν .

The equilibrium equations formally similar to (41) were first derived by Alumyae
(1949,1956) and rederived by Simmonds and Danielson (1970,1972), but their def-
initions of Nβ and Mβ were somewhat different from (39)1,2. The boundary con-
ditions (42) and (43) were first proposed by Pietraszkiewicz (1989). Several mixed
variational principles in terms of the relative surface strains ηαβ (or corresponding
Sαβ ) and the finite rotation tensor R were constructed by Atluri (1984).

As a result of the above transformations, the surface virtual strain energy density
can be presented in the alternative form

δΣ = Nαβ
δγαβ +Mαβ

δκαβ = Sαβ
δηαβ +Hαβ

δ µαβ ,

Sαβ = Nαβ +
1
2

(
η

α

λ
Nλβ +η

β

λ
Nαλ

)
− 1

2

[(
bα

λ
−µ

α

.λ

)
Mλβ +

(
bβ

λ
−µ

β

.λ

)
Mαλ

]
,

Hαβ =
(
δ

α

λ
+η

α

λ

)
Mλβ ,

(44)

where now Sαβ = Sβα , but Hαβ 6= Hβα , in general.

When expressed by components in the rotated basis rα , n̄, the vector equilibrium
equations (41) lead to the six local scalar equilibrium equations expressed entirely
in terms of the surface strain measures ηαβ ,µαβ ,kα , stress measures Rαβ ,Hαβ ,Qα ,
and components of p, m in the base rα , n̄. However, if the shell BVP is to be
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formulated in the intrinsic form, these six scalar equilibrium equations should be
accompanied by appropriate six scalar compatibility conditions expressed in terms
of the same surface strain measures.

It follows from
(
RRT ) ,β = 0 that R,β RT is the skew-symmetric tensor expressible

through the axial bending vector lβ by

R,β RT = lβ ×1, lβ = ε
αλ

µαβ rλ + kβ n̄ . (45)

The integrability conditions εαβ u,αβ = 0 and εαβ R,αβ = 0 lead to

ε
αβ
(
lα|β + lβ × rα

)
= 0 , ε

αβ

(
lα|β +

1
2

lα × lβ
)

= 0 . (46)

These are vector forms of compatibility conditions for the nonlinear deformation
of the shell base surface first proposed by Shkutin (1976). Their component forms
relative to the rotated base rα , n̄ were derived by Alumyae (1949,1955) and in-
dependently by Simmonds and Danielson (1970). Several other equivalent scalar,
vector, and tensor forms of 2D compatibility conditions at the shell base surface
follow directly from the 3D compatibility conditions derived by Pietraszkiewicz
and Badur (1983) for the non-linear continuum mechanics, if the Kirchhoff-Love
kinematic constraints are imposed.

Let us introduce the decompositions

µαβ = ραβ + εαβ ρ, ραβ =
1
2
(
µαβ + µβα

)
, ρ =

1
2

ε
αβ

µαβ ,

Hαβ = Gαβ + ε
αβ G, Gαβ =

1
2

(
Hαβ +Hβα

)
, G =

1
2

εαβ Hαβ .

(47)

For the symmetric surface fields Sαβ , Gαβ , ηαβ , ραβ we obtain the constitutive
equations analogous to those given in (14) and (15). With the error of these consti-
tutive equations the six scalar equilibrium equations and the six scalar compatibility
conditions, following from (41) and (46) in the base rα , n̄, can be consistently sim-
plified, each into the set of six equations. Then three of each set can be solved either
for kλ , ρ or for Qβ , S, respectively, which can then be eliminated from the remain-
ing shell equations using additional estimates G = O(Eh2ηθ 2) and ρ = O(ηθ/λ ).
As a result, this reduction process leads to two sets of six PDE for twelve symmetric
surface fields related by the constitutive equations. Using the constitutive equations
one can eliminate any six of the fields to obtain a definite system of six PDE for
the remaining six surface measures. However, elimination of Sαβ and ραβ would
introduce greater errors which in critical cases may lead to some loss of accuracy
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of the solution. Thus, eliminating Gαβ and ηαβ , we obtain

Sβ

α |β +A
[
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α −νννδ
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]
|β Sβ
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(
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(
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(
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+A(1+ννν) p̂α |α = O
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ηθ 2

λ 2

)
.

(48)

The set of refined intrinsic shell equations (48) given in this form by Pietraszkiewicz
(2001a,b) is written only in terms of the intrinsic surface components relative to
the rotated base rα , n̄. Within the indicated errors, the equations (48) are en-
ergetically equivalent to alternative forms of the refined intrinsic shell equations
proposed by Danielson (1970); Koiter and Simmonds (1973); and Pietraszkiewicz
(1977,1980a,1989). However,

• the system (48) of PDE is expressed through the surface fields Sαβ , ραβ

appearing naturally in the nonlinear theory of thin shells and needing no
special modifications;

• when linearised (48) reduce to the shell equations of the “best” formulation
of the linear shell theory according to Budiansky and Sanders (1963), see
also Koiter 1960);

• the system (48) follows from six sets of six equations which obey the static-
geometric analogy in the nonlinear range of deformation, see Alumyae (1955),
Pietraszkiewicz (1989,2001a);

• corresponding sets of natural intrinsic and deformational boundary condi-
tions were provided by Pietraszkiewicz (1989,2001a).
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From (48), similarly as in section 6, it is possible to construct many reduced sets
of intrinsic shell equations valid under additional assumptions about orders of cur-
vature and variability of the middle surface, stretching-to-bending ratio, variability
of stretching and bending deformations, etc. Some of these special cases were dis-
cussed by Pietraszkiewicz (1989,2001a). However, in our computer age it seems
more appropriate to apply direct numerical methods to the complete system (48),
which would allow one to analyze numerically all possible cases of the non-linear
behavior of thin elastic shells.

8 Position of the base surface of deformed shell

When for a definite geometry of M given by the position vector r(θ α) one solves
an appropriate set of the RISEs described in sections 5-7, the fields Nαβ (and there-
fore γαβ ) and καβ become known functions of the coordinates θ α in some domain
U . Thus, our next problem is to determine the position vector r̄ of M from known
r(θ α) and two fields γαβ (θ α) and καβ (θ α) satisfying the compatibility conditions
(21) within the prescribed accuracy.

In the linear theory of thin shells the problem of determining the translation field
(and thus the position of base surface of the deformed shell in space) from known
linearised surface strains and bendings was discussed already by Lur’e (1940).
The explicit curvilinear surface integrals are given, for example, in the books by
Chernykh (1964) and Gol’denveiser (1976).

In differential geometry of a surface immersed in the 3D Euclidean space E the
fundamental theorem first given by Bonnet (1867) and reformulated in many pa-
pers and books (see for example Ciarlet and Larssoneur, 2002, and references given
there) states that two fundamental forms āαβ dθ αdθ β and b̄αβ dθ αdθ β of the sur-
face M determine locally its position in space up to a rigid-body motion. This
solves the problem of existence of such a surface. But in the nonlinear theory
of shells such a statement for M is not satisfactory, because in engineering one
usually needs to know the position of M in space uniquely, which should usually
be described by the position vector r̄. This goal can be achieved only by formu-
lating an appropriate system of PDE and solving it for a unique set of boundary
and/or initial conditions fixing the surface in the ambient space. Only recently
Pietraszkiewicz and Szwabowicz (2007) worked out two such procedures the re-
sults of which are briefly described in two subsections 8.1 and 8.2 given below.

8.1 Position of M through vector ODE

When āαβ and b̄αβ of M are calculated from known aαβ , bαβ and γαβ , καβ , by
the Gauss and Weingarten relations we obtain the following system of four PDE
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for the base vectors āα , n̄ :

āα ,β = Γ̄
λ

αβ
āλ + b̄αβ n̄ , n̄,β =−b̄λ

β
āλ , (49)

where Γ̄λ

αβ
are the Christoffel symbols of the second kind computed from the metric

components āαβ alone.

Let us introduce the column vector X̄ and two square 3×3 matrices Āα defined by

X̄ =

 ā1

ā2

n̄

 , Āα =

 Γ̄1
1α

Γ̄2
1α

b̄1α

Γ̄1
2α

Γ̄2
2α

b̄2α

−b̄1
α −b̄2

α 0

 , (50)

which allow one to express the relations (49) in the form of the total system of PDE

X̄,α = ĀαX̄ . (51)

Integrability conditions of (51) are just the Gauss-Mainardi-Codazzi (GMC) equa-
tions of M .

Applying the Frobenius-Dieudonné theorem, see for example Maurin (1980), it
has been proved that instead of solving the system (51) of PDE one can cover the
domain U with a dense set of paths C leaving radially from an arbitrarily chosen
initial point p0 labeled by θ α

0 ∈U , and then compute a particular solution X̄(θ α)
corresponding to the initial condition X̄(θ α

0 ) = X̄0 of the initial value problem for
the system of ODE

dX̄
ds

= ĀCX̄ , ĀC = Āα

dθ α

ds
(52)

along each of the paths C. The solution to (52) may be obtained, for example,
by the method of successive approximations in the form of infinite series, see for
example Gantmakher (1960),

X̄ =
∞

∑
i=1

Ŷi , Ŷ0 = X̄0 , ... , Ŷi =
∫ p

p0

ĀC(s)Ŷi−1(s)ds , ... . (53)

Having determined X̄, the bases āα become known and the position vector of M is
calculated by the quadrature

r̄(θ α) = r̄0 +
∫ p

p0

āαdθ
α , (54)

where r̄0 is the initial value of r̄(θ α) at some arbitrarily chosen point p0 ∈U .

The solution presented above depends on arbitrarily chosen initial values of the
column vector X̄0 and the position vector r̄0. These quantities fix uniquely the
position of M in the space E .
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8.2 Position of M through the surface deformation gradient

If χ : M →M is the deformation function of the shell base surface, then the
surface deformation gradient tensor F ∈ E⊗TMM is defined in (32). Since r̄,α =
āα ∈ TM̄M ⊂ E , partial derivatives of F are

F,α = FAα , Aα =
(
Γ̄

κ

λα
−Γ

κ

λα

)
aκ ⊗aλ +bκ

αaκ ⊗n+ b̄λα

1√
ā
(a1×a2)⊗aλ .

(55)

For known geometry of M the tensors Aα are known as well, so that (55)1 con-
stitute a total system of PDE for F, which integrability is assured by the GMC
equations of M . The solution to the system (55)1 can again be constructed with
the help of Frobenius-Dieudonné theorem by choosing arbitrarily two points p0, p
with coordinates θ α

0 ,θ α ∈ U , so that paths C drawn between such points cover
the entire domain U . In a local chart any path may be specified by two equations
θ α |C = θ α(s), where s is the arc length chosen so that s(θ α

0 ) = s0. The system
(55)1, when restricted to any C, reduces to an ODE of the form

dF
ds

= FA , A = Aα

dθ α

ds
. (56)

The general solution to (56) can again be given by the method of successive ap-
proximation in the form

F = F0Fs , F0 = F(s0) , Fs =
∞

∑
i=1

Hi ,

H0(s) = 1 , Hi(s) =
∫ p

p0

Hi−1(t)A(t)dt , i≥ 1 .

(57)

When F(θ α) is known the position vector of M follows from the quadrature

r̄ = r̄0 +
∫ p

p0

Faαdθ
α , r̄0 = r̄(p0) . (58)

Within the nonlinear theory of dislocations in thin elastic shells Zubov (1989,1997)
used the spatial deformation gradient G ∈ E⊗E evaluated on M , which was de-
fined by Pietraszkiewicz (1977) as

G = ∇χ (r+ ςn) |ς=0 = āα ⊗aα + n̄⊗n , āα = Gaα , n̄ = Gn . (59)

Thus, if the tensor G is found the position vector r̄ can also be found by a quadra-
ture similar to (58). However, the tensor G contains the excessive term n̄⊗ n as
compared with F. Within the nonlinear theory of thin shells additional care should
be taken to separate this excessive part of G from the important one.
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8.3 Position of M using the right polar decomposition of deformation gradient

For an arbitrary deformation χ of the shell base surface the solutions (53) and (57)
may be extremely complex and hardly applicable. Pietraszkiewicz, Szwabowicz,
and Vallée (2008) developed an alternative approach to determination of the posi-
tion vector r̄ which is based on the right or left polar decompositions of the surface
deformation gradient F.

The left polar decomposition (33)1was used in section 7 to formulate the RISEs in
the rotated surface basis. In the present subsection, in order to show an alternative
approach we apply, for definiteness, the right polar decomposition

F = RU , R = āα ⊗ sα + n̄⊗n , U = sα ⊗aα ,

sα = Uaα = RT āα , detR = +1 , detU =

√
ā
a

> 1 ,
(60)

where RT VR = U ∈ TMM ⊗TMM is the right surface stretch tensor, and sα are
the surface stretched non-holonomic base vectors.

The relative surface strain measures associated with sα ,n are defined by, see Pietraszkiewicz
(1989),

ηηη = U−a = ηαβ aα ⊗aβ , µµµ =
(
RT n̄,β −n,β

)
⊗aβ = µαβ aα ⊗aβ , (61)

where the components ηαβ and µαβ satisfy the relations (35) and (36).

Now the problem of finding r̄ can be solved in three steps.

First, from known γγγ = γαβ aα ⊗ aβ the right stretch tensor can explicitly be calcu-
lated by

U =

[
1+
√

1+2tr (γγγ) + 4det (γγγ)
]

a+2γγγ√
2
[
1+ tr (γγγ) +

√
1+2tr (γγγ) + 4det (γγγ)

] . (62)

Then, having known ηαβ and καβ it was proved that R should satisfy the following
total system of two PDE:

R,α = R×kα ,
(
U−1)α

β
=
√

a
ā

ε
αλ

εβ µ

(
δ

µ

λ
+η

µ

λ

)
,

kα = ε
κρ

[
bκα −

(
U−1)λ

κ
(bλα −κλα)

]
aρ −

√
a
ā

ε
κρ

(
δ

λ
α +η

λ
α

)
ηλκ|ρn .

(63)

Instead of solving the system (63) directly, we may again convert the problem into
equivalent infinite sets of initial value problems along curves covering densely the
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entire domain U of coordinates θ α . Since the integrability conditions εαβ R,αβ = 0
of (63) are equivalent to the compatibility conditions (48)3,4, which are supposed
to be approximately satisfied, by the Frobenius-Dieudonné theorem for any initial
value R0 = R(θ α

0 ) prescribed at some point p0 ∈U there exists a unique solution
R(θ α) satisfying this initial value, and all such solutions depend continuously on
R0. Thus, we can cover the domain U with a dense set of paths leaving radially
from the initial point p0 and solve the initial value problem for the system of ODE

dR
ds

= RK , K = 1×k , k = kα

dθ α

ds
. (64)

Solution to the initial value problem (64) may again be obtained with the use of
any of the well-known techniques, numerical techniques inclusive. In particular,
applying the method of successive approximations, see Maurin (1980), the general
solution of (64) can be presented in the form

R = R0Rs , Rs =
∞

∑
i=1

Oi , O0(s) = 1 , Oi(s) =
∫ s

s0

Oi−1(t)K(t)dt , i≥ 1 .

(65)

One may point out a number of special cases when equation (64) has the solution in
the closed form. In particular, when k = k(s)i, i.e. when k has a constant direction
along C, then di/ds = 0 and the tensors Oi satisfy the conditions OiO j = O jOi for
any i, j. Then the solution (65) can be presented in the exponential form

R(s) = exp
(

1× i
∫ s

s0

k(t)ds
)

. (66)

A still simpler solution may be obtained if k itself is constant along C, i.e. when
dk/ds = 0. Then from (66) it follows that

R(s) = exp(s1×k) . (67)

Moreover, the tensor equation (64) is identical with the one describing spherical
motion of a rigid body about a fixed point, where s is time and k is the angular
velocity vector in the spatial representation, see for example Goldstein, Poole, and
Safko (2002); Lurie (2001); Heard (2005). In analytical mechanics many inge-
nious analytical and numerical methods of integration of the equation (64) have
been devised for various special classes of the function k(s). A number of such
closed-form solutions was summarized, for example, by Gorr, Kudryashova, and
Stepanova (1978). Thus, the results already known in analytical mechanics of rigid-
body motion may be of great help when analyzing problems discussed here for thin
elastic shells.
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9 Some related problems

The notions associated with the intrinsic nonlinear theory of thin shells can also be
helpful in analyzing some related problems of nonlinear shell theory and of differ-
ential geometry. Four such special related problems are briefly discussed below.

9.1 Position of the surface in space

Pietraszkiewicz and Vallée (2007) proposed a new method of unique determination
of position of a surface M in the 3D Euclidean space E from known components
aαβ and bαβ of two fundamental forms of the surface. The idea of analysis came
from shell theory and has been summarized in subsection 8.3 of the present paper.

We introduced the second-order tensor F = aα ⊗ iα which brings the Cartesian
plane Ox1x2 with the base iα into the tangent plane TMM with the base aα attached
to the surface point M ∈M . Since both planes lie in the space E , we introduced a
rotation R ∈ SO(3) that takes one plane to the other. Then using the Tissot theorem
and discussion given in subsection 8.3, we introduced the right polar decomposition
of F:

F = RU , RT = R−1 , detR = +1 , UT = U . (68)

Notice that the tensors R and U here are not the same as in subsection 8.3, although
some analogy between them may be noted.

First, we proved that components Uαβ of U = Uαβ iα ⊗ iβ in (68) can be found
explicitly by pure algebra,

Uαβ =
aαβ +

√
aδαβ√

tr (aλ µ ) + 2
√

a
. (69)

Then, differentiating the identity RT R = 1 along the coordinate lines we obtained
the skew-symmetric tensors RT R,β expressible through their axial vectors kβ ac-
cording to

RT R,β = kβ ×1 = 1×kβ , kβ = ε
κρbρβ sκ + cβ n ,

sα = Uαλ iλ , cβ =
1
2

ε
κρ

(
Γρ.βκ −Uρλ δ

λ µUµκ ,β

)
.

(70)

The integrability conditions of R,α = R(kα ×1) are

ε
αβ

(
kα ,β −

1
2

kα ×kβ

)
= 0 , (71)
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which in components along sκ , i3 take the form

ε
αβ

ε
κρbρα|β sκ + ε

αβ

(
cα|β −

1
2

ε
κρbκαbρβ

)
i3 = 0 . (72)

The relations (71) and (72) proposed by Pietraszkiewicz and Vallée (2007) are
equivalent to the GMC equations written in the component form by Vallée and
Fortuné (1996) and rederived by Ciarlet, Gratie, and Mardare (2007, 2008).

Applying the same integration method as in subsection 8.3, we can find R and then
the following explicit formula for position of the surface in space E can be derived:

r = r0 +R0

[∫
θ 1

0
R1(ξ ,0)U(ξ ,0)i1 dξ +R1

∫
θ 2

0
R2(θ 1,η)U(θ 1,η)i2 dη

]
, (73)

where r0 and R0 are constants assumed to be known at M0.

Efficiency of the method was illustrated by Pietraszkiewicz and Vallée (2007) on
the simple example of establishing the unique position of the surface parameterized
by coordinates θ α such that components of two fundamental forms are given by

(aαβ ) =
( 1

λ 2 0
0 1

λ 2

)
, (bαβ ) =

( 1
λ 2 0
0 1

λ 2

)
, a =

1
λ 4 ,

λ =
1
2
[
1+(θ 1)2 +(θ 2)2]> 0 , λ ,1 = θ

1 , λ ,2 = θ
2 .

(74)

From the analysis performed according to this method we obtained the sphere pa-
rameterized by stereographic projection, see Fig. 1.

9.2 Buckling of the axially compressed circular cylinder

Opoka and Pietraszkiewicz (2009b) presented extensive numerical results on bifur-
cation buckling analysis of the axially compressed circular cylinder. The analysis
was based on two-dimensionally exact intrinsic equilibrium equations (7) which
were modified with the help of compatibility conditions (2), see Opoka and Pietra-
szkiewicz (2009a). Since in this case the boundary conditions were given in terms
of translations and their derivatives, the very complex BVP and the correspond-
ing homogeneous shell buckling problem (SBP) were generated automatically in
the computer memory by two program packages set up in the symbolic language
of MATHEMATICA. The SBP was generated without using any additional approx-
imation following from errors of the constitutive equations (14) and (15). Such
an approach allowed us to always account for those a few supposedly small terms
which may be critical in finding the correct buckling load of this shell structure
very sensitive to imperfections.



Development of Intrinsic Formulation 181

Figure 1: Sphere parameterized by stereographic projection

The numerical analysis of the weighted buckling load ρ was performed for the
cylinders with length-to-diameter ratio l in the range (0.05, 60), with eight sets of
work-conjugate boundary conditions analogous to those used in the literature and
partly summarized in the book by Yamaki (1984), and additionally with six sets
of boundary conditions not previously discussed in the literature. In the analysis,
ρ = 1 corresponds to the classical value of the buckling load of the cylinder given
by Lorenz (1911).

The results partly presented in Fig. 2 and Fig. 3 allowed us to formulate several
important conclusions, for example:

• omission of small terms of the order of error of constitutive equations in
the non-linear tangential equilibrium equations and compatibility conditions
leads to the overestimated buckling load for long cylinders with clamped
boundaries (the curve C1S in Fig. 2);

• for some relaxed boundary conditions the buckling load decreases for short
cylinders with decrease of the cylinder length, which does not agree with the
results by Yamaki (1984), but confirms similar conclusion of Danielson and
Simmonds (1969), see curves C4 and S4 in Fig. 3;

• the results obtained with six additional sets of boundary conditions revealed
existence of several new cases, in which by relaxing one kinematic boundary
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Figure 2: The buckling load of axially compressed perfect cylinder for boundary
conditions C1 and C2

condition the buckling load falls down to about one half of the classical value
in a wide range of the cylinder length-to-diameter ratios.

For many other results and conclusions we refer to Opoka and Pietraszkiewicz
(2009b).

9.3 Position of deformed base surface from its metric components and the height
function

Szwabowicz (1999) proposed an alternative BVP for the nonlinear theory of thin
elastic shells, which was expressed in terms of three surface strains and the distance
(height) function of the deformed base surface from some arbitrarily fixed plane
as basic independent field variables. Then Szwabowicz and Pietraszkiewicz (2004)
solved the following problem: given the strain tensor of a base surface of a thin shell
and the height function find position of the deformed base surface in space. Two
alternative procedures supplying the solution were developed. The first one follows
from ideas developed by Darboux (1894), whereas the second one is based on the
polar decomposition theorem and techniques discussed in section 7 and subsection
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Figure 3: The buckling load of axially compressed perfect cylinder for boundary
conditions S3, S4, C3 and C4

8.3. These procedures are purely kinematic, valid for arbitrary surface geometry
and for unrestricted surface strains, translations and rotations. The results of that
paper suggest that this approach to the non-linear problems of thin shells may be
an attractive alternative to other BVPs developed in the literature.

9.4 Flexible shells

Thin elastic shells are sometimes specifically designed to allow maximum displace-
ments realizable within small elastic strains. Four types of such flexible shells are
presented in Fig. 1 of Axelrad (1984). Adequate description of such deforma-
tion states in thin shells can be given by the nonlinear flexible shell theory (FST).
The FST is characterized by the local shell shape and the stress state which vary
with one surface coordinate more intensively than with the other. To properly de-
scribe this specific case of shell deformation it is convenient to take the coordi-
nates θ α to be the orthogonal lines of curvatures of the shell midsurface for which
a12 = b12 = 0.

In the intrinsic formulation the FST is characterized by the nonlinear shell equa-
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tions in the rotated basis which are much simpler that those given in (48). This spe-
cialized theory is sometime called the semi-momentless or semi-membrane shell
theory, because it represents adequately the stress states free from bending in, for
example, the cross sections θ 1 =const, which may exhibit a substantial bending
in the orthogonal cross sections θ 2 =const. The survey of this simple but versa-
tile version of the nonlinear intrinsic shell theory is given in the papers by Axelrad
(1980,1984); Axelrad and Emmerling (1987); and in the book by Axelrad (1987).

10 Conclusions

We have reviewed some achievements in the intrinsic formulation of the geometri-
cally nonlinear theory of thin elastic shells, foundations of which were laid down
by Chien (1944). Three groups of problems have been reviewed: a) several con-
sistent intrinsic BVPs, b) determination of position in space of the deformed base
surface from known surface strain measures, and c) four special problems some-
what related to the intrinsic formulation of shell theory.

In 1940’s the intrinsic formulation of thin shell equations was supposed to be
promising as an alternative to the extremely complex nonlinear shell BVP formu-
lated in terms of translations, when rotations of material elements are unrestricted.
However, incredible advances in computer technology during the last 66 years com-
bined with development of powerful numerical methods, and the finite element
method in particular, has made the intrinsic approach to formulation of shell equa-
tions less and less attractive and finally obsolete in the numerical analyses of shell
structures. Nowadays only a few theoretically inclined shell specialists contribute
sometimes to this field. As a result, there are still some areas here which are worth
to explore. Let me mention two of them.

While the ranges of applicability of the refined intrinsic BVPs (20) - (23), (48) and
some of their simplified cases discussed in section 6 are well documented, there is
virtually no 2D numerical applications of these BVPs to analyze stress and strain
fields in highly nonlinear problems of thin shells.

Three general methods of determination of position of the deformed base surface
from the surface strain measures have been discussed in section 8. But again, nu-
merical algorithms and computer codes based on these methods are still not avail-
able. Particularly interesting for numerical applications in thin shells might be the
method presented in subsection 8.3. It seems that one could use here the algorithms
and numerical codes available in the mechanics of rigid-body motion to develop
numerical programs for large-rotation analyses of thin elastic shells.
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