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Divergent Integrals in Elastostatics: Regularization in 3-D
Case

V.V. Zozulya'

Abstract: In this article the divergent integrals, which arise when the bound-
ary integral equation (BIE) methods are used for solution of the 3-D elastostatic
problems is considered. The same approach for weakly singular, singular and hy-
persingular integral regularization is developed. The approach is based on theory
of distribution and Green’s theorems. This approach is applied for regularization
of the divergent integrals over convex polygonal boundary elements (BE) in the
case of piecewise constant approximation and over rectangular and triangular BE
for piecewise linear approximation. The divergent integrals are transformed into
the regular contour integrals that can be easily calculated analytically. Proposed
methodology easy can be extended to other problems: elastodynamics, analytical
calculation of the regular integrals, when collocation point situated outside the BE.
Calculations of the divergent and regular integrals for square and triangle of the
unit side are presented

Keywords: weakly singular, singular, hypersingular integrals, regularization, bound-
ary integral equations.

1 Introduction

Boundary integral equation (BIE) is a very powerful method for solution of the
mathematical problems in science and engineering, in particular for stress analysis
in the theory of elasticity (Balas, Sladek J, Sladek V 1989; Hsiao, Wendland 2008;
Guz, Zozulya, 1993). Since analytical solutions in 3-D theory of elasticity have
been limited to the case of relatively simple geometry with a simple load, numeri-
cal methods such as a boundary element method (BEM) have been developed. The
BIE and BEM methods are now established in many engineering disciplines as an
alternative numerical technique to domain approaches, for example the finite ele-
ment method. The attraction of BEM can be largely attributed to the reduction in
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the dimensionality of the problem. Another advantage of the BEM is a high accu-
racy of results especially for stress concentration problems. Namely, the solution
at an internal point of analyzed domain is exactly expressed through the boundary
values and no discretization of domain is required. This is the main reason why the
BEM is the most accurate computational method for solution of the stress analy-
sis problems. A familiar complication of BIE and BEM methods is, however, that
they must in general be formulated in terms of divergent integral operators (Balas,
Sladek J, Sladek V 1989; Chen, Hong 1999; Guz, Zozulya, 2001, Sladek V, Sladek
J. 1998; Tanaka, Sladek V, Sladek J. 1994, etc.).

It is known that the overall accuracy of the BEM is largely dependent on the preci-
sion with which various integrals are evaluated. No doubt, the evaluation of diver-
gent integrals requires much more sensitive treatment than that of regular integrals.
Numerical methods developed for regular integrals calculation can not be used for
their calculation. In mathematics divergent integrals have established theoretical
basis. For example, the weakly singular integrals are considered as improper inte-
grals, the singular integrals are considered in the sense of Cauchy principal value
(PV), the hypersingular integrals had been considered by Hadamard as finite part
integrals (FP). Usually different divergent integrals need different methods for their
calculation. Analysis of the most known methods used for treatment of the different
divergent integrals has been done in books Courant, Hilbert 1968; Gel’ fand, Shilov
1964; Gunter 1967; Hadamard 1923; Michlin 1965; Sladek V, Sladek J. 1998; re-
view articles Chen, Hong 1999; Guz, Zozulya, 2001, Tanaka, Sladek V, Sladek J.
1994 and resent papers Fata 2009; Han, Atluri 2007; Karlis, Tsinopoulos, Polyzos,
Beskos, 2007, 2008; Marin 2008; Salvadori 2001; Sanz, Solis, Dominguez 2007;
Zozulya 2006a,b 2008, 2010a-c. It has to be mentioned that direct method devel-
oped by Guiggiani and coauthors 1990, 1992 is widely applied for the divergent in-
tegral regularization in 2-D and 3-D cases. We will not discuss here advantages and
disadvantages of these methods; it has already been done in the above mentioned
review. We will consider here in more details method of the divergent integrals
regularization, which is based on the theory of distributions and idea of finite part
integrals according to Hadamard 1923.

We apply the approach based on the theory of distributions and finite part integrals
for the problems of fracture mechanics firstly in Zozulya 1991. Then it was further
developed for regularization of the hypersingular integrals in static and dynamic
problems of fracture mechanics in Zozulya, Lukin 1998 and Zozulya, Men’shikov
2000 respectively. More applications of the devloped regularization method can
be found in review articles Guz, Zozulya 2001, 2002; Gonzalez-Chi 2000 and re-
sent papers Guz and Zozulya 2007; Guz, at all 2007. Further development of this
approach and application of the Green’s theorems in the sense of theory of distribu-
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tion has bean done in Zozulya 2006a,b. Further development of this approach and
application of the Green’s theorems in the sense of theory of distribution has bean
done in Zozulya 2008, 2010a-c. The equations presented in Zozulya 2006b, 2008,
Zozulya, Gonzalez-Chi 1999 permit transform divergent weakly singular, singular
and hypersingular integrals into the regular ones. The developed approach can be
applied for regularization of a wide class of divergent integral. The developed ap-
proach can be applied not only for hypersingular integrals regularization but also for
a wide class of divergent integral regularizations and any polynomial approxima-
tion. For example in gradient elasticity BIE contain more divergent integrals (see
for details Karlis, Tsinopoulos, Polyzos, Beskos, 2007, 2008; Polyzos, Tsepoura,
Beskos 2005; Polyzos, Tsepoura, Tsinopoulos, Beskos 2003; Tsepoura, Tsinopou-
los, Polyzos, Beskos 2003). Methods developed in this and other our publications
can been applied for such divergent integrals.

In the present paper, the above mentioned approach for the divergent integral regu-
larization is further developed and applied for the case of 3-D elastostatic problems.
For example in Zozulya 2008, 2010a we consider divergent integrals that appear in
fracture mechanics, which are hypersingular. In the present paper we consider di-
vergent integrals that appear in 3-D elastostatic which are weakly singular, singular
and hypersingular. We obtain simple formulae which permit in the similar way con-
sider the 2-D weakly singular, singular and hypersingular integrals which appear
in 3-D elastostatics over arbitrary convex polygon for piecewise constant approxi-
mation and over rectangular and triangular BE for piecewise linear approximation.
The regularized equations for the 2-D weakly singular, singular and hypersingu-
lar integrals calculation have been presented here for the case of 3-D elastostatics.
In resented equations all calculations can be done analytically, no numerical inte-
gration is needed. It is important to mention that proposed methodology can be
easy applied to dynamic problems, analytical calculation of the regular integrals
when collocation point situated outside BE and for regularization of the divergent
integrals in the case of quadratic and higher BE.

2 Main equations of elatostatics

Let consider a homogeneous, lineally elastic body, which in three-dimensional Eu-
clidean space R* occupies volume V with smooth boundary dV. The region V is
an open bounded subset of the three-dimensional Euclidean space R>with a C!!
Lyapunov’s class regular boundary dV. The boundary contain two parts dV, and
dV, such that dV,NdV,, = 0 and dV,,UdV,, = V. On the part dV,, are prescribed
displacement u;(x) of the body points and on the part dV,, are prescribed traction
pi(x)respectively. The body may be affected by volume forces b;(x). We assume
that displacements of the body points and their gradients are small, so its stress-
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strain state is described by small strain deformation tensor &;;(x). The strain tensor
and displacement vector are connected by Cauchy relations

1
&j= 5(8iuj+8jui) 2.1)
where d/dx; is a derivative with respect to space coordinates x;. The components

of the strain tensor must also satisfy the Saint-Venant’s relations

2 20 2. 72
Ia€ij — Oii€kj = ;€ — 0;j€u

From the balance of impulse and moment of impulse lows follow that the stress
tensor is symmetric one and satisfy the equations of equilibrium

ajG,'j +b; =0, Vx evV. 2.2)

Here and throughout the article the summation convention applies to repeated in-
dices.

The tensor of deformation &;;(x) and stress 0;;(x) are related by Hook’s law
Oij = Cijki€ij (2.3)

Here c;j; are elastic modules. In the case of homogeneous anisotropic medium
they are symmetric

Cijkl = Cjiki = Cklij

and satisfy condition of ellipticity
Cijki€ij€ > O1E;j€&j , Ve&;andVay >0

In the case of homogeneous isotropic medium the elastic modules have the form
cijur = A ;8 + (81 + 8uSji) (2.4)

where A and y are Lame constants, i > 0and A > —p1, §;; is a Kronecker’s symbol.
Throughout this paper we use the Einstein summation convention.

Substituting stress tensor in (2.2) and using Hook’s law (2.3) and Cauchy relations
(2.1) we obtain the differential equations of equilibrium in the form of displace-
ments which may be presented in the form

Aijuj +b; =0, vxeV (2.5
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The differential operatorA;; for homogeneous anisotropic medium has the form
Ajj = Cikj19k0) (2.6)
and for homogeneous isotropic medium has the form

Ajj = W6;j0k0k + (A + 1)0;0;. 2.7

If the problem is defined in an infinite region, then solution of the equations (2.5)
must satisfy additional conditions at the infinity in the form

uj(x) =0(r™"), o;j(x) =0(r ?) for r — oo (2.8)

where r = /x4 x3 4 x3 is the distance in the three-dimensional Euclidian space.

If the body occupied a finite region V with the boundary dV, it is necessary to
establish boundary conditions. We consider the mixed boundary conditions in the
form

ui(x) = @;i(x),Vvx€adv,,

pi(x) = 0;;(x)n;(x) = P;j[u;(x)] = w;(x) , Vx € IV}, 29

The differential operator F;; : u; — p; is called stress operator. It transforms the dis-
placements into the tractions. For homogeneous anisotropic and isotropic medium
they have the forms

Pj = ciimd)  Pj = Anidj+ W (0;;0, +n;o;) (2.10)

respectively. Here n; are components of the outward normal vector, d, = n;d; is a
derivative in direction of the vector n(x) normal to the surface dV),.

For additional information in linear elasticity refer to Gurtin 1972.
3 Integral representations for displacements and traction

In order to establish integral representations for the displacements and tractions
let us consider bilinear form which depends on two fields of the strain tensor, that
correspond to two fields of the displacements u and u*

a(u,u”) = ¢;ju&j(u)gy(u”) (3.1)

Obviously that
a(u,u*) = a(u*,u) and a(u,u) = o;;(u)g;(u) > o &;(u)
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Integrating the equality (3.1) over the volume V and applying the Gauss-Ostrogradskii
formula we will obtain

/a(u,u*)dV = /G,’j(ll)é‘kl(ll*)dv = /G,’jl’lju;'kds—/u;kajG,'jdV 3.2)
\%4 \%4 v 14

Taking into account that A;ju; = d;0;; and p; = o;jn; = P,;[u;] we will find the first
Betty’s theorem in the form

/u,’-‘AijujdV:/a(u,u*)dV—/u?‘Pij[uj]dS (33)
14 14 v

We will replace u; and u; in the equation (3.3) and subtract resulting equation from
the equation (3.3). Because of the form (3.1) is symmetrical one we will obtain the
second Betty’s theorem in the form

/ (4 Aijuj — widijuz)dV = / (iPyj[u}] — ui Pijlu;])ds (3.4)
|4 av

Taking into account definition of differential operator A;; given in (2.5) and defini-
tion of differential operator F;; given in (2.10) we obtain relation

[ at; =biuav = [ (piui=pui)s (5
Vv av

which is called the Betti’s reciprocal theorem.

This theorem is usually used for obtain integral representations for the displace-
ments and traction vectors. To do that we consider solution of the elliptic partial dif-
ferential equation (2.5) in an infinite space for the body force b} (x) — 0;;6 (x —y)

AijUij(x—y) + 8i8(x—y) =0, Vx,y e R’ (3.6)

Now considering that
uj (x) = Ujj(x—y) and pj (x) = P;j[uj(x)] — Wi(x,y)
from (3.5) we obtain the integral representation for the displacements vector

ui(y) = /(pi(X)Uij(X—Y)—uj(X)Wij(X,Y))dSJr/bi(X)Uij(X—Y)dV (3.7
’A% %

which is called Somigliana’s identity. The kernels U;;(x —y) and W;;(x,y) are
called fundamental solutions for elastostatics.
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Applying to (3.7) the differential operator P;; we will find integral representation
for the traction in the form

pil¥) = [ (XK (%.3) =0 (0F (x.¥)dS+ [ Bi(x)Ki(x.y)dv (8
A4 14

The kernels K;;(x,y) and F;;(x,y) may be obtained applying the differential opera-
tor P,; to the kernels U;;(x —y) and W;;(x,y) respectively.

The integral representations (3.7) and (3.8) are usually used for direct formulation
of the boundary integral equations in elastostatics. Refer to Balas, Sladek J, Sladek
V 1989 for fore information regarding application of the BIE in the theory of elas-
ticity.

4 Fundamental solutions

In order to find the fundamental solutions U;;(x —y) for the differential operator
A;; we consider the differential equations of elastostatics in the form displacements
(3.6). Solutions of these equations are called the fundamental solutions.

In 3-D elastostatics they have the form

1

Uij(x—y) = m((3—4v)5,’j+airajr) 4.1

Here r = \/(x1 —y1)2+ (x2 —y2)® + (x3 — y3)? is a distance between points x and
dr

y in 3-D Euclidean space R> and d;r = % =-5.= =21 s a derivative in respect
to x;.

The kernels W;;(x,y) from (3.7) may be obtained by applying to U;; (x —y)differential
operator

Pyle,(x)] = A ni(x)0k[e] + u [Opn;j(x)d;[e] + ni(x)d;[e]] 4.2)
as it is shown here
Wij(x,y) = A ni(x)Us;j(x,y) + 1 ni(x) [0eUij(x,y) + oUk;(x,y)] - (4.3)

Then after some transformations and simplifications the expression for the kernels
W;;(x,y) will have the following form

W/t}(xvy) =

-1

m (nk(x)akr((l *21))5[1' +38,-r3jr) + (1 — 21)) (n,-(x)ajr—nj(x)a,-r))

(4.4)
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The kernels K;;(x,y) and F;;(x,y) from (3.8) may be obtained by applying differen-
tial operator

Pic[o, (V)] = A ni(y) I + 1 [8n(y)9j + ni(y) 0] (4.5)
to U;j(x —y) and W;;(x,y) respectively

Kij(x,y) = A ni(y)Uji (x,y) + 1 nie(y) [0kUji(x,y) + iU (x,¥)] -

4.6
Fiy(esy) = A mi() Wi () + 1 () [0WnCesy) + AW, 9

Then after some transformations and simplifications the expression for the kernels
K;j(x,y) will have the form

Kij(x,y) =
2 (nk(y)akr ((1 — 2’())5,‘]' + 33,‘}’8]‘1") + (1 — 21)) (ni(y)(?jr — I’lj(y)a,‘l’))
4.7

and for the kernels F;;(x,y) will have the form

M (3I’lk(X)akl’((1 — ZD)ni(y)8]~r—|— [ (5,-jnk(y)8kr—|—nj(y)8ir) —

Fij(x,y) =
—Snk(y)8kr8,~r8jr) +3v (ni(x)nk(y)riajr + nk(x)nk(y)8ir8jr) + (48)
+(1-2v) (3n;(x)n(y) ohrdir + ni(X)ni(y) 8ix + ni(x)nj(y)) — (1 — 4v)n;(x)ni(y))

The kernels (4.1) — (4.5) contain different kind singularities, therefore correspond-
ing integrals are divergent. Here we will investigate there singularities and develop
methods of divergent integrals calculation.

5 Singularities, boundary properties and boundary integral equations

Simple observation shows that kernels in the integral representations (3.7) and (3.8)
tend to infinity whenr — 0. More detailed analysis of the equations (4.1), (4.4),
(4.7), (4.8) give us the following results, when x — y

Uij(x—y) — r \Wi(x,y) = r 2Ki;(x,y) = r %, Fj(x,y) = r > 5.1

In order to investigate these functions and integrals with divergent kernels, follow-
ing Michlin 1965 definition and classification of the integrals with various singu-
larities will be presented here.
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Definition 5.1. Let we consider two points with coordinated x,y € R"(where n =3
or n=2) and region V with smooth boundary 9V of the classC®'. The boundary
integrals of the types

/G(X’y)(p(x)dS, a>0 (5.2)

7o
A4

where G(x,y) is a finite function in R" x dV and ¢(x) is a finite function in JV, are
weakly singular for o < n— 1, strongly singular for o = n — 1 and hypersingular
fora >n—1.

Definition 5.2. Let we consider two points with coordinated x,y € R"(where n =3
or n=2) and region V with smooth boundary dV of the classC*!. The boundary
integrals of the types

/ G(x,y)In(r)o(y)dy, (5.3)

where G(x,y) is a finite function in R”" x dV and ¢(x) is a finite function in JV,
are weakly singular.

The integrals with singularities can not be considered in usual (Riemann or Lebe-
gue) sense. In order to such integrals have sense it is necessary special considera-
tion of them. We will apply these definitions of the integrals from (3.7) and (3.8)
and give definition of weakly singular integrals as improper, strongly singular in
sense of Cauchy principal values and hypersingular in sense of Hadamard’s finite
part (see Hadamard 1923, Michlin 1965, Lifanov, Poltavskii, Vainikko 2004).
Definition 5. 3. Integrals in (3.7) with kernels U;j(x —y) are weakly singular and
must be considered as improper

WS/pl Uij(x— y)dS—hm / pi(x)U;j(x—y)dS (5.4)
3\/\(9\/5

Here dV is a part of the boundary, projection of which on tangential plane is con-
tained in the circle C¢(x) of the radio € with center in the point x.

Definition 5.4. Integrals in (3.7) and (3.8) with kernels W;;(x,y) and K;;(x,y) are
singular and must be considered in sense of the Cauchy principal values as

PV. /u, Wij(x,y)dS = 11m / ui(x)W;;(x,y)dS
8V\8V(r<£)
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PV. /p, Kij(x,y)dS = hm / pi(x)Kij(x,y)dS (5.5)
8V\8V(r<e)

Here 0V (r < €) is a part of the boundary, projection of which on tangential plane

is the circle C¢(x) of the radio € with center in the point x.

Definition 5.5. Integrals in (3.8) with kernels F;;(x,y)are hypersingular and must
be considered in sense of the Hadamard’s finite part as

fi(x)
FP /u, Fitx—y)as=tm | | (IWi(x = Y)dS +2u,(8) 5
IV\IV (r<e)
(5.6)

Here functions fj(x)are chosen from the condition of the limit existence.

Singular character of the channels in (3.7) and (3.8) determine boundary properties
of the corresponding potentials. Analysis of these formulae show that the boundary
potentials with the kernels U;;(x —y), are weakly singular and therefore they are
continuous everywhere in the R” and, therefore, may be continuously extended on
the boundary dV. The potentials with the kernels W;;(x,y) and K;;(x,y)contain
singular kernels and they jump when crossing the boundary dV. The potential with
the kernels F;;(x,y) contain hypersingular kernels. They continuously cross the
boundary dV.

Boundary properties of these potentials are well known Balas, Sladek J, Sladek
V 1989; Hsiao, Wendland 2008. For smooth part of the boundary they may be
expressed by the equations

0 +
/ pi(x)Uji(x—y)d / pi(x)Uji(x —y)dS / ui(X)Wji(x,y)dS
' 0
1
— w50+ | [ wxWixy)ds
14
+ 0
1
[pKixyds | ==5p,0)+ | [ K y)as 57)
Vv Vv
+ 0
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The symbols "+ and " " denote that two equalities, one with the top sign and
the other with the bottom sign, are considered. The up index "0" points out, that
the direct value of the corresponding potentials on the surface dV should be taken.

Now using integral representations for displacements and traction and boundary
properties of the potentials we can get boundary integral equations for elastostat-
ics. Tending y in (3.7) and (3.8) to the boundary dV and taking into consideration
boundary properties of the potentials (5.8) we obtain representation of the displace-
ments and traction vectors on the boundary surface dV. On the smooth parts of the
boundary they have the following form

2y = [ (piUx=3) — (W (%3S + [ pi6)Us(x—¥)aV (59
v \4

a0 = [ (0K %3~ R3S+ [ 0Ky kY (59
av \4

The plus and minus signs in these equations are used for the interior and exterior
problems, respectively. Together with boundary conditions they are used for com-
positing the BIE for the problems of elastoctatics.

In our previous publications Zozulya 1991, 2006a,b, Zozulya, Lukin 1998, Zozulya
Gonzalez-Chi 1999 Zozulya Menshykov 2000 the approach for regularization of
the divergent integrals has been developed. The approach is based on theory of
generalized functions Gel’fand, Shilov 1964 and consists in application formula of
part integration in 2-D case and second Green theorem in 3-D case. This approach
can be applied for static and dynamic problems. Particularly in Zozulya 1991 it
was shown that regularization of the divergent integrals in elastodynamics may be
transformed to the ones in elastostatics.

Following approach developed in Zozulya 1991 we can transform the regulariza-
tion over any curvilinear boundary element dV; to the regularization over its flat
projectionlI,. To do that let us introduce a Cartesian coordinate system such that
its origin is at the point y and the y3-axis coincides with the external normal to
dV, at this point, and the other two axes lie in the tangential plane IT,. Orthogonal
projection of the point x € dV,, is defined as

(%) = x; —ni(y)n;(y) (x; — y;) (5.10)

Then integrals in (5.8 ) and (5.9) can be presented in the form

[ pi0ustx=yas= [ pixuUsx-y)as+ [ Uix=y)pix) - pi(y)ds-
oV oV IV Ve
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~pi(y) [ Unlx—y) = Uy (x(x).¥)dS + p,(y) [ Usi(x(x),y)ds
Ve I,

/ uj(x)Wji(x,y)dsS = / uj(xX)Wi(x,y)dS+ / Wii(x,y) (uj(x) —u;(y))dS—
v V)V, Ve

—ui(y) [ Wix,y) =W (x(0.¥)dS +1;(3) [ Wi (2(x).)d
Ve ITe

[pi0Kixy)as = [ p0Kuxy)ast [ Kilx.y)(pix) - pi(y)ds+
v oV /dVe Ve
(5.11)

(3 [ Ky, = K (7(x),3)dS+ p;(3) [ Ki(x().y)dS
Ve e

JuFixyas= [ wmFixy)ds
v AV /aVe

[ Feay) 50) = 5(3) = sty (1) (y =) S+
Ve

+uj(y) / Fji(x,y) — Fji (n(x),y)dS
Ve

050i(y) [ (= XFu(x.¥) = (70~ ¥)Fj (7(x), ) dS-+
Ve

‘|’81:,-uj(Y>/(7r(X)_Y)Fji(n(x)7Y)dS+Mj(Y)/Fji(ﬂ(x)>)')ds
I, I

where d;, = d; — n;d, is the derivative in tangential direction.

Because of dV; is sufficiently smooth, then the integrals on the right-hand side
of these equalities are regular. The integrals over flat plane Il in (5.11) contain
kernels those are fundamental solutions of the static theory of elasticity

Juia.yas. [wiEm.yds, [ Ki(x.y)ds 6.12)
I, I, e
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[ 0= y)Fs(x(.3)dS, [ Fi(x(x),y)ds
I,

I

They are divergent and in introduced above specific system of coordinates their
singularities have the form
L Wm0y 534, (5.13)

rm rm

For such singular function following Zozulya 2006a we have regular representation
of the form

¢ (x )it / k—i—1 R e
F.P. / ) 4y 2 a AT QN — 0 (X))
14

+(—1)"/ ! —— Al p(x)]dV, (5.14)

ym—2k
Vv

where P, = (- 1)*[T, > for k,m > 1.

m+21

6 Projection method and the BEM equations

The main idea of the BEM consists in approximation of the BIE and further solution
of that approximated finite dimensional BE system of equations. The mathematical
essence of this approach is so-called projection method. Let us outline some results
from mathematical theory of the projection methods related to the approximation
of the BIE. For more information one can refer to Lebedev, Vorovich, Gladwell
1996, Zeidler 1997.

We consider two Banach spaces X and Y and functional equation in those spaces
A-u=f,ueDA)CXfeRA)CY. (6.1)

Here A : X — Y is the linear operator mapping from Banach space X in Banach
spaceY, D(A) is a domain and R(A) is a range of the operator A.The equation
(6.1) is named the exact equation, and its solution is the exact solution. We denote
L(X,Y) Banach space of the linear operators mapping from X in Y.

Let in X and Y act sequences of projection operators P;, and P}, such that

P, =Py, P, X =X, X, CX,

N2 e e (6.2)
(P,) =P, P, Y=Y, Y, CY,
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where X; and Y}, are finite dimension subspaces of the Banach spaces X and Y,
h € R! is a parameter of discretization.

Now we consider operatorA;, € L(X},, Y;) mapping in finite dimensional subspaces
X, and Y}, and an approximate equation

Ah-uh:fh, Ah:P;z-A-Ph, llh:Ph'll, fh:P;lf (63)

Solution uy, of the equation (6.3) is the approximate solutions of the equation (6.1).
The general scheme of the approached equations construction (6.3) is illustrated by
the following diagram

XS DA) 2 RA)CY

Pl Pl (6.4)
X, D D(Ah) i R(Ah) cYy,
Now let us consider operator A, € L(X},Y),) mapping in finite dimensional sub-

spaces X;, and Y, and an approximate equation

Existence of the exact solution, convergence of the approximate solution to the
exact one and stability of the approximations are the main problems which arrived
in application of the projection methods. In order to solve these problems we have
to formulate them mathematically.

We assume, that projection operators P, and P), converge to identity operators in X
and Y respectively. It means that

}llin(l) |Pp-u—ulx =0VueX,

. (6.5)
lim |[P,-f—fljy =0 Ve Y.

Definition 3.1. Let conditions (6.5) are satisfied and stating from some & = hy > 0
for any f € Y the equation (6.3) has unique solution uy,. In this case if

%in})HAh~uh—A~u||Y:O, (6.6)

than the solution of the approximate problem (6.3) converges to the exact solution
(6.1). It means that the projective method presented on diagram (6.4) is applicable
to the initial problem (6.1).

Definition 3.2. Let for some sequence of the operators {A;, } mapping fromX, intoY/,
and there is a constant y > 0 such, that stating from some & = hy > 0

[An-up—A-ully > yllusx Vu, € X (6.7)
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than for sequence of the operators {A;} the condition of stability of the approxi-
mate solution is satisfied.

Conditions (6.5) - (6.7) are very important for formulation conditions of existence,
convergence and stability of the approximate solution. These conditions contain
the following theorem Zeidler 1997.

Theorem 6.1. Let the following conditions are satisfied:

1) the projection operators P, and P), converge to identity operators in the Banach
spaces X and Y respectively, as it stated in (6.5);

2) the sequence of approximate operators {A;} converge to A on each exact solu-
tion;

3) the condition of stability (6.7) is satisfied for the sequence of operators {A;}.
Then the following consequences take place:

1) the exact solution exists and it is unique;

2) for all enough small 4 exists a unique solution u;, € Xj, of the approximate equa-
tion (6.3);

3) the sequence of the approximate equation {u;} converges to the exact one and
take place the estimation

lw, —Py-ully, <y '|[PLA-u— APl . (6.8)

Thus, using a projective method instead of the exact solution of the equation (6.1)
in functional space X, we can find the solution of the approximate equation (6.3) in
finite dimensional space X,. The functional spaces {X,X},} and {Y, Y} are related
by means of the projection operators P;, € L(X,X},) and P} € L(Y,Y},) respectively.
It is also important to construct inverse operator P;l € L(Xj,X) which maps the
finite dimensional space X}, into initial functional space X. Such operator refers to
as the operator of interpolation. Because of X, C X the interpolation operator is not
unique, moreover for any two functional spaces X, and X it is possible to construct
infinite set of interpolation operators.

Let us apply projection method to the BIE of elastostatics and construct corre-
sponding finite dimensional BE equations. It is known Hsiao, Wendland 2008 that
integral operators in (5.9) and (5.10) maps between two functional spaces X(dV)
and Y(JV )that are trace of displacements and traction on the boundary of the re-
gion in the following way

Uy py= [ (Uglxy) py()dS: X(OV) = X(3V)
oV
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Wijuy= [ (W) (x))dS : X(9V) = Y(@V)
%
Kijop = [ (Kij(x.y) p;(x))dS: Y(2V) = X(9V)
A4
Fijui= [ (Fy(x.y) 4;(0)ds :X(2V) = Y(9V) (6.9)
av

We have to construct finite dimensional functional spaces that correspond to X(dV)
and Y(dV) and the corresponding projection operators. To construction finite di-
mensional functional spaces we shall apply approximation by finite functions and
splitting JV into finite elements

aV = 61 OV, AV, NIV, =0, if n #k. (6.10)

n=

Because of dV is the boundary of the region these elements are called boundary
elements. On each boundary element we shall choose Q nodes of interpolation.
Local projection operators act from functional X(dV,) and Y(dV,) to the finite
directional ones X,(dV,) and Y,dV},)

P! X(9V,) — Xy (9V,) Vx € IV, 610
PP Y (dV,) — Y4 (9V,) Vx € 9V, '

Global projection operators are defined as the sum of the local projection operators
N N
P, =) P/ P, =) P (6.12)
n=1 n=1
They map X(dV) and Y(JV) to finite dimensional interpolations spaces

N
P X(9V) — X (| 9Vy) ¥x € 9V,

”;1 (6.13)
PP Y(IV) = Y, (| oVy) ¥x € 9V
n=1

The local projection operators P¥ also P}, establish correspondence between vectors
of displacements and traction and their value on the nodes of interpolation of the
boundary elements dV,,

Py -u;(x) = {ul (x4), g=1,...,0} Vx €9V,

6.14
ngl(x):{pf’(xq)7 qzl,,Q} VXE(?VH. ( )
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Similarly for the global operators we have
P”q-ul-( = {uf xq) g=1, Q n=1,.,N} Vx€aV,

(6.15)
P2 -pi(x) = {p} (x,), Qyn=1,.,N} Vx € V.
Let us construct local interpolation operators (PZ) ~and (Pg ) ! For this purpose
we will introduce systems of shape functions ¢,,(x) in the finite dimensional func-
tional spaces X, (dV,,) and Y,(dV,,). Then the vectors of displacements and traction
on the boundary element dV,, will be represented approximately in the form

Zu Xg)Pg(X), X € IV,

Q (6.16)
Z (Xg) Png(X) X € IV,
and on the whole crack surface dV in the form
N 0
ui (X) ~ Ui (Xg) Png(X), X € U 9V,
n=1¢g=1
N 0 (6.17)
pi(x) ~ Z ZP? (Xg) Pug(x), X € nL_J A
n=1qg=1 -

Finite-dimensional analogies for the integral operators (6.9) are operators which
N N

map the finite dimensional functional spaces X,( U1 dV,) and Y,( U1 aV,), from
n= n—=

one to another

Ul = P Ui - P Y (V) — X, (9Va),

Wi.i - Prlzq'wif'PZq:Xq@Vn) — Yy(9Vy) (6.18)
K'f’.q: PL - Kij- P Y, (V) — Xy (aV,),
Fi! = P -F;;-Pu X, (0V,) — Yq(9V,)

ij
Note that in contrast to differential operators, the integral operators are global and
they are defined in the entire space, i.e. at every boundary element.

Substitution of the expressions (6.17) in (2.5) gives us the finite-dimensional rep-
resentations for the vectors of displacements and traction on the boundary in the
form

N QO
- Z Z [ ji Yryxm Pj (Xm) W;{ (X,»,Xm)I/l;! (Xm) +U; (f,y,Vn)

n=1g=1
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N 0
= Y Y (KA Xn) 2 () = F (¥ X)) (%) + Ki (£3,V2)  (6.19)

n=1qg=1
where
U;‘]i (yraxm) = / Uji (YMX) (an (X) dS> Wﬁ (yraxm) = / Wji (Yrax) (an (X) dS,
v, oV,
K;I, (Yrvxm) = /Kji ()’r,X)(an (X) dS7 Fﬁ (y”Xm) = /Fji ()’r,X)(an (X) ds.
vV, WV,

(6.20)

The volume potentials U; (f,y,V,) also K; (f,y,V,) depend on discretization of the
V domain. More detailed information on transition from the BIE to the BEM equa-
tions can be found in Balas, Sladek J, Sladek V 1989; Guz, Zozulya 1993.

7 Boundary elements and approximation

The BEM can be treated as the approximate method for the BIE solution, which
includes approximation of the functions that belong to some functional space by
discrete finite model. This model comprises finite number of values of the con-
sidered functions which are used for approximation of these functions by the shape
functions determined on small sub domains called boundary elements. In this sense
the BEM is closely related to a finite elements method where the functions also
belong to corresponding functional spaces and are approximated by finite model.
Below we shall speak about finite element approximations and finite elements (FE),
keeping in mind that boundary elements are their specific case.

It is important to mention that local approximation of the considered function on
one FE can be done independently from other FEs. It means, that it is possible to
approximate function on a FE by means of its values on the nodes independently
of the place will occupied considered the FE in the finite element model and how
behave the function on other FEs. Hence, it is possible to create the catalogue of
various FE or BE with arbitrary node values interpolation function. Then from this
catalogue can be chosen FEs which are necessary for approximation the function
and domain of its definition. The same FE can be used for discrete models of
various functions or physical fields by determination of the necessary position of
nodes in the model and further definition of the node values of the function or
physical field. Thus, finite models of an area and its boundary is not depend on
functions and physical fields for which that area can be a domain of definition.

Let us consider how to construct a FE model of an area V C R" and a BE model
of its boundary dV C R"~!(§ = 2, 3). We fix in the area V finite number of points
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x? (g=1, ..., Q), these points refer to as global nodes points V(g) = {x? € V :
g=1,..., Q} We shall divide the area V into finite number of sub areas V,, (n =
1, ) which are FEs. They have to satisfy the following conditions

N
VUV =0, m#n, mn=1,2, ..,N,V=_]JV,. (7.1)

n=1

On each FE we introduce a local coordinate system €. The nodal points x4 € V,, in
the local system of coordinates we designate by £7 . They are coordinates of nodal
points in the local coordinate system. Local and global coordinate are related in the
following way

N
x/ =Y A8 (7.2)
n=1

Functions A, depend on position of the nodal points in the FE and BE. They join
individual FE together in a FE model. Borders of the FEs and position of the nodal
points should be such that, after joining together, separate elements form discrete
model of the area V.

Having constructed FE model of the areaV, we shall consider approximation of the
function f(x) that belong to some functional space. The FE model of the area V
is the domain of function which should be approximated. We denote function f(x)
on the FE V, by f"(x). Then

N
~ Y (). (13)
n=1

On each FE the local functions f"(x) may be represented in the form

il Mz@

"(x7) @nq (& (7.4)

where ¢,,(§) are interpolation polynomials or shape functions of the FE with num-
ber n. In nodal point with coordinates x? they are equal to 1 and in other nodal
points are equal to zero. Taking into account (7.3) and (7.4) global approximation
of the function f(x) looks like

N 0
SHI WACHEN(S 09

n=1g=1
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If the nodal point g belongs to several FEs it is considered in these sums only once.

The FE and BE elements can be of various form and sizes, their surfaces can be
curvilinear. The curvilinear FE are very important in BEM because of boundary
surface is usually curvilinear. But it is more convenient to use standard FE, which
surfaces coincide with coordinate planes of local coordinates system. Mathemat-
ically it means, that it is necessary to establish relation between local coordinates
& in which element has a simple appearance, and global x; where the FE repre-
sents more complex figure. Local coordinates & should be functions of global
(& (x1, x2, x3)) ones, and on the contrary global coordinates should be functions
of (x; (&1, &, &;)) ones. In order to these maps be one-to-one, it is necessary and
sufficient that Jacobians of the transformations be nonzero

8xl~ -1 _ 851
7E, #£0,J —det‘a

The differential elements along coordinate axes are related by

dx,- = (8x,-/8<§j)d§j, dX:J(é)dé,

£0

J:det‘

(7.6)
dél' = (851/(9)6}) dxj, d§ = J_l (X)dX.
The volume element in the R3 is transformed under the formula
dV = dxidxydxs = J(E)d& dEdEs,
and the area element in the R? is transformed under the formula
0xg
dA = dx1dx; = det f d&ldéz, o, ﬁ =1,2 (7.7)
B
The differential of the surface located in the R is defined by expression
2, .2, N1/2
dS = (nj+nm+n3) " déd&, (7.8)

where

MT 9808 08 08
py= OB o0 0x 0%
2T 9808 0E &
. 0x1 dxa  dxp dxg
3

T 9806 089%
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The element of length of a contour in the R? is defined by expression

dl = |(dx1 /d&) + (dx2/d&))’| g, (7.9)

It is important to point attention that it is quite enough to consider standard FE
which can be transformed to the necessary form by suitable transformation of co-
ordinates. The FE approximation has to be linear independent and compact in the
corresponding functional space.

Applying representations (5.11) to discrete equations (6.20) we transform the reg-
ularization over any curvilinear boundary element dV,, to the regularization over its
flat projection IT,,.

[ Ui 5.3 vy (x) 05 =
WV,

/ Uji (X,¥r) (Wng (X)J (X) — Yog (y,)J (y-)) dS + ‘an(Yr)J(yr)/Uji (m(x),y)ds,
11,

oV,

/ Wji (Xa Yr) (an(X)J(X)dS =

Wy
[ Wi 05.90) 91y (07 (5) = 914 (9)1(37)) dS + 01 (371 (37) [ Wi (x(x).3) .
v, 11,

/ (%,7) Ying (%) (x)dS =

/ Kt (%,3) (Vo (50 (%) = Y (371 (9) S+ Vi (903, | K (2(.¥)
oVa 11,

[ 5,3 0ng ()7 (x)d5 =

Vy

/ Fji (%,¥r) (@ng (X)J (X) = (@ng (¥r) — FcWng (y7) (¥, —%))J (y,)) dS+

A

+ arlljnq (Yr) J(yr) / (Yr - X)Fji (E(X),y) dS+ (an(yr)*](yr) /W/i (”(X)7Y) ds
N N (7.10)
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We consider here examples of piecewise constant and piecewise linear FE approx-
imation, which are frequently used in the BEM.

8 Piecewise constant approximation

The piecewise constant approximation is the simplest one. Interpolation functions
in this case do not depend on the FE form and dimension of the domain. They have
the form

1 Vvxes,,
= 8.1
#a(x) {O VX & S, (6-1)

In order to simplify situation we transform global system of coordinates such that
the origin is located at the nodal point {x; = 0,x, = 0}, the coordinate axes x; and
x, are located in the plane of the element, while the axis x3 is perpendicular to that
plane. In this case x3 = 0 and n; = On, = On3 = 1 and fundamental solutions have
the following simple form

Un(x—y)= : <(3_4U)+X%> ;

16u (1 —v) r r3

B 1 (3—4v) x3
Unx y>_l67r,u(1—v)< o TR)
1 X1X2
(_

Unp(x—y) = 16ru(1—v) »°

Wis(x,y) = —Ki3(x,y) = —m2> 8.2)
Was(x,y) = —Kn3(x,y) = —m;%

Fu(xY) = 32— [(1;320) +3”§] ’

Fa(xy) = 471:(1“—1)) [(1 _r32v) +3D)r6§] ’

Fia(x.y) = M(;luiv)x;@ Fialxy) = 47r(1u— v)r1-°’
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In order to calculate the divergent integrals in (6.20) with kernels of the type (8.2)
the approach developed in Zozulya 2006a,b; Zozulya Gonzalez-Chi 1999; Zozulya,
Lukin 1998; Zozulya, Men’shikov 2000 will be used. The approach is based of
theory of generalized functions Gel fand, Shilov 1964 and application of the Green
theorems Courant, Hilbert 1968 and transformation of the divergent integrals into
regular ones (see Zozulya 2006a,b for details). Regular representations for integrals
with these kernels can be fond in above mentioned our publications. They have the
form:

Weakly singular

ds
0= w.s. / L[y
r r

Sy S,
ZO—WS/xldS— /<x1rn 2;’,,_2)c1n]>dl7
3 r
02 x% 1 x%rn 2rn 2xnp
B2 =ws. [ Sas =3 ( LRl )dl (83)
r 3. 7 r r
Sn 8Sn
1,1 X1X2 1 / (x1xzr,, r+>
Jo=WS. | —/=dS == ——)dl
3 / r3 3 r3 r
Sy S,
Singular
_pv/ Las = / x”” dl, (8.4)
r
Sy
= P.V./’%ds - / (B -"2)a
r r r
Sy a8,
Hypersingular
ds r,
0,0 - n
J —F.P./r—3_— S,
Sy S,

20 X{rn 2rp 2xim
=FP | —=dS= - = dl
/ / ( 33 313 > ’

S,
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2 2y 2, 2
JO’Z:F.P./&dS: / (xzr"—r”— xm)dl : ®.5)

r 373 373
A

II—FP/XlxzdS / x1x2rn_7>dl
3,3

S,

where r, = Xghg, F+ = X113 + Xo1].
K
Uji (¥r,%g) :/Uji(YraX)dSZ Z/Uji (yr,x)dl
k=1
S I

K
er; (Yraxq) = /W/l(yrvx)dS: Z/le (yr,X)dl, (8.6)
S, k=1,
K;li(yraxq):/K yr,X dS Z/ Yr, )
Sn

K
Fjr;' (yraxq) = /Fji(Yrux)dSz Z /Fji (yrvx)dl
k=1
S, A

Here indexes r and ¢q indicate number of nodes.

Thus the divergent integrals in (6.20) with kernels (8.2) have been transformed into
regular integrals (8.3)-(8.5) and may be easily calculated. For example regulariza-
tion of the hypersingular integral Jg ¥ for a circular area with the point ¢ located in
the center of circle leads to the following result

2
0,0 h 1 2
20— _ r—gdl:—;/dq):—T 8.7)
aSn

Here polar coordinates are used, were r and ¢ are the circle radius and polar angle
respectively.

In the application of the divergent integrals in the BEM, it is necessary to calculate
the above integrals over any triangular, rectangular or polygonal elements. For that
purpose these integrals must be transformed into a more convenient for calculation
form.
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Let us consider a polygonS, with K vertexes as it is shown in Fig. 1. All the
calculations will be done using the local rectangular coordinate system. Its origin
is located in the point x; = 0,x, = 0, and the axes x; and x; are located in the plane
of the polygon and the axis x3 is perpendicular to this plane.

A
X, A, (k) a(k)
7, (k)
(x, (), x, (k)
(x, =0,x, =0) X
1 S,
24,
Figure 1:

Global coordinates of the vertexes of polygon are (x’l‘,xé) The coordinates of an
arbitrary point on the contour S, may be represented in the form

x1(§) = x1 (k) — SAwz (k) and x3(G) = xa (k) + EAwii (k) (8.8)

where x| (k) and x, (k) are the coordinates of the k-th side of the contour, fi(, ;)
is a unit normal to the contour dS, vector, & € [—1, 1] is a parameter of integration
along the k-th side, and 2A; is the length of a k-th side.
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Coordinates x; (k) and x,(k), unit vector fi(7;,7A2) and length the contour dS, can
be calculate though the nodal points in the form

Ay R KLk
xi(k) = 5 —y{, i (k) = ZTIf —¥3 (3.9)
PR
(k) = =S5 26— ATy (4T P

where y?,y? are coordinates of a collocation point.

These are some useful notations that will be used bellow

r(é) = \/A,%§2+2§Akr,(k) +r2(k), r(k) = \/x3 (k) + x3(k), ra(k) = xq (k)Aa (k)

ri (k) = x1 (k)i (k) +x2 (k)i (k), ra(§) = ra(k) , r(§) = re (k) + EA(AT —3).
(8.10)

Substituting (8.8)-(8.10) into (8.3)-(8.5) we obtain formulas for calculation of the
corresponding integrals over each side of polygon in the form:

Weakly singular integrals

(“®(<m 2y (k)i (R)E + AR (R)E?)

(i‘n (k) — X1 (k)ﬁ] (k) + Apiig (k)ﬁz (k)é)) Akdé

5200 =5 [ (i) 0300+ 200 () + 302
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(8.11)
1
g/ +Ak r z(k))gAkdg
—1
Singular integrals
1
1 Tn . _ A1 (k)
= 2/1 <r3 — Ao (k)E) r(€) > Ad$§
1 ia(K)
_ /1< 9+ A () - 7 > AdE (8.12)

Hypersingular integrals

1
B0 =~ [ Bigae

-1

120 = [ 28 (306 + 20 () (0 +

(k) +x2 (k) (k) + A;jz%(k)é)) Avdé

1
A= | 8) e (0 ) + (i ()t () — o (B () A — (8.13)
1
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A (K)o (k) ATE®) Aed & —
/1 9+ A () A DE
—1

(&)

These formulae may be represented in more convenient for calculation form:

Weakly singular

K
J?’O = Z rn(k)ll,Oa

79 = L5 (00— 20k (W11 + B0 )

A2((ra(k) = x1 (k)1 (k)11 0 471 (k)i (k)1 1))

P = ! f (G (k)0 + 21 (k)x2 (k) 3.1 + 23 (k) T3 2) i (K)

+2((ra(k) +x2(k)ita (k)11 0 — Air (k)2 (k)11 1))

Q
I =2V a8 Cen (Rpea () + g (R () — s (R k)1 — i (R} () 2)
k=1
(8.14)
= (re (k)1 o+ (AT (k) = AT(K)1,1)
Singular
K
= (k) o —fa(k)3.1) I3,1— iy (k)1 o)
3
i (k)30 + 1 (k) I3,1) I3, — fia (k)] o) (8.15)

Hypersingular
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K
JSO’O = — Z I’n(k)l3y()
k=1

((X% (k)]s’o — 27y (k))q (k)1571 + ﬁ% (k)1512)rn (k)

u]k‘,\g
o
Il
1~

~
Il

=20+ W) o+ i (02008

(3 (k)Is 0 + 271 (K)x2 (k) Is 1 + AT (k) I5 2) 7 (K)

Lh&‘o
(3]
I
agle

~
I
—_

=30+ 3100 )0~ (BB

I
Js =

g[S

ra(k) (x1(k)x2 (k) s 0 + (A1 (K)x1 (k) — 2 (k)x2 (k) s, 1 — 7y (K)ia (k) s 2) —

(8.16)

k

1

5 (0o + @309 - 20V, )

Here we use the following notation for the integrals presented in (8.11)-(8.13)

I
Iy = (&)™ / rf( g)dé (8.17)
—1

The integrals in (8.17) may be calculated analytically. Formulae for their calcula-
tion are presented bellow

1

zl,ozAk/r(lé)dé — In|r_ (k) + A + ()],
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1
I » =Ak/rf;d‘§
e

1

= 7 (r(E)(AKE —r— (k) — (P (k) — 32 (k) In |r_ (k) + A& +r(E)]) \1_1

1 AE+r (k) |

Bo=a [ gy &P = 0 -~ )@

)
—1

1

1
é: B Ak§+r ()
Ly = (M) 2/1r £ 5d6 = k) —r2(k)r(€)

)
—1

P(k)r(€) A%52> 1
2 (k)

= 20 (O =3+ (e - T

-1

‘ (A () (3R + 20282 + AN (K)— 2 (K)) ||

1
b= A"/ &= 3(r2(k) =2 (k)>r(8)?

-1

-1

(k) + (3 (k) A& + 28383 )r— (k) + (2 (k) + 6A2E2)12 (K) +3MkE 12 (K) ||
3(r2(k) — 12 (k)*r(&)? o
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1 £
r(§)

P (k)A €3+( (k) + 3P ()AZE) (k) |
(6 (R)AE + AFE) (k) + 3AZE2 2 (k)

_ (
)?r(§)°

I57 = (A) 3

& (8.18)

_\

3(r2(k) —r* (k

! 3 }"2 r 2 r2 2£2 2 2r2

—1

It is important to mention that above formulas can be applied for calculation normal
nonsingular integrals. Obtained formulas valid for any collocation point situated
inside or outside of the BE. Only for points situated at the vertexes of the boundary
element special consideration is needed. It will be done in next section.

In the Tables 1 and 2 are presented results of the divergent and regular integrals
calculations for the square and triangle of a unit side respectively.

Using these representations the integrals in (6.20) may be represented in a conve-
nient form for the calculation.

In order to check validation of the above regularized equations we compare re-
sults for hypersingular integrals with the ones reported by Ioakimidis, 1982 and
for weakly singular and regular integrals with results obtained using regular 2-D
numerical calculation. Our calculations show that results of calculation obtained
using presented here regularized equations agree with ones obtained by other meth-
ods. Also it is important to mention that there are two possibilities for calculation
integrals in regular representations (8.11)-(8.16): the first one is to calculate corre-
sponding integrals using formulas (8.17) and numerical integration and the second
one is to calculate corresponding integrals using analytical formulas (8.18). Our
calculations show that with analytical formulas (8.17) results are more accurate
and time of calculation is 5-7 times faster in comparison with numerical formulas
(8.17) and 8-12 times faster then obtained with 2-D numerical integration.

Now divergent integrals (8.6) with divergent kernels (8.2) may be represented though
regular contour integrals in the form

Ulnl (Yraxq) = 7[7 ((3 _41))‘]?70 _1_13?,0) ’

Uz, (yrvxq) =
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Table 1: Divergent integrals calculated for unit square at collocation points: 1 -ww = o.oww =0.0, N-&_u = o.ovm =5.0

. 0,0 7.0 0.2 T T,0 01 0,0 7.0 0.2 N
Points | J, J3 J3 J3 J3 J3 J3 Js Js Js

1 3525|1762 | 1.762 | 0.0 | 0.0 0.0 |-11.31 ] -5.656 | -5.656 | 0.0
2. 0.200 | 0.001 | 0.199 | 0.0 | 0.0 | -0.040 | 0.008 | 0.000 | 0.008 | 0.0

Table 2: Divergent integrals calculated for unit triangle at collocation points: 1 -v\ﬁ_v = o.ozw =0.0, N-v\ﬁ_u = o.o&mv =50

. 0.0 70 ) T ;1.0 0 0.0 7.0 072 1
Points | J! 3 I B AR a2

1 2281 | 1.141 | 1.141 00 | 0.0 | 00 | -180 |-90| 9.0 | 0.0
2 0.086 | 0.0001 | 0.086 | 0.0 | 0.0 | 0.034 | 0.003 | 0.0 | 0.003 | 0.0
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1
16mu(l—v)

(3—4v) oo

1,1
S U?a(yhxq):ml )

Uty (yr,Xg) = (8.19)

(1-2v)

10
Wi (¥r%0) = —Kis (¥rXe) = == 3557
(1-2v) o,
W33 (¥r,Xg) = —K35 (¥, Xg) = _mJ? ’
F1 (YrXg) = i [(1 = 20)90 + 3020
1 Yr>Xq)—47r<]_v) ( v)J3" +30J57
0 o u 0,0 02
F3 (¥r,%g) = a(1-v) (1=20)J37+3vJ57],
H 0,0
B X)) == ma—oy5
HO g
Favrxg) = m—oy’s™

All calculations here can be done analytically, no numerical integration is needed.

Singularities of the fundamental solutions in elastostatics and elastodynamics are
the same, therefore obtained formulas can be easy applied for regularization of the
divergent integrals in elastodynamics. For example following Zozulya, Men’shikov
2000 hypersingular fundamental solution in frequency domain can be presented in
the form

1 —x1)? o (1 3\1
1”11()’,x,a)):I'L)<(1—21u)r3+3v(yl = ) >+“ <+Z>r

4n(1—0v 8

2 2 2
Mot (yi—x)T
8T c‘lt r3

_ili(_iwr)n (n_l)

= nl(n+1)

2
n C
C7+2 Zin
2 (&

)P . oam=1)(n=3)[(n-2 c2
AT . <m(n><+2) [< )4 ]
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po (v —x1) (2 —x2)
4r(1—v) r
per G (i —x) (b —x)

8w ¢t r3

Fia(y,x,0) = F (X,5, 0y) =

_ﬁr()’l—miﬁ()’z—xz)g(_iwr)n (”’1—!(1’3(4’—12—)3) [(”—2)+4 & ] ’

oo

po’ 3 (n-x)’ ul o (n—1)
- 2 - Y (—ior) A r2)

n (&)

2 2 2
S (PR PV G k)i BRI (R A
F22(y’x’w)_47t(l—v) <<1 2v)r3+3v r + 8 c%+c‘1‘ r

87 c‘lt r3 27 13 e ci

n=3

n:4(—ia)r)” n!(n+2)

2
1
H 1 o 2 2 &
— Lo (2A%+42 =2
475(1—v)r3+87r,u( s (AT 3

(&) C

1
)

(n—1)(n—3) [(n—Z)

F33(y,x,0) =

o (Fion)" (n—1) [4p*(n—1) 2 2 G
ngg r34ru nl(n+2) a5 +[l n(n+2)+4kp (n+2)+ 120 ] C%Jr” ’

Fi3(y,x,0) = F31(y,x,0) = F3(y,x,0) = F(y,x,0) =0 .

First two members on the right had side are divergent, they can be easy calculated
using above formulas.

9 Piecewise linear approximation

In order to calculate the divergent integrals in (6.20) with kernels of the type (8.2)
for piecewise linear approximation the above mentioned approach developed in
Zozulya 2006a,b,2008; Zozulya, Gonzalez-Chi 1999, 2000; Zozulya, Lukin 1998;
Zozulya, Men’shikov 2000 will be used. In this case integrals in (6.20) have be
calculated for each shape functions over appropriate BE. Because of after regular-
ization calculation of the integrals over BE is replaced by calculation over each side
of the BE finally we have to calculate the sum of integrals of the following type

K
Uji (¥r,Xg) Z/U/i(yhX)‘Pq(X)dS: Z/U}i(Yr,X)(Pq(X)dl
S k=17
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K
W% = [ Wiy 000,x)ds = Y. [ Wilyxp, ()t
S, k=1,
K
K;li (Yraxq) = /Kji(YHX)(Pq(X)dSZ Z /Kji(Yrax)(Pq(X)dl (91)
S k=1

K
Fi (%) = [ Fivrx0,x)as = Y. [ Fuvrx)9, (0!
S, =1y

Regular representations for the integrals with the kernels (8.2) can be fond in above
mentioned our publications. They have the form:

Weakly singular

WS/% ds = /(pq )2~ r3u0,(E))al

aS,
2
Jq3 =W.S. /(pq dS
Sn
2 2
X{rn %_2)61]’[1 X
38/ (‘Pq (r ; . >+<r 2”) an(Pq(&))‘”
Sn
2
13 =ws. [ 0,(&)2as
S)l
1 £ x%rn 2r,  2x3np x% o) 9 &) ai 90
—ga ?4(8) peai el Rl (el h04(8) 9.2)
Sn
q3_WS/ x1;C2 3/ x1x2rn_r7+> X1xzan¢q(€)>dl
as,
Singular
(0) x rn x
W—PV/Q Las= [ (U5 ")+ Ma,0,8) ) ar,

as,
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q3_Pv/q’q 12 45— / W”—— +’%3n<pq(§))dz . 9.3)

Hypersingular

0 —FP/""’ as=— [ (0&)%+12,0,8) )

IS,

q5 _FP/(pq

X2r,  2r, 2xin X2 2
= / <(Pq(§) (;,5 35 31rgl> + <3;3 - 3r> an(Pq(é)) dal

aS,

q5 2=FP /(pq
2
X5rn  2rp 2xonp X5 2
= / <‘Pq(§) <r5 —3r3—3r3> + <3r3 3, 0y (8) | dl
as,
X1XQ xlxzrn ry X1X2
I _FP/ M2 s = / —§>+?8n(pq(§))dl.
Su 85,,

94

Analysis of these expressions show that we have to calculate the sum of integrals
of the following type

J“"—/qoq rp ( Z/% > m(‘-t’)dz@';). 9.5)

ISu

This formula will be used for calculation over the rectangular and triangular BE of
the corresponding divergent integrals that arrives when the problems of elastostatics
are solved by the BIE method.
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9.1 Rectangular boundary elements

Let us consider rectangular BE that is shown in Fig. 2. In order to simplify situation
we transform global system of coordinates in such way that the origins of global and
local systems of coordinates coincide. The coordinate axes x| and x; are located in
the plane of the BE and coincide with the local ones &; and &;, while the axis x3 is
perpendicular to that plane. In this case x3 =0and n; =0,n, =0, n3 = 1.

SB: 4
4 3
b, >
1
1 2
24,
Figure 2:

Quadrilateral BE is defined by its angular nodes and its shape functions are

p=1/4(1-8)(1-&), ¢=1/4(1+&)(1-&), &<€[0,1], &€[0,1]
p3=1/4(1+8)(1+&), @u=1/4(1-8)(1+&) . (9.6)

Then global coordinates can be expressed as functions of local ones in the form
4
xi(61,8) =Y Mo (&1,8) -y . 9.7)
q=1

Derivatives of the shape functions are

d01(§)
&

——1a0-g), 288 iaa-g),
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agz(é) =1/4(1-&), a((gz(i;) =—1/4(1+&),
1 2
2p3(&) B d¢5(€) _
S 1/4(14&), 8352 =1/4(1+&), ©8)
Ipu(8) _ 994(§) _
8451 =—1/4(1+&), 3452 =1/4(1-&),

ho1(§) =—1/4(1-8&) A1 —1/4(1—&)h,
(&) =1/4(1=8&) A1 —1/4(1+&)ha,

h@3(§) =1/4(1+ &) a1 +1/4(1+&) in,

Ona(§) = —1/4(1+ &) A1 +1/4(1 = &)y

Coordinates of the nodal points are
(] = —AnLxh = —A), (3 =A1, 8 =—Ay), (] = A1, 053 =Ag), (xf = —A1, x5 =
Ap).

‘We introduce here some more useful notations that will be used bellow

r(€.,y") = \/x%+x% = JA+E) )2+ (a1 +E) — 92

Fu=Xaqfq, Ti=xifa+xhy, dl=\/AdE?+A3dEZ, 9.9)

_ x’é“ —

Ae
Taking into account (9.5) calculation of divergent integrals will be done side by
side using the formula

xl xn
sy = [ oS i ©.10)
I

iy (k)

Details of the calculations are presented in the Appendix A. Final results of the
calculations side by side are presented bellow.

Side 1-2. In this case the sums of the integrals (9.10) are
Weakly singular



Divergent Integrals in Elastostatics: Regularization in 3-D Case 291

37 2l 3 7 ’
A 2A 2A A
2,0 1 2,0 1 20 1 2,0 1
J13(1):—f, J27'3(1):——,J37'3(1)——, J47'3(1):—, 9.11)
9 9 9 9
2A 4A 4A 2A
02,4\ 1 02,1y _ 1,02, 471 02, 24
R =20 22y = A 2y = B ey = 20
Sy =80 gy = AL gy o gt (1) = 0
1 =3 N3l =7 S =000 =0
Singular
10 1 10 L 1o 1 10 1
J1,3(1):§a J273(1):§a‘]37/3(1):_§a J4,'3(1):—§7
M)=1, B =1, Ki1)=0, J3(1)=0 9.12)
Hypersingular
1 1 1 1
0,0 0,0 0,0 0,0
» 1__ ) [ ) — ) —
01) =~ BN =5 B = A = o
1 1 1 1
2,0 2,0 2,0 2,0
=—— =)= A= 9.13
M) =g B =B = o B = O
02 L o2 L o2 L 02 1
JP2(1) = = 102 (1) = ——— 122 (1) = ——J%(1) =
201) =~ AR = 5 20 = SR = o
11 1 11 11 11
Jis()=——=—, J5(1)=0, J5(1)=0, J,5(1)=0.
' 12A4 ) ) ,

Side 2-3. In this case the sums of the integrals (9.10) are
Weakly singular
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1
(10— 1I-11), Jg,’?@)212,’?(2)=A1A2(11,0—11,1)—1(171,0—171,1),

-lk\r—k

0,0
Ji1(2)=

1 1
Jg,?(z) A1A2(110+I11)—Z(1 1o+1-11), JS?(z) 1(1 1o+1-11),
J1,3(2):8(1—1,0—1—1,1)—§A1 (ho—1I1),
2,0 4 3 A% 1
Jy53(2) = gAlAz (Bo—11)— 3 (ho—"h1)— 3 (I—10—1-1,)

4 A? 1
J32,7§(2) = gA%AZ (Bo+51)— ?1 (ho+h1)— 3 (Iio+1-11),

1 1
127’3(2) 6<L10+L]]) gA%(I],O‘i‘Il,l)?
1 2
J%sz(z) 8(1 1o—1I-11)+ B 2(ho+hi—TLia—13), (9.14)

1 1
137’32(2) = -ANA} (Bo+51—By—hB3)+—A5 (ho+ 1l —ha—1 )

3 12
2A1A 1
+ 31, z (1170_11’1)_E(LI’O_L“)’
1 1
Jgﬁ(Z) = gAlAg (13,0 +35,+35, +I373) + EA% (1170 +3L 1 +30 +11’3)
2A1A 1
+ ; 2 (I]’O+Il’l)_E(I_I’O—H_]’l)

1 A3

Jgfsz(z) % (I10+1-11)+ T 2(ho+30L1+3hL2+13),

J13(2) gAlAz (lo—Tp),
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ATA; AAy + A3
‘121:?1 (2) = 13 : (13,0_13,2)+72(1170—1172),
_ A Ak +43

2(ho+2h,+1ho)+ (ho+2hL1+12),

3 6

1
Ji,’sl (2)= §A1A2 (ho+2h1+12).

Singular

_A2

1
Jf,’g(z) = EAI (ho—1I1), leé)(z) =2A1A (o —F1) — (ho—"11),
Al —A
13(2) =208 (Bo+11) — = 5 2(ho+11), (9.15)
1
Jy502) = FA1 (o +11),
1
J5(2) = —z82(lo—hp),
0,1 Ao
Jr5(2) = A1A2(130_132)+Z(110_112)
0.1\ A A2 Ay
J33(2) = MiAy (B0 2D, +532) + 1 (ho +20 1 +1.2),
0,1 Ay
Jy5(2) = vy (o+2h1+h5).
Hypersingular
1 1
J?:;)(?’) 1 (ho—"T1), J23(3) =AM (Bo—h)— 7 (ho—",),
1 1
J§)7’g(3) =AMy (Bo+Dh1)— 7 (ho+111), J4§(3) =3 (ho+1), (9.16)

2

1 A7
——(o—h1)+

2,0
fisB)=—% 12

Y (Bo+hi—hLa—1h3),
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1 A3
Jzz,’g(3)=—g(1170+11,1) 12(130+3I31+3132+133)
2,0 ANy 2
J3503) = (Iso+3Is5,1 +3155+153) + T L(Bo+361+362+13)
3A1A; 1
Lo—Iy)—=(Lo—1
+ 1 (3,0 3,1) 6( 1,0 1,1)
3A AZ
2
Ji’?(2) == (Lo+1I51—Isp—Is3)+ —=2 T 2(bo+h1—ha—1h3)
3A1A 1
+ j‘ 2(bo—151) — - (ho—Ti1),
6
1 A3
J?,’52(3) 5 (ho—"1a)— 3 2(ho—h),
1 A3
‘14052<3) 8(110"’_111)_?(1304-13])
A2 +4A1A 1
J32(3) =4A103 (Is g +151) — %12(13,0""‘[3,1)_Z(II,O+]1,1)7
A2 +4A1A 1
Jz?,52(3> 4A1A3 (Is o — I5,1) — 27(13.,0—13,1)—1(11,0—11,1),
11 1
Ji5(3) = _gAlAZ (o—1h2),
11 1
127'5 (3)= _EAIAZ (Iso+2051+157),
A1Ay + A3
‘]31:51 (2) = ZA%A% (15,0 + 21571 +IS,2) - Tz (137() —1372),
A1Ay + A3
12151 (2) =2A1A3 (Isp—1Is) — ————2 (Bo —132).-

6

Side 3-4. In this case the sums of the integrals (9.10) are
Weakly singular
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(I-10+1-11),

-lk\»—

1
0,0 0,0
Ji (3)= Z(I—l 0o—1-11), ]2,1(3)

1
Jg,’?@) =AMy (ho+1)— 1 (I_10+1-11)

1
JA(L)?(:S) =A1A (11,0 _11,1) + Z (17170 _171,1)7

1 1

le,’g@) 8(1 10—1- 11)+12A1 (ho+hi—L>—13),
1

J§,’§(3) 8(1 1o0+111)+ 2A1(110+3111+3I12+113)

1
12:32(3) = gA?AZ (Bo+3h1+3hL2+53)+ B

+2A1A2

1
1 Li)—-=(I- I
3 (1,0-1— 1,1) 6( 1,0+ 1,1)

1
Jg,’42(3) = gA?A? (Bo+5h1—hy—h3)+ 7

2MA
| 2A1%

1
(ho—h1)— g (Iiio—1-11),

2

A
—2(ho—11),

0,2
Ji3 (3)= 3

(I10—1-11)—

O\\»—

2

A
2 (ho+11)

(I 04+1-171)— 3 (

O\\»—\

0,2
J33 (3)=

2

4
Jso,l%@) = §A1A§ (Bo+5,)— 3

2

4
J%@) = gAlAg (o—1h,)— 3 (

1
AT (ho+30 +3h2+113)

Al (ho+hi—L2—13)

A 1
=2 (hLo+h,)— 3 (I10+1-11),

1
—2(ho—h,)— 3 (I10—1-131),

295

(9.17)



296 Copyright © 2010 Tech Science Press ~ CMES, vol.70, no.3, pp.253-349, 2010

1
J1131 (3)= —gAlAz (ho—"2),

1
J23(3) 8A1A2 (ho+26L1+12),

20703 AA; — A2

135(3) = 122 (ho+2h+52) + % (ho+201+11,),
20743 ArA; — A2

Ji,él (3)= é 2(Bo—12) — Tl (ho—1Tp).

Singular

1
Jll,é)@) = _ZAZ (ho—1Tp2),

A
121772(3) = ZZ (ho+2h1+12),

A
5BY(3) =M (ho+2D1 +12)+ Tl (ho+20 1 +112),

A
Ji,’?@) =AMy (o —D2) + Zl (ho—1Tp).
1 1
J?:31(3):_EAZ(ILO_ILl)u 123(3) §A2(110+111) (9.18)

—A
Jg,’sl(3) =2M1A3 (Bo+5,) — 2(ho+11,),

A — Ay

14(1)7’3}(3) =2MA; (Bo—131) — (ho—11),

Hypersingular

I I
N3G) =3 (ho—h1), 53B) = 7 (ho+1).
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Jg:g@) =N (Go+1h)—

0,0
J43 3)

2,0
Ji’s (2)=

2,0
Jy5(2) =

522) =

)

2,0
s (2)=

0,2
Jis (2)=

0.2
J5(2) =

0,2
J35(2) =

0,2
122 =

1,1
Ji's (2)=

1,1
15(2) =

1,1
J35(2) =

1,1
Jy's (2)

=AM (Bo—15)—

(ho+1,),

(ho—T,),

Bl— b=

1

Z(ll o—TD1)+AT(Lo—Thy),

AZ +4A1A 1
% —(ho—I,)

4A A2(150 1571)— 4

(Bo—5h))—

AT +4A1A,

4NNy (Is o+ 15.1) — 3

1
1 (o+h,)+AT (ho+51),

1
5(110—111) A (o—11),
3A2+ALA 1
4NNy (Is o —I5.1) — 2fl2(13,0—13,1)—5(11,0—11,1),
3A2+ALA 1
4NNy (Is o+ 15.1) — 1fl2(13.,04—13,1)—5(11704-11,1),
1 2
5(11,0+11,1)—A1(13,o+13,1),
1
§A1A2(13,0—13,1)7
3A100 + A
2A2A2(I50 151) %(1370_13,1)7
3A10; + A}
2M2AL (Is o +15) — —iﬁ?—imkp+64%

1
=-AIAp (137() +I3,1) .

2

1
(Bo+5,)— 7 (ho+h,),
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(9.19)
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Side 4-1. In this case the sums of the integrals (9.10) are

Weakly singular
A A 2A 2A
0 2 0,0 2 0,0 2 0,0 2
J11(4):_7, J21(4)_*= 121(4)_77 J41(4):—77
3 3 3 3
2A 2A 4A 4A
2,0 2 2,0 2 ;2,0 2 2,0 2
Jiz(4) = . h3) =" @) =——. J3(d)=——(", (9.20)
9 9 9 9
A A 2A 2A
0,2 2 0,2 2,02 2 0,2 2
Ji3@4)=——7, J2,3(4)——,J373(4)——, Jp34)=——,
9 9 9 9
Tl A L) Lgy — o b gy = Q2
13()—?7 J23()—07 J373()—07J4,3( )—?
Singular
1,0 1,0 1,0 1,0
Ji3 4)=1, % (4)=0, J3(4)=0, J34) =1
1 1 1 1
0,1 0,1 0,1 /4y _ 01/ 4\ _
Jis@) =5 H3@)=—5, JS34)=-5, J504)=5 9:21)
Hypersingular
0,0 L 00 L 00 1 00 1
Jnd)y=——— J@4)==—,74)=—,J,7(4) = ——
POy = — 2oy = Loy = L pogy - L (9.22)
1A 36, TP 3A,7%7 3A,7 TP 34,
1 1 1 1
0,2 0,2 0,2 0,2
24)=—— 4)=— ]2 4) = 24)=——
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-
(q.q)] <— (%)
o) P, e
1 2
Figure 3:

We have taken into account that integration in (9.11) — (9.22) has to be done in the
way as it is shown by arrows in Fig. 3. All integrals of the type /,,; in (9.14) - (9.19)
are represented by formulae (8.18).

Finally sums of the integrals in (9.5) have the form

T = Z T (9.23)

All integrals of the type J([]:",} (k)have already calculated above.

In the Table 3 are presented results of the divergent and regular integrals calcula-
tions for the square of a unit side.

In order to check validation of the above regularized equations we compare results
with the ones presented in the Table 1 and for weakly singular and regular integrals
with results obtained using regular 2-D numerical calculation. Our calculations
show that results of calculation obtained using presented here regularized equations
agree with ones obtained by other methods. As in the case of piecewise constant
approximation our calculations show that with analytical formulas (8.17) results
are more accurate and time of calculation is 5-7 times faster in comparison with
numerical formulas (8.17) and 8-12 times faster then obtained with 2-D numerical
integration.

Substituting all obtained for each side results in (9.1) and take into account (9.23)
finally we have
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=—0.5,2" = 0.0y =0.0, 3

Table 3: Divergent integrals calculated for unit square at collocation points: 1 -&_u = Io.mww
Y =1.00 = 1.0.

poins [ 07 [ 723 [ 703 [ 3 [ % | AL [ #Y [ 2T AT [
1 0.743 | 0.371 | 0.371 | 0.234 | 0.885 | 0.885 | -1.065 | -0.532 | -0.532 | -0.431
2 0.881 | 0.440 | 0.440 | 0.058 | -0.881 | -0.881 | -2.828 | -1.414 | -1.414 | 0.471
3 0.153 | 0.076 | 0.076 | 0.072 | -0.067 | -0.067 | 0.062 | 0.031 | 0.031 | 0.029

Points | 1y | L3 | hs | by | b3 | by | By | hS | b5 | D
1 0.505 | 0.276 | 0.095 | 0.117 | 0.647 | 0.352 | -0.467 | 0.217 | -0.684 | -0.049
2 0.881 | 0.440 | 0.440 | -0.058 | 0.881 | -0.881 | -2.828 | -1.414 | -1.414 | -0.471
3 0.177 | 0.061 | 0.115 | 0.079 | -0.075 | -0.103 | 0.098 | 0.035 | 0.063 | 0.044

Poims | Y | BV | 2 | | A0 | AL | AT | Y | RE |
1 0.276 | 0.138 | 0.138 | 0.116 | 0.233 | 0.233 | 0.585 | 0.292 | 0.292 | 0.116
2 0.881 | 0.440 | 0.440 | 0.058 | 0.881 | 0.881 | -2.828 | -1.414 | -1.414 | 0.471
3 0.217 | 0.108 | 0.108 | 0.101 | -0.137 | -0.137 | 0.098 | 0.092 | 0.092 | 0.088

Poins | 30 | 20 | % | L | A7 | AL | AV | AT A
1 0.371 | 0.095 | 0.276 | 0.117 | 0.352 | 0.647 | -0.467 | -0.684 | 0.217 | -0.049
2 0.881 | 0.440 | 0.440 | -0.058 | -0.881 | 0.881 | -2.828 | -1.414 | -1.414 | -0.471
4 0.177 | 0.115 | 0.061 | 0.079 | -0.103 | -0.753 | 0.098 | 0.063 | 0.035 | 0.044

Points | J00 | A0 | U7 | ot ot At Y 2 2t g
1 2.258 | 0.881 | 0.881 | 0.585 | 2.118 | 2.118 | -1.414 | -0.707 | -0.707 | -0.415
2 3.525 | 1.762 | 1.762 | 0.0 0.0 0.0 | -11.31 | -5.656 | -5.656 | 0.0
4 0.724 | 0.362 | 0.362 | 0.333 | -0.383 | -0.383 | 0.445 | 0.222 | 0.222 | 0.206
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U{ll (yrv Xq) =

U3 (¥r, Xq) =

1
167u(1—v) < = =

16mu(l—v)

k=1 k=1

n 1 A
Uty (yr,Xg) = m};%s (),

n (3—4v) 0,0
Uss (¥r,Xg) = m};%l (K),

n n (1 _20) ,
Wis (¥r,Xg) = —Ki5 (¥r,Xg) = “an(i—v) Y. 7,50,

k=1

n n.q (1 _20) 4 0,1

W5 (¥r,%q) = —K33' (¥r,%g) = “an(i-v) Y g5 k),
k=1
U | & 00 L o0 ]
Flnl (yr,Xq) = m (1 —ZU)I;Jq::)’ (k) +3D];1Jq:5 (k) s
u [ L 00 L 02 ]

Fa (%) = oy |0 —2U)I;Jq,’3 (k) +3vk;qu5 (k)|
P! =By 00

33 (yrleI)_ 471.(1_,0) Z q,3( )7

k=1

. po ,

F5 (¥r,Xg) = ax(1—v) Y Jys (k).
k=1

301

(9.24)

It is important to mention that here all calculations can be done analytically, no

numerical integration is needed.
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9.2 Triangular boundary elements

Let us consider a triangular BE that is shown in Fig. 4. In order to simplify situation
we transform global system of coordinates such that the origins of global and local
systems of coordinates coincide. The coordinate axes x; and x, are located in the
plane of the element, while the axis x3 is perpendicular to that plane. In this case
x3 =0and n; =0, n; =0, n3 = 1. The axes of local coordinates &; and &, coincide
with sides of the triangular BE that joint in the nodal point 3.

3

3
(x5 & k (2,2

Figure 4:

The triangular BE is defined by its angular nodes and its shape functions are

¢1 (51752) = éla @2(51752) = 527 %(51752) = (1 _gl _€2)¢ (9.25)
él € [07 1]7 52 € [07 ”

Then global coordinates can be expressed as functions of local ones in the form

xi(61,82) = ZX(Pqélng yi(61,82) = Z%%ih@z (9.26)

or
_ 3 1 2 3 1 2
X1 =x1+Ax 8 —Ax1E, =X+ AGE - A, (9.27)

where Ax! = (x! —x?) and Ax? = —(x? —x3}).
Derivatives of the shape functions are

I0@) _, I9() I92(8)
I&; NS &

:O7

=0, (9.28)
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008, e __, In®)

& 7 & T 9%

Taking into account that the coordinates & and &, are oblique, normal derivative
have to be calculated using the following formula

=—1.

.0 . d (A, Az d
Oy = 7% + iy F ( A Aa(2) + A A (3) 9E, (9.29)
where A = Ax]Axj — A Ax].
Normal derivatives of the shape functions are
_ a(k)a(2)Ay | Az (k)i (3)As
A (k) = iy (k)Az(2) Az n nz(k)n2(3)A3’
A A
s (k) = _nl(k) (A1(2) +7A2(2)) Aa + i (k) (71 (3) +72(3)) As (9.30)

A

Coordinates of the nodal points are point 1-(x},x}) , point 2-(x?,x3) and point 3-

(x3,x3). Length of the triangle sides and radius are

M= a2 (T )2 ) =y e D) 93D)

Taking into account (9.6) calculation of divergent integrals will be done side by
side using the formula

s = [ &2 ) 03
I

Details of the calculations are presented in the Appendix B. Final results side by
side of the calculations are presented bellow.

Side 1-2. In this case the sums of the integrals (9.32) are
Weakly singular

J?:?(l) =ra(lio—111)/24+ Ml — 1 2) — 0n @i (1)1 o,

JS:?(I) = l’n1171/2+A1ﬁ1ﬁ21272 — 8n(p2(1)1,1703 ‘]g:é)(l) = 8n(p3(])[l70’
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1 R . A
Ji’;)(l) =3 ((x})zrn(llo — 1) +2A17rx) (I — B2) +2(x})* A (I — I.2)
‘H’n (A]ﬁz)z(h?g — 1373) + +4A%ﬁ1ﬁ%(1372 — 1373)
+2A?ﬁ1ﬁ3(13,3 —B4)+2(r —x%fll)(ll,o —1Ii) _Alﬁ%al,l —11,2)) +
1 . R
+§an(Pl(l) ((X})211,0+2A1n2x{11,1 + A3 o —21_1y),

Jzzjg(l) = ((X%)Zrnl&,l +2A 171Xt g + 2(x}) A A3 1 o + 10 (A1) 1 3+

[SSEIT

24 A2 A A
—|—4A1n1n21373 + 2A?n1n31374

—{—(21’,, _x%ﬁlll,l) — 2A1ﬁ%]172)
1 . .
+§9n(Pz(l) ((x1)*00 4+ 2A170x 1y + AfisT o — 211 ),
1 n A
Ji’g(l) = gan‘P:%(l) ((x1)*10 +2A170x 1 1 + AfisTh o — 211 ),
1 . oI
31 = 3 ((2)*ra(ls.0 = B,1) + 2M1Arxy (B — D 2) +2(x3)* Aiitia (B30 — I 2)

‘H’n (Alﬁl)z(bg — 1373) +4A%ﬁ%ﬁ2(1372 —1373)
+2A7A3 0 (I3 — B a) +2(rn — x32) (o — I 1) — At (I — 1 2)) +

1 N .
—|—§&n(P1(1) ((Xé)21170+2A1n1x%1171 —I—A%I’l%]l’z —217170) ,

I35 (1) = 2 (()?rals,1 + 2811 raxi B o + 2(x5) 2 A idina L o + r (At )13 3+

W =

4ATATIL G 3 + 207 il 4 + +2(r — xbin) 1 1 — At o)

1 R R
+3502(1) ((x3)*0 0+ 2A1x1 Ty + ATt o — 211 ), (9.33)
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Jg;( ) 78 (p3( ) ((xé)zllyo—FZAlﬁlx%Il’l +A%ﬁ%[172 —217170) ,

5(1) =xi0r(B.o — 1) + A1z (B — B2) +x{ A ra(l31 — I3 )

+2A A X Xy (B g — B32) + Atiyigr, (g — 1 3)
2N s (B3 0 — I3 3) + 203 A3 Apx) (I — I3 3) + 2ATAT Ay (I3 5 — I3 4) —

1
~3 (re(ho—TIip) + &My — 11 2))

+0,01 (1) (x1x311 0 + Ay (fox] +Axd) Iy + Afindind ) -

1,1 1.1 1 A 1 ~ A oA 11 2Aa A
Jo3 (1) = xpx0orl3 1 + X810 al3 2 + X1 A1 ral3 o + 2810 fox Xy 13 o + AT Ao ral3 3
—|—2A1n1 x213 3+ 2A1n1n2x113 3+ 2A1n1n213 4

1 . . .
3 (rdi1 + &A1 2) + 0092 (1) (x1x301 0+ Ay (fox] + Arxy) Ty 1 + Aol 2)

13131 (1) = 9w @3(1) (x}x3]1 .0+ A1 (Aox] +Arxy) 1y + ATArizd 2) -

Singular

J},’g(l) = (xira(l3,0 — B,1) + (ArAary, + 2x{ A1) (B, — I3 2) + A3 (I — 13.3))

+0,01(1) (x{11 0+ A1l 1)

le,’g(l) = (x{rala,1 + (Arfior, + 2x1 Ayit1 i) B p + A 315 3)

+du (1) (X}IL,O + Aol ),

J35(1) = u3(1) (x111 0+ Aria ki ) (9.34)
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J?,,él (1) = (3ru(l.0 — B,1) + (ArArry + 2x3A1 A1) (I g — B32) + Aranis (2 — B 3) )

+0,01 (1) (x3L1 .0+ Arin 11 1)

J33 (1) = (¥hraks, 1 + (Arigr, + 203 A1A1i0) B o + A 31 3)

+da2(1) (xéll,o + Al ),

Jg.’sl(l) = 0,03(1) (301 0+ ArinDy 1 +1-10)

Hypersingular

T3 = ra(l3o+151)/2+ Mg (5,1 + 52) + 0,01 (1)1 0.

J35(1) = rals 1 2+ Avininds o + 0p @2 (1)11.0,J35 (1) = 0a3(1) 11 ,

1

Jrs() = 3 (B0 = L1) + 201 (151 = 32)) = (x3)*ra(lso—1s1)

—2A1A s (s — Is 2) — 2(x3) 2 AvAraa (Is 1 — I 2) — ra(A1ir)* (Is 2 — 15 3)
—ANIAS (Is 2 — s 3) — 2A A i (Is 3 — Is 4 ) —

2

3 (61 (Bo—11) + Aol — 13 2)) A

1 A A
+§8,,(p1 (1) ((X%)2I3)0 +2A1n2x%1371 +A%n%l372 — 2]1’0) ,

1 A A A
Ji’g(l) =3 (ral3,1 +2A17171215 2) — (X%)zrnls,l - 2A1n1rnxél572

1\2 A A A \2 2 A2 A2 3 A3 A
—2()(2) A1n1n21572—r,,(A1n1) 15’3 —4A1n1n215,3—2A1n1n215’4
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2 . . 1 R R
-3 (x1B,1 + Arins ) ity + gan‘Pz(l) ((x1)I 0+ 2A170x1 Iy + Afisl , — 21 o)

1 . .

Ji’g(l) = gan%(l) ((X%)2I3)0 + 2A1n2x%1371 +A%n%l372 — 2]1’0) , (9.35)
1 R

3 = 3 (o —B1) + 281 (I1 — ) — (1) ralls 0 —Is1)

—2A1grx} (Is g — I52) — 2(x1) 2 Arar s (Is g — Is 2) — (A1) (Is2 — 15 3)

24 R 2 . .
—4ATATAS (Is 0 — 15 3) — 2007 A3 (s 3 — I 4) — 3 (x3(B0 —I,1) + A (I3 — I3 2) ) i

1 . .
+§8n(p1 (1) ((Xé)21370 + 2A1711Xé1371 —I—A%n%llg —2I 70) ,

1 . . R
Jg:sz(l) = g (r,,I371 +2A1n1n213’2) — (x{ )21”,,15’1 — 2A1n2rnx}l572 — 2()6{ )2A1n1n21572

. 0 . 2 . .
—rn(A1n2)21573 — 4A%n%n§l5’3 — 2Afn1n215’4 ~3 (xél371 —I-A1n11372) iy

1 . .
+§an(P2(1) ((x3)I 0+ 2A171x5 1 + Afith, — 211 )

0,2

1
Jy5(1) = gan(PZ(l) ((x3)*I0+2A11 x5 51 + (AfATh o — 21 )

Jys(1) = x{xra(Is 0 — Is.1) + XA1iars(Is — Is 2) + x| Aty (I 1 — I 2)
F2A A} X (Is g —Is.2) + Al Anry (Is 1 — Is 3) + 2AT A sxs (Is o — I 3)
1

F2A At Ax) (Is o — 15 3) +2A73 A (Is 3 — Is.4) — 5 (1o (B0 — Is1) + EaAr(By — 13 2))

3

1 . . A
—|—§8n(p1 (1) (x{xbh,0 + Ay (x| + x5 1 + Afiinls ) -

1,1 I O | 1A ~ 1A & A oA 101 2n A
J275 (1) = x1xp1nds 1 +x3A1 721,15 5 + X1 Ay s o + 2A1 A o x xpDs o + AT A, s 3
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. KR KR 1
—|—2A%n1n%x%l5,3 + ZA%n%nzxilsg + 2A?l’l%l’l21574 — g (r+1371 + €2Ak13,2)

1 . . =
+§an¢2(1) (x1x3h3,0 + Ay (x| +xy )31 + Afiiinds )

1 . . .
J3151 ()= gan%(l) (x1x303.0 + At (Aox] +A1xy) 31 + AjArinls ) .

Side 2-3. In this case the sums of the integrals (9.21) are

Weakly singular
AZ A2 A2
0,0 o 2 40,0 S 0,0 _ =2
Jl.,l (2)= _X‘IZ,I (2)= A’ J3,1 (2)= A (9-36)
2A3 A2 A2
2,0 . 2 72,0 _ By 204y B2
1173 (2)= T3A 023 (2) = 3A° 373( )= 3A°

A? A2 A?
0,2 0,2 0,2
‘]17/2(2):_%7]2;3(2):&7 3,3( ):i

Ay

A
Ji32)=0 | 15;31(2):?, 131;31(2):?2.

Singular

2A A A

0,1 2 01,4y A2 01,4y A2

J153(2) = 0 J3(2) = X J33(2) = X (9.37)
Hypersingular

792) =0,089(2) = 0,489(2) =0,

2,0 2,0 2,0
Jl./S (2) = 0"]2’5 (2) = 07‘]375 (2) = 07
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J73(2) =0,J35(2) =0,J35(2) =0,

2
1,1 1,1 1,1
Ji’s (2)=0, Jy’s (2)= 0,755 (2)=——.
3A,
Side 3-1. In this case the sums of the integrals (9.21) are
Weakly singular
AZ AZ A2
0 3 002y 23 7000, _ B3
111(3):X’ J271(3)—_X=J3,1(3)—X7
A3 A3 A
2000y _ B3 2002y _ B3 1200, _ B3
J1,3(3) 6A7J273(3) 3A7J3,2( ) 6A’
A3 2A2 A3
0,2 _ 23 40,2 _ 3 40,2 _ 93
J1503) = 3*Avfz3(3) =" 3p0 3,2( )= A
A A
OE RS HOEIIHOESS
Singular
. As 243 : A3
N3G =-3. h3®)="2 hih="7,

0,1 0,1 0.1
J153)=2, J,;5(3)=0, J3;3(3)=2.

Hypersingular

0,0 0,0 0,0
2,0 2.0 2,0
703) = 0,422(3) = 0,29(3) =0,

J73(3)=0,J35(3) =0,/35(3) =0,

309

(9.38)

(9.39)

(9.40)
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(.30

Figure 5:

2
30,

We have taken into account that integration in (9.22) — (9.30) has to be done in the
way as it is shown by arrows in Fig. 5.

Ji5(3)=0, J1,5(3)=0,J5503) = (9.41)

Finally sums of the integrals in (9.21) have the form

3

=Y Jm(k). (9.42)
k=1

All integrals of the type J;" (k) have already calculated above.

In the Table 4 are presented results of the divergent and regular integrals calcula-
tions for the triangle of a unit side.

In order to check validation of the above regularized equations we compare results
with the ones presented in the Table 2 and for weakly singular and regular integrals
with results obtained using regular 2-D numerical calculation. Our calculations
show that results of calculation obtained using presented here regularized equations
agree with ones obtained by other methods. As in the case of piecewise constant
approximation our calculations show that with analytical formulas (8.17) results
are more accurate and time of calculation is 5-7 times faster in comparison with
numerical formulas (8.17) and 8-12 times faster then obtained with 2-D numerical
integration.

Substituting in (9.1) all obtained for each side results and take into account (9.31)
finally we have

Mw

3
GRS Jj,’é)(k)) :

n B 1

k
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3 3
U3 (v %) = 167[“(11_1)) <<3 —4v) ) 1 (k) + ZJS;%(I«)) :

1

Ups (¥r,Xg) = T67u(1—v)
k=1

n _ (3-4v) : 0,0
U33 (yrvxq)_ 167[,“(1— )k;l‘]q,l(k)’
0 ) 1—2v 3
Wi (yr,Xg) = —K75 (¥r,Xg) = Z Tk
k:
n 1_20 > 01
W35 (¥r,Xg) = —K33 (yr,Xg) Z
k:
H [ > 20
Flrll(yr7xq):47r(1_v) (1_2D)Z +3DZ‘] )
H [ 3 0,0 02 ]
F2 (y,,xq)ziémr =) (1—20)1\;Jq,3(k)+3v;1q:5(k) , (9.43)

Fis (V%) = =

n HYV > 1,1
Fl5 (¥r,Xg) = 44”(1‘_ V) Z 45 (k).
k=1

All calculations can be done analytically, no numerical integration is needed.

It is important to mention that obtained here formulas can be easy applied for regu-
larization of the divergent integrals in elastodynamics and with small modification
for the regular integrals calculation. Also developed methodology easy can be ex-
tended to calculation divergent integrals in the case of quadratic and higher BE: for
flat elements directly and for curvilinear ones in combination with equations (7.10).

10 Conclusions

Based on the theory of distribution and Green theorems the approach for the di-
vergent hypersingular integrals regularization is developed here and applied for
the BIE methods of the 3-D elastostatic problems solution. We consider the 2-D
weakly singular, singular and hypersingular integrals over arbitrary convex poly-
gon for piecewise constant approximation and over rectangular and triangular BE
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for piecewise linear approximation. The divergent integrals over the BE have been
transformed to regular ones over contour of the BE. Convenient for their calculation
regular formulae have been obtained. In the presented equations all calculations can
be done analytically, no numerical integration is needed. It is important to mention
that proposed methodology easy can be applied for regularization of the divergent
integrals in elastodynamics and for calculation regular integrals when collocation
point situated outside BE. Also developed here methodology can applied to regu-
larization of the divergent integrals in the case of quadratic and higher BE.

Calculations of the divergent and regular integrals for square and triangle of the unit
side are presented. Our calculations show that results obtained with regularized
formulas and analytical representations (8.17) results are more accurate and time
of calculation is 5-7 times faster in comparison with numerical formulas (8.17) and
8-12 times faster then obtained with 2-D numerical integration.

Acknowledgement: Author is very grateful to Professor Demosthenes Polyzos
from the University of Patras, Greece for fruitful discussion and helpful advises.
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Side 1-2. In this case ny =0, n, = —1, & = —1. The main parameters defined by
(9.7)-(9.10) are
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Figure 6:

Appendix B.
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Side 2-3. From Fig. 7 follows that in this case § =0, 4; = 1,4, =0.

Figure 7:

The main parameters defined by ((9.25)-(9.29) are

0 =M£E, x1=0, dl=A~Ad&,
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Hyperingular
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Figure 8:

The main parameters defined by (9.25)-(9.29 are

X1 = A3€1, Xy = 0, dl = A3d§1,

r(él):A3§1a rn(él)zoa r, =0, r+ZOa ro=0,
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Hyperingular
Integrals of the type J;)”g
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Integrals of the type J ;51
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11 Appendix C.

On the sides that contain nodal point y?, appear 1-D divergent integrals. For rectan-
gular element they are sides 1-2 and 4-1, and for triangular element they are sides
3-1 and 2-3.

For rectangular element divergent integrals have the form

1 1 1
[ [ree Jus

For their calculation let us consider adjacent elements, as it is follows from Fig.9.

» L
(q.g1] <— (5.7

@ P, e
1

Figure 9:

Because in final BE equations have to be taken into account influence of all BEs
adjacent to nodal point 1 we can consider the following sum of integrals
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1 —1
| rigde+ [ lgds, J‘Léd&+-f}+§d5andj‘1+¢2d&+-f e

We have taken into account that integration over side associated with adjacent BEs
has to be done in opposite directions as it is shown on Fig. 9.

Easy calculations with considering Cauchy principal value and Hadamard’s finite
part integrals lead to the following result
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/1Jlr /761g 0
-1

1 -1
1-¢ 1-C s _
/11+‘§d§+1/1+5d5_47
1

-1
g e
J et | mrepte =

For triangular element divergent integrals have the form

In the same way as in the case of rectangular element for their calculation let us
consider adjacent elements, as it is follows from Fig.10.

Figure 10:
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Because in final BE equations have to be taken into account influence of all BEs
adjacent to nodal point 3 we can consider the following sum of integrals
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Easy calculations with considering Cauchy principal value and Hadamard’s finite
part integrals lead to the following result
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We have taken into account that integration over side associated with adjacent BEs
has to be done in opposite directions as it is shown on Fig. 10.
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