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Numerical Simulations for Coupled Pair of Diffusion
Equations by MLPG Method

S. Abbasbandy12, V. Sladek3, A. Shirzadi1 and J. Sladek3

Abstract: This paper deals with the development of a new method for solution of
initial-boundary value problems governed by a couple of nonlinear diffusion equa-
tions occurring in the theory of self-organization in non-equilibrium systems. The
time dependence is treated by linear interpolation using the finite difference method
and the semi-discrete partial differential equations are considered in a weak sense
by using the local integral equation method with approximating 2-d spatial varia-
tions of the field variables by the Moving Least Squares. The evaluation techniques
are discussed and the applicability of the presented method is demonstrated on two
illustrative examples with exact solutions being used as benchmark solutions.

Keywords: MLPG, Moving least squares approximation, Numerical integration
procedures, System of parabolic partial differential equations, Boundary condi-
tions.

1 Introduction

According to the theory of self-organization in nonequilibrium systems [Nicolis
and Prigogine (1977); Haken (1978); Ebeling (1976)] there are common princi-
ples of spontaneous creation of spatial and/or temporal structures in various dis-
ordered systems known from physics, chemistry, biology, sociology etc. Lot of
such phenomena have been studied by [Lotka (1956); Volterra (1931); Turing
(1952); Prigogine and Nicolis (1967); Prigogine and Lefever (1968); Zhabotinskiy
(1964); Schlögl (1971a); Schlögl (1971b); Schlögl (1972); Haken (1975); Moore
and Flaherty (1992)]. The Turing reaction-diffusion model [Turing (1952)] is the
paradigm model for biological pattern formation. This model, a coupled system
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of parabolic partial differential equations, has the counter-intuitive feature that dif-
fusion can drive a spatially uniform stable state to unstable leading to spatially
non-uniform steady states. Turing model has been applied in many areas of sci-
ence, e.g., to whole range of patterning phenomena in biology [Kondo and Asai
(1995); Meinhardt (2009); Miura, Shiota, Morriss-Kay, and Maini (2006)], ecol-
ogy [Segal (1972)], chemistry [Castets, Dulos, Boissonade, and De Kepper (1990);
Ouyang and Swinney (1991)]. It is well known that isomorphism of differential
equations governing different phenomena yields structural isomorphism of such
phenomena. From the mathematical point of view, the governing equations are
rather complex coupled nonlinear partial differential equations. That stimulated
mathematicians and engineers in enhanced study of the subject including the de-
velopment of computational techniques for numerical solutions. The aim of this
paper is to present a new numerical method based on the MLPG method [T. Zhu,
J.-D. Zhang and S. N. Atluri (1998);Atluri,S. N.; Shen, S. (2002)] for solution of
coupled pair of nonlinear diffusion equations in two spatial dimensions. In two
last decades, mesh-free methods have become popular and well developed in var-
ious branches of science and engineering. Practically it is impossible to give a
comprehensive review of the literature devoted to the development and applica-
tions of mesh-free methods. We concentrate on weak formulation on local sub-
domains. Such an approach enables development of truly mesh-free formulations
in contrast to the weak formulations considered in the global sense, where the back-
ground mesh is still required [Atluri, Han, and Shen (2003); Atluri (2004)]. Several
mesh-free approximations are usually used for modeling spatial variations of field
variables [Atluri (2004); Liu (2003)]. The Radial Basis Functions (RBF) and the
Moving Least Squares (MLS) belong to the most frequently used approximations,
for some references see [Ling and Kansa (2004); Ling and Hon (2005); Libre, Em-
dadi, Kansa, Shekarchi, and Rahimian (2009); Abbasbandy and Shirzadi (2010);
Abbasbandy and Shirzadi (2011); Ching and Batra (2001)]. In this paper, the time
dependence is approximated by linear interpolation within each time step using the
one-step-method [Smith (1978)]. Then, the original parabolic PDEs are converted
into elliptic ones for the field variables at discrete time instants. Considering the lo-
cal weak form of the developed elliptic PDEs with using the Heaviside-type of test
functions, we employ the MLS approximation [Lancaster and Salkauskas (1981)]
for spatial variations of the field variables at discrete time instants. Certain approx-
imations are assumed for the evaluation of the domain integrals and the standard
Gaussian quadrature is employed for the numerical evaluation of the boundary in-
tegrals occurring in the weak formulation. Finally, two numerical examples are
considered in order to illustrate the applicability of the developed method to solu-
tion of the initial-boundary value problems for considered coupled parabolic PDEs.
As compared with the similar method applied to simple diffusion equation [Sladek,
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Sladek, and Atluri (2004); Sladek, Sladek, Tanaka, and Zhang (2005); Sladek,
Sladek, Tan, and Atluri (2008)], in the first example, the governing equations are
given by nonlinear pair of coupled diffusion equations. In the second example, the
coupled pair of the diffusion equations is linear, but the exact solutions for the con-
sidered initial-boundary value problem exhibit both the rapid and smooth changes
in various segments of the considered time interval. Then, it is demonstrated how
the relaxed time spacing can be efficiently used for increasing the accuracy of the
solution.

2 Two Governing equations, initial and boundary conditions

In this paper, we present an efficient numerical scheme for the following system of
partial differential equations:

∂u
∂ t

=
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
+ k1u+ r1 f1(u,v)+g1(x,y, t), (1)

∂v
∂ t

=
(

∂ 2v
∂x2 +

∂ 2v
∂y2

)
+ k2v+ r2 f2(u,v)+g2(x,y, t),

in the two-dimensional region Ω, where k1, r1, k2, and r2 are suitably given con-
stants. f1 and f2 are functions of the field variables u and v, g1 and g2 are assumed
to be prescribed sources. The initial conditions are given as

u(x,y,0) = f (x,y), (2)

v(x,y,0) = g(x,y),

and Dirichlet boundary condition:

u(x,y, t) = q1(x,y, t), (x,y) ∈ ∂Ω× t, t > 0,

v(x,y, t) = q2(x,y, t).

All the functions f1, f2, g1, g2, f , g, q1, and q2 are not specified from the point of
view of the development of the computational method. Note that the present model
is rather general and involves the well known models such as Turing model [Turing
(1952)], prey-predator model and Lotka-Volterra model [Lotka (1956); Volterra
(1931)] and many others.

3 MLS approximation for spatial variations of field variables

A meshless method uses a local interpolation or approximation to represent the trial
function with the values of the unknown variable at some nodes. The moving least
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squares (MLS) approximation is used on both meshless LBIE and MLPG methods
which are used in this study and so is described in this section. Consider a sub-
domain Ωx, the neighborhood of a point x and denoted as the domain of definition
of the MLS approximation for the trial function at x, which is located in the problem
domain Ω. To approximate the distribution of function u in Ωx, over a number of
randomly located nodes xi, i = 1,2, ...n, the Moving Least Squares approximant
uh(x) of u, ∀x ∈Ωx, can be defined by

uh(x) = pT (x) a(x) ∀x ∈Ωx, (3)

where pT (x) = [p1(x), p2(x), . . . , pm(x)] is a complete monomial basis of order m;
and a(x) is a vector containing coefficients a j(x), j = 1,2, ...m which are functions
of the space coordinates x. For example, for a 2-D problem, pT (x) = [1,x,y] and
pT (x) = [1,x,y,x2,xy,y2], for linear basis (m = 3) and quadratic basis (m = 6),
respectively.

The coefficient vector a(x) is determined by minimizing a weighted discrete L2
norm, defined as

J(x) =
n

∑
i=1

wi(x)[pT (xi)a(x)− ûi]2 (4)

= [P.a(x)− û]T .W.[P.a(x)− û],

where wi(x) is the weight function associated with the node i, with wi(x) > 0 for
all x in the support of wi(x),xi denotes the value of x at node i, n is the number of
nodes in Ωx for which the weight functions wi(x) > 0, the matrices P and W are
defined as

P =


pT (x1)
pT (x2)

...
pT (xn)


n×m

,

W =

w1(x) ... 0
... ... ...
0 ... wn(x)

 ,

and ûT = [û1, û2, ..., ûn]. Here it should be noted that ûi, i = 1,2, ...,n in (4) are the
fictitious nodal values, and not the nodal values of the unknown trial function uh(x)
in general. The stationarity of J in (4) with respect to a(x) leads to the following
linear relation between a(x) and û

A(x)a(x) = B(x)û, (5)



MPLG for Coupled Diffusion 19

where the matrices A(x) and B(x) are defined by

A(x) = PT WP = B(x)P =
n

∑
i=1

wi(x)p(xi)pT (xi), (6)

B(x) = PT W = [w1(x)p(x1),w2(x)p(x2), ...,wn(x)p(xn)]. (7)

The MLS approximation is well defined only when the matrix A in (5) is non-
singular. It can be seen that this is the case if and only if the rank of P equals m. A
necessary condition for a well-defined MLS approximation is that at least m weight
functions are non-zero (i.e. n > m) for each sample point x ∈Ω and that the nodes
in Ωx will not be arranged in a special pattern such as on a straight line. Here a
sample point may be a nodal point under consideration or a quadrature point.

Solving for a(x) from (5) and substituting it into (3) gives a relation which may be
written as the form of an interpolation function similar to that used in FEM, as

uh(x) = Φ
T (x).û =

n

∑
i=1

φi(x)ûi; uh(xi)≡ ui; x ∈Ωx, (8)

and essentially ui 6= ûi, where

Φ
T (x) = pT (x)A−1(x)B(x), (9)

or

φi(x) =
m

∑
j=1

p j(x)[A−1(x)B(x)] ji.

φi(x) is usually called the shape function of the MLS approximation corresponding
to nodal point yi. From (7) and (9), it may be seen that φi(x) = 0 when wi(x) = 0.
In practical applications, wi(x) is generally chosen such that it is non-zero over
the support of nodal points yi. The support of the nodal point yi is usually taken
to be a circle of radius ri, centered at yi. The fact that φi(x) = 0, for x not in the
support of nodal point yi preserves the local character of the Moving Least Squares
approximation.

Let Cq(Ω) be the space of qth continuously differentiable functions on Ω. If wi(x)∈
Cq(Ω) and p j(x) ∈Cs(Ω), i = 1,2, ...,n, j = 1,2, ...,m, then φi(x) ∈Cr(Ω) with
r = min(q,s).

The partial derivatives of φi(x) are obtained as

φi,k =
m

∑
j=1

[p j,k(A−1B) ji + p j(A−1B,k +A−1
,k B) ji], (10)
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in which A−1
,k = (A−1),k represents the derivative of the inverse of A with respect

to xk, which is given by A−1
,k =−A−1A,kA−1, where( ),i denotes ∂ ( )/∂xi.

In this paper the Gaussian weight function is used as

wi(x) =


exp[−( di

ci
)2]−exp[−( ri

ci
)2]

1−exp[−( ri
ci

2)]
, 0≤ di ≤ ri,

0, di ≥ ri,

where di =‖ x− xi ‖, ci is a constant controlling the shape of the weight function
wi and ri is the size of the support domain.

The size of support, ri, of the weight function wi associated with node i should
be chosen such that ri should be large enough to have sufficient number of nodes
covered in the domain of definition of every sample point (n ≥ m) to ensure the
regularity of A. On the other hand, ri should also be small enough to maintain the
local character of the MLS approximation.

4 The numerical solution procedure

4.1 The time discretization

The finite-difference approximation of the time derivatives in the θ method is given
as follows

θ u̇k+1 +(1−θ)u̇k =
uk+1−uk

∆t
, 0≤ θ ≤ 1. (11)

Considering Eq. (1) at the time instants k∆t and (k+1)∆t, one obtains, respectively

θ u̇k+1 = θ∇
2uk+1 +θk1uk+1 +θr1 f1(uk+1,vk+1)+θg1(x,y,(k +1)∆t),

(1−θ)u̇k = (1−θ)∇2uk +(1−θ)k1uk +(1−θ)r1 f1(uk,vk)+(1−θ)g1(x,y,k∆t).

Hence and from (11), we have

uk+1−uk

∆t
= ∇

2uk +θ

(
∇

2uk+1−∇
2uk
)

+ k1

[
uk +θ

(
uk+1−uk

)]
(12)

+r1

[
f k
1 +θ

(
f k+1
1 − f k

1

)]
+gk

1 +θ

(
gk+1

1 −gk
1

)
.

In the case of Crank-Nicholson scheme (θ = 1
2 ) Eq. (12) becomes:

uk+1−uk

∆t
=

1
2

(
∇

2 + k1

)(
uk+1 +uk

)
+

r1

2

(
f k+1
1 + f k

1

)
+

1
2

(
gk+1

1 +gk
1

)
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or [
1− ∆t

2

(
k1 +∇

2
)]

uk+1− r1∆t
2

f k+1
1 (13)

=
[
1+

∆t
2

(
k1 +∇

2
)]

uk +
r1∆t

2
f k
1 +

∆t
2

(
gk+1

1 +gk
1

)
.

Similarly, we have

[
1− ∆t

2

(
k2 +∇

2
)]

vk+1− r2∆t
2

f k+1
2 = (14)[

1+
∆t
2

(
k2 +∇

2
)]

vk +
r2∆t

2
f k
2 +

∆t
2

(
gk+1

2 +gk
2

)
.

Thus, the parabolic PDEs are replaced by the semi-discrete PDEs of the elliptic
type for the field variables uk+1 and vk+1, assuming the fields uk and vk being known
from the computation in the previous time step.

The further steps in solution of these equations depends on the character of func-
tions f1 and f2. In general, one should solve them iteratively in each time step with
replacing f k+1

1 and f k+1
2 by f k

1 and f k
2 , respectively, at the zeroth iteration. If these

functions are sufficiently smooth, one can solve linearized equations

[
1− ∆t

2

(
r1 f k

1,u + k1 +∇
2
)]

uk+1− r1∆t
2

f k
1,vvk+1 =[

1+
∆t
2

(
− r1 f k

1,u + k1 +∇
2
)]

uk− r1∆t
2

f k
1,vvk + r1∆t f k

1 +
∆t
2

(
gk+1

1 +gk
1

)
,[

1− ∆t
2

(
r2 f k

2,v + k2 +∇
2
)]

vk+1− r2∆t
2

f k
2,uuk+1 =[

1+
∆t
2

(
− r2 f k

2,v + k2 +∇
2
)]

vk− r2∆t
2

f k
2,uuk + r2∆t f k

2 +
∆t
2

(
gk+1

2 +gk
2

)
,

instead of using the iterative procedure.

4.2 The local weak formulation of the time-stepping semi-discrete PDEs

We construct the weak form over local nodal based sub-domains such as Ωs, which
is a small region taken for each node in the global domain Ω. The local sub-domains
could be of any geometric shape and size. In this paper they are taken to be of
circular shape. The local weak form of the equations (13,14) for xi = (xi,yi) ∈Ωsi
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can be written as∫
Ωsi

[[
1− ∆t

2

(
k1 +∇

2
)]

uk+1− r1∆t
2

f k+1
1

]
u∗dx (15)

=
∫

Ωsi

[[
1+

∆t
2

(
k1 +∇

2
)]

uk +
r1∆t

2
f k
1 +

∆t
2

(
gk+1

1 +gk
1

)]
u∗dx,

∫
Ωsi

[[
1− ∆t

2

(
k2 +∇

2
)]

vk+1− r2∆t
2

f k+1
2

]
u∗dx (16)

=
∫

Ωsi

[[
1+

∆t
2

(
k2 +∇

2
)]

vk +
r2∆t

2
f k
2 +

∆t
2

(
gk+1

2 +gk
2

)]
u∗dx

where u∗ is a test function, u and v are trial functions, and instead of the entire
domain Ω we have considered a sub-domain Ωsi located entirely inside Ω which is
a circle of radius r0 and centered at node xi. If the Heaviside step function

u∗(x) =


1, x ∈Ωs,

0, x /∈Ωs,

is chosen as the test function in each sub-domain , then ∇u∗ = 0 and from the
relation∫

Ωsi

u∗∇2udx =
∫

Ωsi

∇u∇u∗dx+
∫

∂Ωsi

u∗
∂u
∂n

ds

we have∫
Ωsi

∇
2udx =

∫
∂Ωsi

∂u
∂n

ds

and so the local weak forms (15) and (16) are transformed into the following simple
equations

(
1− k1∆t)

2

)∫
Ωsi

uk+1dx− ∆t
2

∫
∂Ωsi

∂uk+1

∂n
ds

−r1∆t
2

∫
Ωsi

f k+1
1 dx =

(
1+

k1∆t)
2

)∫
Ωsi

ukdx+
∆t
2

∫
∂Ωsi

∂uk

∂n
ds (17)

+
r1∆t

2

∫
Ωsi

f k
1 dx+

∆t
2

∫
Ωsi

(
gk+1

1 +gk
1

)
dx,
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(
1− k2∆t

2

)∫
Ωsi

vk+1dx− ∆t
2

∫
∂Ωsi

∂vk+1

∂n
ds

−r2∆t
2

∫
Ωsi

f k+1
2 dx =

(
1+

k2∆t)
2

)∫
Ωsi

vkdx+
∆t
2

∫
∂Ωsi

∂vk

∂n
ds (18)

+
r2∆t

2

∫
Ωsi

f k
2 dx+

∆t
2

∫
Ωsi

(
gk+1

2 +gk
2

)
dx.

4.3 Discretization of the local weak forms and imposing boundary condition

Consider N nodal points on the boundary and domain of the problem of which M
of them are located on the domain and L of them on the boundary. Assuming that
ûk

i , for i = 1,2, ...,N is known, our aim is to compute ûk+1
i , for i = 1,2, ...,N in the

time stepping technique. So we have N unknowns and to compute these unknowns
we need N equations. For nodes which are located on the boundaries, we have

N

∑
j=1

φ j(xi)ûk+1
j = q1(xi,(k +1)∆t), (19)

N

∑
j=1

φ j(xi)v̂k+1
j = q2(xi,(k +1)∆t).

For nodes which are located in the interior of the domain, i.e., for xi ∈ interior Ω,
from (17) and (18) and using the MLS approximation (8), we have the following
equations

(
1− k1∆t)

2

) N

∑
j=1

(∫
Ωsi

φ jdx
)

ûk+1
j

−∆t
2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

ûk+1
j − r1∆t

2

∫
Ωsi

f̃ k+1
1 dx = (20)

(
1+

k1∆t)
2

) N

∑
j=1

(∫
Ωsi

φ jdx
)

ûk
j +

∆t
2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

ûk
j

+
r1∆t

2

∫
Ωsi

f̃ k
1 dx+

∆t
2

∫
Ωsi

(
gk+1

1 +gk
1

)
dx,
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(
1− k2∆t)

2

) N

∑
j=1

(∫
Ωsi

φ jdx
)

v̂k+1
j − ∆t

2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

v̂k+1
j (21)

−r2∆t
2

∫
Ωsi

f̃ k+1
2 dx =

(
1+

k2∆t)
2

) N

∑
j=1

(∫
Ωsi

φ jdx
)

v̂k
j +

∆t
2

N

∑
j=1

(∫
∂Ωsi

∂φ j

∂n
ds
)

v̂k
j

+
r2∆t

2

∫
Ωsi

f̃ k
2 dx+

∆t
2

∫
Ωsi

(
gk+1

2 +gk
2

)
dx,

where

f̃ k
i = fi(ũk(x), ṽk(x)), i = 1,2,

ũk(x) =
N

∑
j=1

φ j(x)ûk
j, ṽk(x) =

N

∑
j=1

φ j(x)v̂k
j.

Note that the set of algebraic equations (19),(20) and (21) represent the discretized
version of the local weak form of the original pair of coupled PDEs (1) with as-
suming the Crank-Nicholson scheme for the linear time interpolation within time
steps and the standard MLS approximation for the spatial variations of the field
variables.

4.4 Employed evaluation techniques and simplification approximations

In all examples, for the MLS approximation the quadratic basis (m = 6) and the
Gaussian weight function are utilized. The eight points Gauss-Legendre quadrature
rule is used for the regular local boundary integrals as follow∫

∂Ωsi

φ j(x)ds

=
∫ 2π

0
φ j(xi + r0cos(θ),yi + r0sin(θ))r0dθ

= πr0

∫ 1

−1
φ j(xi + r0cos(πθ +π),yi + r0sin(πθ +π))dθ

= πr0

8

∑
p=1

wpφ j(xi + r0cos(πθp +π),yi + r0sin(πθp +π)),

where wp and θp are the Gauss quadrature integration rule weights and points on [-
1, 1]. The domain integrals appearing in the MLPG formulation are approximated
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and computed as follows:

∫
Ωsi

φ j(x)dx≈ φ j(xi)
∫

Ωsi

1dx = πφ j(xi)r2
0,

∫
Ωsi

f̃ k
1 dx≈ f1(ũk(xi), ṽk(xi))

∫
Ωsi

1dx = π f1(ũk(xi), ṽk(xi))r2
0,

similarly, for f̃ k
2 we have

∫
Ωsi

f̃ k
2 dx≈ π f2(ũk(xi), ṽk(xi))r2

0.

5 Test problems

The domain and boundary integrals are evaluated as demonstrated in the previous
section. We recall that r0 is the radius of each local sub-domains and ri is the radius
of the support of the weight function corresponding to node i. For the MLS approx-
imations, the quadratic basis is used in this paper. The gaussian weight function is
used for the MLS approximation and ci ≈ 0.6h, where h is the minimum distance
between two consecutive nodes in each direction. In general, there is no restriction
on the size of sub-domains in the local weak formulation. Nevertheless, because of
the computational techniques described in the previous section, r0 should be small
enough. A very small r0 also causes much cancellation error. So it is chosen as
0.001 ≤ r0 ≤ 0.01 in this paper, where the analyzed domain is Ω = [0,1]× [0,1].
For the moving least square moment matrix to be invertible, the support of weight
functions, ri, should be large enough to have sufficient number of nodes covered
in the domain of definition of every sample point. On the other hand, it should
be small enough to preserve the local character of the MLS approximation. In this
paper it is chosen as ri≈ 3k, where k is the maximum distance between two consec-
utive nodes. It should be noted that these parameters may depend on the problem
under consideration, and the computational techniques used.
The infinity norm of error of u is represented by ‖ eu ‖∞ and that of v by ‖ ev ‖∞,
where

‖ eu ‖∞= max{| ui− ûi |, i = 1,2, ...,N},

ui and ûi are the exact and approximate value of u at point xi, respectively, and N is
the number of nodes.

Example 1. For the first test problem consider the following system of nonlinear
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diffusive PDEs in the region Ω = [0,1]× [0,1]

∂u
∂ t

=
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
+u−u2 +uv+g1(x,y, t),

∂v
∂ t

=
(

∂ 2v
∂x2 +

∂ 2v
∂y2

)
+2v− v2 +u2v+g2(x,y, t),

where

g1(x,y, t) = t4(x−1)2x2(y−1)2y2− t2(x−1)x(y−1)y
(
−t + x2 + y2)

−t2(x−1)x(y−1)y−2t2(x−1)x−2t2(y−1)y+2t(x−1)x(y−1)y,
g2(x,y, t) = t4 (−(x−1)2)x2(y−1)2y2 (−t + x2 + y2)

+
(
−t + x2 + y2)2−2

(
−t + x2 + y2)−5.

The initial and boundary conditions are chosen in such a way that the exact solution
is:

u(x,y, t) = t2(x−1)x(y−1)y,
v(x,y, t) = −t + x2 + y2,

see Fig. 1 for initial profile of v and u is initially zero. Since the functions f1 and
f2 are nonlinear in this example, the algebraic equations (20) and (21) has been
solved iteratively in each time step with replacing f k+1

1 and f k+1
2 by f k

1 and f k
2 ,

respectively, at the zeroth iteration. The results presented here are obtained with
only one iteration.

The obtained results at t = 2, with N = 111 nodal points and various ∆t are pre-
sented in Tab. 1. The results reveal that the accuracy of numerical solution increases
as the size of time step becomes smaller. The obtained errors for different N and t
are presented in Tab. 2 and Tab. 3, respectively. The graph of obtained solution for
u and v are plotted in Fig. 2, Fig. 3, Fig. 4 and Fig. 5, respectively, for N = 441.

In order to show the convergence of our proposed iterative procedure, we present
Tab. 4. In this table, corresponding to each iteration we have two rows for which
the first row represents ‖ eu ‖∞ and the second row represents ‖ ev ‖∞. ITR refers
to the number of iterations. The improvement of the accuracy during the iteration
procedure is more clear for bigger ∆t, e.g. ∆t = 0.1 and 0.05 (the columns 1 and 2)
and it is more significant for v (the second row in each iteration step).

For smaller time steps the accuracy is not further improved after the first or second
iteration step owing to cancellation errors. The infinity norm of errors of numerical
solutions obtained for u and v versus time variable t are presented in Fig. 5. In
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Figure 1: Initial profile of v

Table 1: Error with different ∆t

∆t ‖ eu ‖∞ ‖ ev ‖∞

0.1 1.212214 ×10−2 9.411551×10−3

0.05 6.351893 ×10−3 4.700534×10−3

0.01 1.756992 ×10−3 9.233328×10−4

0.005 1.183955 ×10−3 4.506939×10−4

0.001 7.257365 ×10−4 7.250613×10−5

0.0005 6.684724 ×10−4 2.522788×10−5

Table 2: Errors at t = 2, ∆t = 0.005 for different number of nodal points

N ‖ eu ‖∞ ‖ ev ‖∞

81 1.527797 ×10−3 4.356309×10−4

121 1.183955×10−3 4.506939×10−4

289 8.115125 ×10−4 4.655717 ×10−4

441 7.2568178×10−4 4.711232 ×10−4

Table 3: Errors at different time instants with N = 441 nodal points and ∆t = 0.005

t ‖ eu ‖∞ ‖ ev ‖∞

0.2 6.451428 ×10−5 3.816598 ×10−4

0.4 1.315446×10−4 4.009743 ×10−4

0.6 2.005670×10−4 4.111255 ×10−4

0.8 2.714080×10−4 4.213505×10−4

1 3.439055×10−4 4.317110 ×10−4

1.5 5.313506×10−4 4.560768 ×10−4

2 7.256817 ×10−4 4.711232 ×10−4



28 Copyright © 2011 Tech Science Press CMES, vol.71, no.1, pp.15-37, 2011

0
0.2

0.4
0.6

0.8
1

0

0.5

1
−0.1

0

0.1

0.2

0.3

xy

u(
x,

y,
2)

Figure 2: Numerical solution obtained for u at t = 2, using N = 441 nodal points
and ∆t = 0.001
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Figure 3: Error distribution for u at t = 2 in Example 1
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Figure 4: Numerical solution obtained for v at t = 2, using N = 441 nodal points
and ∆t = 0.001
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Figure 5: Error distribution for v at t = 2 in Example 1
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Figure 6: Errors versus time t with N=441 nodal points and ∆t = 0.001

Table 4: Errors at t = 0.5 with N = 441 nodal points, various iterations and ∆t

∆t→ 0.1 0.05 0.01 0.005
ITR=0 2.507646×10−5 1.041082×10−5 7.795428×10−6 8.005067×10−6

0.001999 0.001019 2.030702×10−4 1.006921×10−4

ITR=1 9.241597×10−6 8.914953×10−6 8.787914×10−6 8.783149×10−6

4.957661×10−5 2.009308×10−5 1.225472×10−5 1.205132×10−5

ITR=2 8.774170×10−6 8.780075×10−6 8.781492×10−6 8.781507×10−6

2.354149×10−5 8.235863×10−6 1.195439×10−5 1.195798×10−5

ITR=3 8.780696×10−6 8.781343×10−6 8.781503×10−6 8.781509×10−6

2.373307×10−5 8.370234×10−6 1.195602×10−5 1.195829×10−5

ITR=4 8.780595×10−6 8.781327×10−6 8.781503×10−6 8.781509×10−6

2.372902×10−5 8.3684370×10−6 1.195601×10−5 1.195829×10−5
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Fig. 5, we can see increasing inaccuracy of u with increasing time. Moreover, in
the case of v we can see different behavior. A reason for this is that the dependence
of u on the time variable t is quadratic, whereas the dependence of v on the time
variable is linear. The latter is much better approximated by the employed finite-
difference approximation (11).

Example 2. For the second test problem consider the system of linear parabolic
PDEs

∂u
∂ t

=
(

∂ 2u
∂x2 +

∂ 2u
∂y2

)
+ v,

∂v
∂ t

=
(

∂ 2v
∂x2 +

∂ 2v
∂y2

)
+16u,

in the two-dimensional region Ω = [0,1]× [0,1]. The initial and boundary condi-
tions are chosen in such a way that the exact solution is:

u(x,y, t) = exp(x+ y−2t),
v(x,y, t) = −4exp(x+ y−2t).

All calculations for this example are performed with N=441 nodal points. The
max norm of obtained numerical solutions and the corresponding max error are
presented in Fig. 7 and Fig. 8, respectively.

The max norm of u at time instant tk, or ‖ uk ‖∞, is defined as:

‖ uk ‖∞= max{| uk
i |, i = 1,2, ...,N},

where uk
i = u(xi,k∆t), and N is the number of nodes.

It can be seen from Fig. 8 that the errors have an increase near initial time t = 0,
and then decrease. This is more significant for the function v. This can be explained
by very rapid temporal changes of the solutions near the initial time and relatively
smooth variation at later time instants. For this kind of problems, we can obtain
more accurate solutions by using variable length of the time steps; so that the time
step be very small at time t = 0 and it can be larger when t increases. Choosing a
very small and fixed time step is much time consuming and not necessary. So, we
define a measure between the numerical solutions U(x, .) of two consecutive time
steps by

∆Utk =‖ uk(x)−uk−1(x) ‖∞, f or k = 1,2, ...,K. (22)
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Figure 7: Max norm of numerical solutions obtained with N=441 nodal points and
∆t = 0.0005 for Example 2
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Figure 8: Max error of numerical solutions obtained with fixed ∆t = 0.0005 for
Example 2
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For some user-defined relaxation parameters τ , if ∆Utk < τ , the time spacing is
relaxed:

∆t← 2∆t

up to some prefixed value ∆tmax. See Fig. 9 and Fig. 10 for maximum error obtained
for different values of ∆t and τ . See also [Brunner, Ling, and Yamamoto (2010)]
for more useful information in this regard.

6 Conclusions

The weak formulation based on meshless implementation of local integral equa-
tions developed for diffusion equation has been successfully extended to a pair of
coupled nonlinear diffusion equations. The time variations are treated by using the
finite difference method with relaxed time spacing and the nonlinearities by iter-
ative technique within each time step. The developed method supplemented with
several computational techniques has been verified on test examples with using the
exact solution as benchmark solutions.
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