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Flexural Analysis of Monolayer Graphene
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Abstract: Based on molecular mechanics and the concept of flexible connection
used in the flexibly connected frames, a new structural mechanics model, a 2-D
frame composed of anisotropic beams and flexible connections, is proposed for the
simulation of the static and dynamic flexural behavior of monolayer graphene. The
equivalent beam representing the C-C bond in the new molecular structural me-
chanics (MSM) model has two salient features compared with other MSM models
presented for the analysis of carbon nanotubes: one is that the flexible connections
at the beam ends are used to account for the bond-angle variations between the C-C
bonds of graphene; and the other is that there are two principal flexural rigidities
used for the flexible connections to reflect the different behaviors of the σ -bond
and π-bond in the graphene lattice. The mechanical properties of the equivalent
beam for the C-C bond of graphene lattice are evaluated from the force constants
of graphene given by molecular mechanics. The in-plane Young’s moduli, Pois-
son ratios, equivalent flexural rigidities and the flexural frequencies of monolayer
graphene are simulated using the proposed new MSM model coupled with ANSYS.
The simulation results show that the 2-D flexibly connected frame of the new MSM
model proposed in this paper gives improved predictions of the in-plane Young’s
moduli, Poisson ratios and flexural rigidities of monolayer graphene than other
MSM models. The present study also indicates that monolayer graphene is kind
of an orthotropic material since both the in-plane elastic constants and the flexural
rigidities of monolayer graphene are the principal directions dependent.

Keywords: Graphene, elastic constants, flexural rigidities, molecular mechanics,
bond angle variation, flexible connection.

1 Introduction

Graphene is a monolayer of covalently bonded carbon atoms arranged in a honey-
combed lattice. There are growing experimental and analytical evidences [Novoselov
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et al (2004); Lee et al (2008); Li and Kaner (2008); Geim (2009); Horing (2010)
among others] indicating that monolayer graphene has exceptional physical prop-
erties such as nanoscale, low density, high modulus as well as high strength, and it
also possesses extraordinary electronic, thermal, chemical, optical and other prop-
erties. The exceptional properties of graphene make it a ‘device-friendly’ material
in various engineering applications. Because the monolayer graphene sheet forms
the basis of one-dimensional (1-D) carbon nanotubes (CNTs), some mechanical
properties of monolayer graphene had been studied [e.g. Kudin et al (2001); Ode-
gard et al (2002); Li and Chou (2003)] even before the monolayer graphene was
discovered [Novoselov et al (2004)].

The investigation of the mechanical properties of graphene is an essential step for
the proper applications of graphene such as in Nano Electro-Mechanical Systems
(NEMS), advanced composites with graphene reinforcements and other areas. The
method of experimental measurements is of high cost, and the measured results are
also highly scattered because the specimen size of graphene is too small to prop-
erly apply loads and boundary conditions. Although the method of the analytical
analysis is relative cost-effective compared with the experimental method, it can
only be applied to the graphene based materials with simple geometry and sub-
jected to simple deformations modes. However, on the other hand, the computer-
based numerical methods are powerful tools to simulate the mechanical properties
of graphene based materials with various loading and boundary conditions.

The mechanical properties of a nano-structure composed of an atomic or a molecu-
lar cluster can be characterized by the atomic interactions in the nanoscale material.
The two most common models used to describe these interactions in nanoscale ma-
terials are quantum mechanics and molecular mechanics. Both of these models
attempt to capture the variation of the system energy associated with the changes
of atomic positions. Quantum mechanics is rigorous and accurate as it determines
the system energy based on calculations of the electronic structure of molecules,
however it is very time-consuming even when simplifications are made (e.g., the
semi-empirical methods). By using the Born–Oppenheimer approximation, molec-
ular mechanics neglects the electronic structure as well motion of electrons and it
expresses the system energy only as a function of the nucleus positions. A num-
ber of molecular mechanics-based models have been proposed for the analysis of
CNTs in the past decade. Odegard et al (2002) proposed a pin-jointed truss model
for CNTs; but more truss members in addition to the basic hexagonal cells of the
C-C bonds of graphene have to be used in the truss model in order to make the
equivalent truss of a carbon nanotube to be stable. Chang and Gao (2003) presented
an accurate stick-spiral model for CNTs; however this model is only valid for the
axial deformations analysis of CNTs or graphene. Li and Chou (2003) proposed
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a molecular structural mechanics (MSM) model where CNTs are modeled by the
equivalent rigidly connected frames and the inversion energy is not taken into ac-
count explicitly. Based on the MSM proposed by Li and Chou (2003), Li and Guo
(2006) used the rectangular beams to account for the different bending behaviors of
the in-plane bending and out-of-plane bending of a single layer graphite sheet; but
the force constant for the out-of-plane bending is not accurate as it is evaluated from
the equivalent flexural rigidity of the cylindrical shell of CNTs. Georgantzinos et
al (2009) presented a linear spring based finite element formulation; theoretically
this model is able to account for the bond angle variations, but this linear spring
model is not computationally efficient since more structural members have to be
used. Based on the MSM model of Li and Chou, Chen et al (2010) proposed a
modified MSM model in which rectangular beams are also used to account for the
different force constants for the in-plane bending energy and the inversion energy.
However, this modified MSM model is not capable of accounting for the bond an-
gle variation either as in the case of Li and Chou’s MSM model, and furthermore
the force constant used for the inversion energy in this modified MSM model in
fact is for the improper torsion [Cornell et al (1995)].

CNTs or graphene can also be analyzed by their equivalent continuum mechan-
ics models. The continuum mechanics models of isotropic cylindrical shells or
isotropic plates are widely used [Odegard et al (2002); Huang et al (2006)]. There
are two shortages in the isotropic shell model of CNTs or the isotropic plate model
of graphene. Firstly it is not realistic to treat the CNTs or graphene as the contin-
uums made of isotropic materials; secondly the determination of the proper repre-
sentative thicknesses of CNTs and graphene is not straightforward as it was shown
that the representative thickness of CNTs or graphene used to evaluate the stretch-
ing stiffness and flexural rigidity is much smaller than the inter-planar spacing of
graphite layers [Yakobson et al (1996); Ru (2000)]. Moreover, the representative
thicknesses of CNTs or graphene are not a constant but depending on the types of
loading [Huang et al (2006)]. Theodosiou and Saravanos (2007) proposed a molec-
ular mechanics based finite element for the analysis of CNTs, but this model can
not take account of the bond angle variations properly.

All these different methods for the mechanical property analysis of CNTs or graphene
could yield quite good in-plane Young’s modulus or stretching stiffness of graphene
where the variation among the different predicted results is about 6-11% [Wang
and Zhang (2008)]. But the predicted Poisson ratios by different models are ranged
from 0.06 [Li and Chou (2003); Chen et al (2010)] to 1.44 [Sakhaee-Pour (2009)],
and the predicted flexural rigidity of CNTs are scattered from 0.69 eV to 3.28 eV
[Wang and Zhang (2008)]. The fact that some analysis models are of capable of
predicting reasonable good in-plane Young’s modulus but resulting in unreason-
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able Poisson ratios indicates that the deformation pattern predicted by these models
might be incorrect.

The MSM model proposed by Li and Chou (2003) is quite computationally ef-
ficient. But the equivalent beams to represent the C-C bond in this model are
rigidly connected to carbon nuclei, which results in that the bond angle variations
of graphene can not be taken into account. All the modified or revised MSM mod-
els presented, respectively, by Li and Guo (2006), Sakhaee-Pour (2009), and Chen
et al (2010) are not able to account for the bond angle variations either. As it will
be shown later, the deformation pattern predicted by these MSM models with rigid
connections are not accurate as the predicted lateral deformations is much smaller
than the results predicted by other accepted models although the predicted longi-
tudinal Young’s modulus of CNTs or the in-plane Young’s modulus of graphene
given by these MSM models are quite good. Consequently, it can be concluded
that the correct modeling of the bond angle variations for the C-C bonds of CNTs
or graphene is very important for the accurate predictions of the mechanical prop-
erties of CNTs or graphene.

Both static and dynamic flexural responses are very important for the NEMS made
of graphene. The resistance to the flexural motion, or called the flexural rigidity,
of graphene sheets is contributed primarily from the π–bonds of carbon atoms.
Therefore, an accurate modeling of the flexural rigidity of graphene is very criti-
cal for the accurate study of flexural responses of graphene-based materials. The
computational chemistry shows that the π–bonds in the lattice made of sp2 carbons
is much weaker than its σ -bonds. Therefore, the force constant representing the
mechanical property of the π–bond is smaller than the force constant denoting the
mechanical property of the σ -bond. Unfortunately, all the MSM models mentioned
above are not capable of correctly taking account of the force constant for the inver-
sion energy attributed from the π–bonds of graphene although the rectangular beam
element is used by Li and Guo (2006) as well as Chen et al (2010) respectively .

The objective of this paper is to propose a new MSM model for the simulation
of the elastic properties as well as static and dynamic flexural behaviors of mono-
layer graphene. This new MSM model is of a planar frame composed of equivalent
anisotropic beams and flexible connections [Shi and Atluri (1987, 1989)]. This new
MSM model has two novel features compared with other MSM models proposed
for the analysis of carbon nanotubes. The first one is that the equivalent beams
representing the C-C bonds are flexibly connected to the nodes denoting the carbon
nuclei to account for the bond-angle variations between any two nearest C-C bonds;
and the second one is that two principal flexural rigidities for the flexible connec-
tions are used to respectively account for the in-plane bending behavior and the
out-of-plane bending behavior of graphene in order to reflect the different mechan-
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ical properties of the σ -bond and π-bond in the graphene lattice. The mechanical
properties of the equivalent beam in the graphene lattice are evaluated from the
force constants of the graphene lattice given by molecular mechanics. The in-plane
Young’s moduli, Poisson ratios, static flexural behavior and the flexural frequencies
of monolayer graphene are simulated using the proposed new MSM model coupled
with ANSYS. The simulation results show that the 2-D flexibly connected frame
model of the new MSM proposed in this paper gives improved predictions of the
in-plane Young’s moduli, Poisson ratios as well as flexural rigidities of monolayer
graphene compared with other MSM models proposed for the analysis of CNTs so
far.

2 Molecular mechanics taking account of inversion energy explicitly

The basic concept in molecular mechanics is that the atomic interaction of a molecule
can be described by a molecular force field. Molecular mechanics is a powerful and
efficient model to characterize the interatomic potential and mechanical properties
of a nanoscale material composed of an atomic or molecular cluster. In molecu-
lar mechanics, the interatomic potential energy of a molecule or an atomic lattice
with arbitrary geometry is written as a sum of various two-body, three-body, and
four-body interactions of valences plus some nonbonded interactions. Within small
deformations, the total interatomic potential energy Utotal of a molecular cluster
can be expressed as the superposition of valence interactions and nonbonded inter-
actions as [Rappe et al (1992); Cornell et al (1995)]:

Utotal = Ur +Uθ +Uφ +Uω +UvdW +Ues (1)

where the first four terms are contributed from the valence interactions, and Ur,
Uθ , Uφ and Uω are the energies associated, respectively, with bond stretching, bond
angle variation, dihedral torsional angle and inversion. The last two terms in Eq.
(1) are contributed from the nonbonded interactions, UedW is van der Waals term
and Ues is electrostatic term, and these two energy terms can be neglected when the
deformation is very small [Orgegard et al (2002); Chang and Gao (2003)].

For a carbon nanotube or monolayer graphene made of sp2 carbon atoms, each
valence interaction term in Eq. (1) takes the following form.

1) Bond stretching energy. There are many functional forms to define the bond
stretching energy. When the deformation is small, the bond stretching energy Ur

can be accurately written in a harmonic form as [Rappe et al (1992)]

Ur = 1
2 ∑

i
Kr(∆ri)2 (2)



72 Copyright © 2011 Tech Science Press CMES, vol.71, no.1, pp.67-92, 2011

where ∆ri is a bond elongation between two nearest atoms I and J as illustrated in
Fig. 1a; Kr is the bond stretching force constant; and the summation is over all the
C-C bonds in the monolayer graphene under consideration.

 

Figure 1: The energies of atomic interactions in molecular mechanics

2) Angle variation energy. The energy Ur induced by a bond angle variation can
also be accurately expressed in a harmonic form when the deformation is small:

Uθ = 1
2 ∑

j
Kθ (∆θ j)2 (3)

where ∆θ j is the bond angle variation between a bond IJ with bond IK, one of
its nearest neighbor bonds, as depicted in Fig. 1b; Kθ is the bond bending force
constant; and the summation is over all the bond angle variations in the system.

3) Torsional energy. The dihedral angle energy Uφ is associated with the torsion
of four-body interactions in an atomic system, and a typical torsion of such inter-
actions is depicted in Fig. 1c. For the central bond IJ with both IandJ being sp2

carbon atoms, Uφ is of the form [Rappe et al (1992)]

Uφ = 1
2 ∑

k
Kφ (1− cos2φk) (4)
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where φk denotes the torsional angle of the central bond IJ of the corresponding
four-body interactions as depicted in Fig. 1c; and Kφ is the bond torsional force
constant. For small torsional angle, Taylor expansion leads to

Uφ = 1
2 ∑

k
Kφ [1− (1− (2φk)2

2 + (4φk)4

4! − ...)]≈ ∑
k

Kφ φ 2
k (5)

4) Inversion energy. The inversion energy Uω is associated with the interactions
of an atom with its nearest three neighbor atoms in a molecule as shown in Fig.
1d. For a C−2 sp2 carbon atom with exactly three substituents, Uω is of the form
[Rappe et al (1992)]

Uω = ∑
m

Kω(1− cosωIJKL) (6)

By using the orbital axis vector technique [Orgegard et al (2002)], the inversion
angle variation ωIJKL is defined the angle of the new location of atom I with respect
to the plane formed by atoms J, K and L as depicted in Fig. 1d; and Kω is the force
constant for the inversion energy. Setting ωm = ωIJKL for simplicity and using
Taylor expansion for Eq. (5a), then under the assumption of small ωm one has

Uω = ∑
m

Kω [1− (1− ω2
m

2 + ω2
m

4! − ...)]≈ 1
2 ∑

m
Kωω2

m (7)

Equations (4b) and (5b) show that both the dihedral angle energy Uφ and the inver-
sion energy Uω can be expressed in the harmonic forms as long as the deformation
of the molecular system under consideration is small.

3 A new molecular structural mechanics model for the mechanical property
prediction of the lattice of monolayer graphene

A monolayer graphene sheet can be treated as a planar lattice comprised of hexag-
onal cells made of covalent bonds connected at carbon nuclei shown in Fig. 1d,
which is analogous to the planar framed structures widely used in structure engi-
neering. Therefore, the mechanical behavior of a monolayer graphene sheet could
be studied by theory of structures. However, it should be noted that one special
feature of the deformation pattern of a nanoscale carbon lattice is the bond angle
variations shown in Fig. 1b, and in fact which is one of the major deformations in
the lattices of graphene and CNTs when they are subjected to any external loading.
Therefore, the modeling accuracy of the bond angle variations affects significantly
the accuracy and reliability of any analysis model of carbon nanomaterials.
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As mentioned in Introduction, the truss model [Odegard et al (2002)] and the linear-
spring based model [Georgantzinos et al (2009)] are able to model bond angle vari-
ations, but they are not computational efficient; and furthermore, the establishment
of their computational models is not straightforward since many additional struc-
tural members beyond the C-C bonds of graphene have to be used. The stick-spiral
model [Chang and Gao (2003)] gives good axial Young’s modulus of CNTs, but
it is merely valid for the in-plane deformation analysis of graphene as the molecu-
lar potential in this model takes only the first two terms in Eq. (1). Although the
rigidly connected frame model with the beams of circular cross-section proposed
by Li and Chou (2003) is quite computationally efficient, it has two drawbacks.
One is that the rigidly connected frame model can not characterize the bond angle
variations, and the other is that the circular beam can not correctly model the inver-
sion energy in Fig. 1d which is corresponding to the out-of-plane bending behavior
of graphene. The modified MSM models presented respectively by Li and Guo
(2006) as well as Chen et al (2010)) are not able to model the bond angle varia-
tions either because the rigid connections are used in these models. The new MSM
model for the mechanical property prediction of the graphene lattice proposed in
this paper aims to overcome aforementioned two drawbacks in the MSM model of
Li and Chow (2003).

3.1 Flexible connection for the modeling of bond angle variation

The deformation pattern of the bond angle variations in the monolayer graphene
depicted in Fig. 2a is very similar to that of the rotations taking place at junctions
of flexibly connected frames comprised of rotational springs and beams with very
large flexural rigidity shown in Fig. 2b where Sz denotes the rotational stiffness of
the rotational spring defined in the x− y plane of graphene. Therefore, the concept
of the flexible connection in the flexibly connected frames [Shi and Atluri (1989)]
can be used to model the bond angle variations in the lattice of graphene.

Shi and Atluri (1989) proposed an efficient computational model to characterize
the behaviors of the nonlinear flexible connections in space-framed structures. The
flexible connection model of Shi and Atluri (1989) will be used to model the bond
angle variations of graphene in this study.

3.2 Flexural rigidity of the out-of-plane bending

As shown in Eqs. (5a) and (5b), the inversion energy of a graphene lattice is as-
sociated with the force constant Kω that is different from the force constant Kθ

related to the bond angle bending energy Uθ . As a result, the stiffness Sy of the ro-
tational spring defined in the x− z plane of the equivalent flexibly connected planar
frame of graphene is different from Sz defined in the graphene plane. The inversion



A New Molecular Structural Mechanics Model 75
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Figure 2: Modeling of bond angle variation based on flexible connection

angle variation associated with the inversion energy can be modeled by a flexible
connection of rotational stiffness Sy as illustrated in Fig. 3.
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Figure 3: Modeling of the inversion angle variation associated with the inversion
energy

3.3 The computational model given by the new molecular structural mechanics
model

The basic idea illustrated by Figs. 2 and 3 is that a C-C bond of graphene can
be treated as a load carrying structural member that is flexible in stretching and
rotation, but stiff in bending and the all structural members are connected at the
nuclei through the rotational springs. Consequently, the bond angle variations and
inversion angle variations of a monolayer graphene sheet are characterized by the
flexible connections at the nuclei of the graphene lattice. The computational model
given by the new MSM model is illustrated in Fig. 4. It should be pointed out that
the equivalent beam representing the C-C bond is of anisotropic and the mechanical
properties of the equivalent beam is just characterized by its stretching stiffness EA,
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rotational stiffness GJ and very large flexural rigidities both for in-plane bending
and out-of-plane bending of graphene.

 

Figure 4: Computational model of graphene based on flexibly connected frame
model

Shi and Atluri (1989) presented the element stiffness matrix of the beam with
bonded rotational springs at the beam ends in the space-frame with nonlinear flex-
ible connections. A constant axial force and twisting moment are assumed, while
the linear bending moments in the two principal bending planes are interpolated
in the stress-based space frame element presented by Shi and Atluri (1989). If let
the force vector in the local coordinates of the C-C bond under consideration as
Floc where the bond axial axis is taken as the coordinate 1 and the normal of the
graphene taken as the coordinate 3, then Floc takes the form

Floc =
{

N,M1,
1M2,

2M2,
1M3,

2M3
}T

(8)

in which N is the constant axial force acting on the beam; M1 is the constant twist-
ing moment; 1M2 and 2M2 are the bending moment around the coordinate 2 at node
1 and node 2 respectively, 1M3 and 2M3 are the bending moment around the coor-
dinate 3 at node 1 and node 2 respectively. The corresponding nodal displacement
vector dloc is of the form

dloc =
{

∆r,(2
θ1− 1

θ1),−1
θ2,

2
θ2,−1

θ3,
2
θ3
}T

(9)

where ∆r is the elongation of the C-C bond, αθi(i =1,2,3, α =1,2) represent the
rotation angle around the coordinate-i at node α .
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Then, by assigning the beam representing the C-C bond with normal tensile stiff-
ness EA and rotational stiffness EJ but with infinite flexural rigidities, Eq. (24) in
the paper of Shi and Atluri (1989) leads the element stiffness matrix Kloc of an
anisotropic beam with rotational springs at its ends defined in the C-C bond local
coordinates as

Kloc =



EA/l
EJ/l 0

Sy

Sy

0 Sz

Sz

 (10)

where l is the C-C bond length, Sy and Sz are the stiffness of rotational springs
as shown in Figs. 3 and 2 respectively. The beam stiffness matrix in the global
coordinates can be evaluated by a normal transformation procedure widely used in
the analysis of space frames [Shi and Atluri (1988)]. It is worthwhile to point out
that the symbol EA in Eq. (8) is a single parameter used to denotes the equivalent
tensile stiffness of a C-C bond, but not the product of the so-called cross-section
area “A′′ and the Young’s modulus “E ′′ of the beam element for the C-C bond since
a C-C bond only has a force constant Kr but no cross-section physically. The same
is true for the rotational stiffness EJ in Eq. (8).

Shi and Atluri (1987, 1989) proposed two models to characterize the behaviors
of the nonlinear flexible connection in space-framed structures. Among these two
models, the model of the beam with bonded rotational springs at its ends shown in
Fig. 5a is computational efficient, but this special beam element with the stiffness
matrix given in Eq. (8) is not available in commercial FEA codes.

However on the other hand, the short flexible beam model for the equivalent ro-
tational spring illustrated in Fig. 5b can be easily implemented into any existing
finite element code. In this model, the main beam with flexibility in stretching and
torsion but rigid in bending is connected to a junction of the framed structure by a
short flexible beam where the flexural flexibility of the short beam is determined by
the constraint to yield a equivalent rotational stiffness to the rotational spring.

3.4 The mechanical properties of the anisotropic beam for a C-C bond

Using the notations defined in Eqs. (6), (7) and (8), the stretching energy UN , tor-
sional energy UM1 , in-plane bending energy UM3 and out-of-plane bending energy
UM2 of an anisotropic beam bonded with a rotational spring at its ends are of the
form

UN = 1
2
∫ l

0
N2

EA dx = 1
2

N2l
EA = 1

2
EA
l (∆r)2 (11)
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Figure 5: Two models for flexible connections of C-C bond

UM1 = 1
2
∫ l

0
M2

1
GJ dx = 1

2
M2

1 l
GJ = 1

2
GJ
l φ 2 (12)

UM3 = 1
2 Sz(∆θ)2 (13)

UM2 = 1
2 Syω2 (14)

It should be noted that there is no bending strain energy contributed from the main
beam as it is rigid in bending.

When the rotational spring is represented by a short and highly flexible beam shown
in Fig. 5b, the bond angle variation is also defined as the change of the angle
between the two nearest bonds after the given deformation as shown in Fig. 1b.
Then, the in-plane bending energy UM3 in terms of the short flexible beam take the
form

UM3 = 1
2

Dz
l1

(∆θ)2 (15)

where Dz is the flexural rigidity of the short flexible beam in the x-y plane and l1 is
the length the short flexible beam.

As illustrated in Fig. 1d, the inversion angle variation ωIJKL at atom I is defined
as the angle of the out-of-plane displacement of atom I with respect to the plane
formed by its nearest three atoms J,Land L. When two short flexible beams used for
the flexible connections, the inversion angle variation for bond IJ is defined by the
angle between the line connecting atom I and atom J in the deformed configuration
and the undeformed bond IJ as illustrated in Fig. 6. It can be seen from Fig. 6 that
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the rotation angle taking place at each short flexible beam is a half of the inversion
angle variation ω as in the case of the rotation angles at the two ends of a beam
subjected to pure bending.

 

ω 

      I  J  

'I

1l 1l

yD
yD

Figure 6: The inversion angle in the for the flexible beam model

Then the total out-of-plane bending energy UM2 of the two flexible beams used to
represent the flexible connections of a C-C bond is of the form

UM2 = 2[1
2

Dy
l1

(ω

2 )2] = 1
4

Dy
l1

ω2 (16)

The strain energy of a beam in the equivalent framed structure of a graphene lattice
evaluated from theory of structures should be equivalent to the molecular potentials
of a C-C bond given by molecular mechanics. Consequently, the energy equiva-
lence of a C-C bond defined by Eq. (2) to Eq. (5) and the strain energies expressed
in Eq. (9) to Eq. (12) lead to

EA
l

= Kr,
GJ
l

= 2Kφ (17)

Sz = Kθ , Sy = Kω (18)

The rotational stiffnesses given in Eq. (16) are the stiffnesses of the rotational
springs in the rotational spring model. For the short flexible beam model shown in
Fig. 5b and Fig. 6, both the main beam and the short beam have the same tensile
and torsional stiffness as those in Eq. (15), but the flexural rigidities of the short
flexible beam are given by

Dz

l1
= Kθ ,

Dy

l1
= 2Kω (19)
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Therefore, the mechanical properties of the equivalent anisotropic beam of a C-C
bond can be determined provided that the force constants in Eq. (2) to Eq. (5) are
given by molecular mechanics. And having obtained the mechanical properties of
the rotational springs or the equivalent anisotropic beam, the mechanical properties
of the equivalent flexibly connected frame of a graphene lattice can be evaluated by
the general finite element procedure.

4 Results and discussion

4.1 Selection of force constants

The computational accuracy of the new MSM model presented in previous sec-
tion strongly depends on the force constants used to characterize the mechanical
properties of the equivalent beam for the C-C bond. Although quite a number of
Potential Functions and Force Fields have been proposed in the past twenty years,
little agreement has been reached in modeling the atomic bonds of graphite [Xiao
and Hou (2006); Wang and Zhang (2008)], particularly the mechanical properties
related to the inversion energy. For instance, different force constant Kr for bond
stretching and force constant Kθ for bond angle variation were used, respectively,
by Odegard et al (2002) aw well as Chang and Gao (2003).

The second generation force field AMBER developed by Cornell et al (1995) tab-
ulates the molecular force constants for quite a wide range of organic molecules
in condensed phases, but unfortunately the inversion energy was not explicitly in-
cluded in AMBER. The bond stretching force constant Kr and bond angle variation
force constant Kθ given by Cornell et al (1995) were employed by Odegard et al
(2002) as well Li and Chou (2003) respectively, and they yield good axial Young’s
modulus of CNTs. The UFF (Universal Force Field) presented by Rappe et al
(1992) is one of few Force Fields that describes explicitly the definition of the in-
version energy Uω , but the force constant Kω for sp2 carbons was only given by a
general description in the paper of Rappe et al (1992). Nevertheless, one knows it
from the chemical structure of sp2 carbon molecule that the π–bonds in the lattice
made of sp2 carbon atoms is much weaker than its σ -bonds, and hence the force
constant representing the mechanical property of the π–bond is smaller than the
force constant denoting the mechanical property of the σ -bond. The force con-
stants Kr, Kθ and Kφ given by Cornel et al (1995) and the force constants Kω for
the inversion energy given in a general statement by Rappe et al (1992) will be the
first choice to be used in this study. These force constants take the following values

Kr = 938 kcal
mol , Kθ = 126 kcal

mol.rad2 , Kφ = 29 kcal
mol.rad2 , Kω = 6 kcal

mol.rad2 (20)

The bond stretching and bending force constants Kr and Kθ in Eq. (18) are the same
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as those used in the original MSM model of Li and Chou (2003), but the torsional
force constant Kφ here is different from that used by Li and Chou. The authors
believe that the torsional parameter 2× 14.5kcal/(mol.rad2) for the sp2 carbon
given in Table 14 of the paper of Cornel et al (1995) is more suitable for graphene
than the torsional parameters for other atom types in the same table. Since the
second generation force field of Cornel et al (1995) does not include the inversion
energy Uω explicitly, the improper torsional energy in the resulting force constants
of AMBER force field is not related to the inversion energy Uω . Consequently, it is
improper to use the dihedral parameter Vn listed for the improper torsional energy
in the paper of Cornel et al (1995) for the force constant Kω of the inversion energy.

4.2 The Young’s moduli and Poisson ratios of graphene

In order to study the influence of graphene chirality on the in-plane Young’s mod-
uli, the Young’s moduli of monolayer graphene along the two principal directions
shown in Fig. 7 are evaluated. The length of C-C bond is taken as l= 0.142 nm in
this study. As shown by Li and Chou (2003), the Young’s moduli of a finite size
monolayer graphene depend on the size of the computational models when there
are only few atoms along its width. But the simulated Young’s moduli of mono-
layer graphene converge to a constant value when the size of a monolayer graphene
is large enough.

 

Figure 7: The honeycombed lattice of graphene C-C bonds

The Young’s modulus of a zigzag monolayer graphene of size 8.378 nm × 19.553
nm and that of a armchair monolayer graphene of size 16.898 nm × 29.390 nm
obtained from the present new MSM model are tabulated in Table 1. The results
given by the original MSM model are also listed in the table for comparison.



82 Copyright © 2011 Tech Science Press CMES, vol.71, no.1, pp.67-92, 2011

Table 1: The Young’s moduli and Poisson ratios of graphene given by different
MSM models

Model
Zigzag Armchair
Young’s
modulus
(TPa)

Poisson ratio Young’s
modulus
(TPa)

Poisson ratio

present
MSM
model

1.004 0.237 1.141 0.201

original
MSM
model

1.033a

1.050b
–
0.086b

–
1.078b

–
0.078b

a the values given by Li and Chou (2003), size: 4.18 nm × 20.18 nm;
b the values computed by the authors based on Li and Chou’s model.

Since Li and Chou (2003) only gave the Young’s moduli of a zigzag graphite sheet
with different sizes, all other elastic constants of the graphite sheets corresponding
to the original MSM model in Table 1 are computed by the authors by reducing the
present MSM model to the original MSM model.

The Young’s moduli predicted by the present new MSM models shown in Table 1 or
the corresponding tensile stiffness defined as the product of Young’s modulus to the
graphene thickness 0.34 nm agree well with the results given by other models (vide
the summaries in the paper of Huang et al (2006)). The reported Poisson ratios
of graphene given by different models are scattered in a wide range [Zhao and
Shi (2011)]. The Poisson ratios of graphene predicted by the present MSM model
agree with the Poisson ratios of CNTs with large diameters given by the majority
of researchers [Zhao and Shi (2011)]. However, most of researchers only gave one
value of Young’s modulus since they treated the graphene as an isotropic material.
The present results clearly indicate that both the Young’s moduli and the Poisson
ratios of monolayer graphene along the two principal directions of the graphene are
different, that is the equivalent elastic constants of graphene are chirality dependent.
The results in Table 1 also show that the Poisson ratios obtained from the original
MSM model of Li and Chou (2003) are much smaller than the values given by the
majority of researchers.

4.3 Influence of the modeling of bond angle variations

The predicted elastic constants of graphene in Table 1 show that the Poisson ratios
obtained from the new MSM model with the flexible connection are totally different
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from those given by the original MSM model with rigid connections, although the
Young’s moduli given by these two different MSM models are almost the same.
The widely used Poisson ratio for graphite is 0.16 [Chang and Gao (2003)], and
the majority of the predicted Poisson ratios of graphene is ranged from 0.15 [Kudin
et al (2001)] to 0.41 [Huang et al (2006)]. The unreasonable smaller Poison ratios
predicted by the original MSM model were confirmed by Chen et al (2010). Then
a question can be raised, why does the present new MSM model and the original
MSM models yield totally different Poisson ratios?

The present new MSM model takes the bond angle variation into account explicitly
by the use of flexible connections, but the MSM model of Li and Chou (2003) does
not account for the bond angle variations as it just equalizes the bending energy of
the equivalent beam to the bond angle variation energy of the C-C bonds. Because
the torsional and inversion force constants Kφ and Kω have no influence on the be-
havior of in-plane deformation of graphene, then in the case of the in-plane elastic
property prediction, the major difference between the present new MSM model and
the MSM model proposed by Li and Chou (2003) just lies in the modeling of bond
angle variations. Consequently, when the same bond stretching force constant Kr

and angle variation force constant Kθ are used, the difference on the simulated in-
plane elastic properties given by these two different MSM models can be attributed
to the effect of the different modeling of bond angle variations in these two MSM
models. The much smaller Poisson ratios of graphene predicted by the original
MSM model means that the computational model of the rigidly connected planar
frame yields a much smaller lateral deformation than the real lateral deformation
of graphene lattice with bond angle variations, although this MSM model is able to
predict a quite good longitudinal deformation. Consequently, it can be concluded
that the unreasonable smaller Poison ratios obtained from the original MSM model
indicate that the deformation pattern predicted by the framed structure with rigid
connection is not correct. A framed structure with rigid connections means that
the angles of all junctions in the frame are fixed at its undeformed configurations
under any loading conditions. Therefore, it is obvious that the lateral deformation
is constrained by the rigid connections where the angles of the hexagonal cells of
graphene shown in Fig. 7 are kept as a fixed 1200 whatever how large the axial
deformation is.

4.4 Flexural rigidities of monolayer graphene

The flexural rigidity of monolayer graphene lattice is mainly contributed from the
π–bonds of carbon atoms in the case of small deformation. Therefore, the force
constant Kω for the inversion energy is the dominant factor for the evaluation of
the flexural rigidity of the equivalent plate of the graphene lattice. Since there is
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no widely accepted force constant Kω of the covalent bonds of graphite for the in-
version energy, a value of 1

6 Kθ is also considered for Kω in this study besides the
value given in a general description in the paper of Rappe et al (1992). The flexural
rigidities of the equivalent 2-D continuums of both zigzag and armchair monolayer
graphene sheets predicted by the present new MSM model with different force
constants for Kω are tabulated in Table 2, where the values of the flexural rigidities
are evaluated from the strain energy of the cantilevered-like plate subjected to a
distributed bending moment at the opposite free edge. The flexural rigidities cor-
responding to the force constant for the improper torsional energy, which was used
for Kω in the paper of Chen et al (2010), are also listed in the table.

Table 2: The flexural rigidities of graphene given by different values of Kω

force constant Kω (kcal/mol)
flexural rigidity D (eV)

Zigzag Armchair
6 [Rappe et al (1992)] 0.398 0.414
Kω = 1

6 Kθ 1.393 1.449
1
3 1.1[Chen et al (2010)] 0.0243 0.0253

The measured values of flexural rigidity of monolayer graphene are scattered widely
because of the uncertainty of loading and boundary conditions applied on the nanoscale
specimen of graphene. As a result, there is no agreement reached for the accurate
value of the equivalent flexural rigidity of monolayer graphene up to now. The flex-
ural rigidities of CNTs of different diameters predicted by various analysis models,
including ab initio computations and molecular dynamics simulations, are ranged
from 0.69 eV to 3.28 eV [Wang and Zhang (2008)]. For example, the flexural
rigidity of a carbon nanotube of armchair chirality (7, 7) given by Yakobson et al
(1996) is DCNT = 0.85eV. The flexural rigidity of a monolayer graphene sheet
is lower than that of the corresponding carbon nanotube. Therefore, the results
in Table 2 show that the flexural rigidities of monolayer graphene predicted by
the present MSM model based on the force constant Kω for sp2 carbons given by
Rappe et al (1992) are in the correct range of the flexural rigidities of monolayer
graphene. However, since the proper value of force constant Kω for the inversion
energy of graphene is still also an open question, the accuracy of the flexural rigidi-
ties of graphene shown in Table 2 can not be evaluated exactly. Nevertheless, the
present MSM model is capable of predicting accurate flexural rigidities of mono-
layer graphene if the accurate force constant Kω is provided.

The predicted flexural rigidities in Table 2 also indicate that monolayer graphene
should not be treated as an isotropic material in the flexural analysis since the flexu-
ral rigidities are also chirality dependent as in the case of in-plane elastic constants.
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4.5 Flexural vibrations of monolayer graphene

If let {q} and {q̈} be, respectively, the global nodal displacement vector and the
global nodal acceleration vector in the computational model of a graphene lattice,
the equation of motion of an undamped monolayer graphene sheet takes the fol-
lowing form

[M] { q̈}+[K] {q}= {0} (21)

where [M] is the global mass matrix of the graphene lattice and [K] is its global
stiffness matrix. [K] can be evaluated by the new MSM model presented in the
previous section, and [M] is a lumped mass matrix with a mass of carbon atom
mc = 1.993×10−26kg assigned only at the diagonal elements of [M] corresponding
to the translational degrees of freedom of the carbon nuclei in the graphene lattice.
The eigenvalues of the equation of motion in Eq. (19) can be solved easily by any
finite element code.

The frequencies of a monolayer graphene sheet depend on its geometry and bound-
ary conditions. The natural flexural frequencies of the monolayer graphene sheets
with the clamped-free and clamped-clamped boundary conditions are considered
here. All the predicted frequencies are based on the force constant Kω for sp2

carbons given by Rappe et al (1992).

The fundamental flexural frequencies of a clamped–free monolayer of zigzag graphene
as a function of aspect ratio L/W of length to width given by the present MSM
model are plotted in Fig. 8. In order to reduce the influence of the atoms along the
boundary of the graphene on the vibrational behavior, the width of the monolayer
graphene is taken as W=19.553 nm. The fundamental flexural frequencies of the
monolayer graphene given by the present MSM model but with the equivalent ro-
tational springs of circular flexible beams, i.e. Kω = Kθ , are also displayed in the
figure together with the frequencies evaluated from the original MSM model where
circular beams are assumed for the C-C bonds and all beams are rigidly connected
to the joints. The fundamental flexural frequencies of a clamped–clamped mono-
layer of zigzag graphene as a function of aspect ratio L/W given, respectively, by
the present MSM model with two different force constants for Kω and by the orig-
inal MSM model are plotted in Fig. 9. It can be seen from Figs. 8 and 9 that the
frequencies predicted by the original MSM model where a larger force constant for
Kω = Kθ is used are higher than those predicted by the present new MSM model.
When the same force constant Kω = Kθ is used for the inversion energy as in the
case of the original MSM model, the present flexibly connected 2-D frame yields
a little bit higher frequencies than the original MSM model. This is because the
beams representing the C-C bonds of graphene in the flexibly connected 2-D frame
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always keep straight and the out-of-plane bending is only localized at the areas
near the nuclei of the graphene lattice, therefore the equivalent out-of-plane flexu-
ral rigidity of the 2-D frame composed of the bending free load carrying bars and
flexible connections is stiffer than that of the 2-D frame with flexible beams and
rigid connections.

 

Figure 8: Fundamental flexural frequencies of lamped-free graphene as a function
of aspect ratio W/L (zigzag, W=19.553 nm)

There is very limited information on the frequency studies of graphene in the lit-
erature. The measured fundamental frequency of a suspended monolayer graphene
sheet of W=1.93 µm and L=1.1 µm is 5.4 MHz [Bunch et al (2007)]. The fre-
quency of the monolayer graphene sheet with size of 1.93 µm × 1.1 µm is too
large to be solved by the MSM model in which each C-C bond is modeled as a
load carrying structural member. Based on the MSM model of Li and Chou (2003),
Hashemnia et al (2009) computed the fundamental flexural frequencies of mono-
layer graphene sheets, and the resulting frequencies of graphene are in the range
of THz. The values of the frequencies given by Hashemnia et al (2009) seems too
high for a monolayer graphene sheet since these fundamental flexural frequencies
can match the fundamental flexural frequencies of CNTs with the same length re-
ported by other researchers [e.g. Gibson et al (2007); Georgantzinos et al (2009)].

The higher vibrational modes are also important in many applications of graphene
based devices and materials. The frequencies of the first 10 vibrational modes of a
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Figure 9: Fundamental flexural frequencies of clamped-clamped graphene as a
function of aspect ratio W/L (zigzag, W=19.553 nm)

clamped-free monolayer of armchair graphene predicted by the present new MSM
model are plotted in Fig. 10. The dimension of the monolayer graphene is W=4.97
nm, L=19.553 nm. The first 10 frequencies computed from the original MSM
model are also given in the figure for comparison. The frequencies of the first 10
vibrational modes of a clamped-clamped armchair monolayer graphene obtained
from the present new MSM model and the original MSM model are displayed in
Fig. 11.

For both types of boundary conditions considered here, the frequencies of the first
ten modes increase with the increase of the vibrational modes as expected. How-
ever, the frequency increase rate of the higher modes given by the present flexibly
connected frame model is lower than that given by the rigidly connected frame be-
cause of the difference on the deformation pattern predicted by these different two
MSM models.

5 Conclusions

Based on molecular mechanics and the concept of flexible connection, this paper
presents a 2-D frame model composed of equivalent anisotropic beams and flexible
connections, which is named as the new MSM model, for the static and dynamic
flexural analysis of monolayer graphene. The equivalent beam representing the
C-C bond in the new MSM model has two salient features compared with other
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Figure 10: The frequencies of the first 10 modes of clamped-free armchair graphene
(W=4.97 nm, L=19.553 nm)

 

Figure 11: The frequencies of the first 10 modes of clamped-clamped armchair
graphene (W=4.97 nm, L=19.553 nm)

MSM models presented for the analysis of carbon nanotubes: the first one is that
the bond-angle variations between the C-C bonds are taken into account by the
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use of flexible connections; and the second one is that the force constant for the
inversion energy that characterize the mechanical property of the π-bond in the
graphene lattice is distinguished from the force constant associated with the bond
angle variations controlled by the σ -bond in the graphene lattice. The mechanical
properties of the equivalent anisotropic beam used for the C-C bond in the graphene
lattice are evaluated from the force constants of the graphene given by molecular
mechanics. The proposed new MSM model with short flexible beams can be easily
implemented into any finite element code.

The in-plane Young’s moduli and Poisson ratios as well the static flexural behav-
ior and flexural frequencies of monolayer graphene are analyzed using the new
MSM model coupled with ANSYS. The present MSM model gives the improved
predictions of the in-plane Young’s moduli, Poisson ratios as well as the equiva-
lent flexural rigidities of monolayer graphene compared with other MSM models.
Therefore, the 2-D flexibly connected frame model proposed in this paper is an ac-
curate model to simulate the mechanical properties of graphene when the accurate
force constants characterizing the atomic interactions of sp2 carbon are provided.
The following conclusions can be drawn from the present study.

1. The proper modeling of bond angle variation in the deformation of graphene is
very important in the mechanical behavior simulations of graphene lattice, and the
model of flexible connections is an efficient and accurate approach to characterize
the bond angle variations of graphene lattice. For example, the present new MSM
model in which a monolayer graphene is modeled as flexibly connected planar
lattice predicts both accurate in-plane Young’s moduli and good Poisson ratios for
graphene, but the original MSM model in which a monolayer graphene is modeled
as rigidly connected planar lattice yields much smaller Poisson ratios although it is
able to predict quite good in-plane Young’s moduli.

2. The force constant Kω for the inversion energy that is used to characterize the
mechanical property of the π-bond of graphene is the most important factor for the
correct evaluation of the equivalent flexural rigidity of graphene since the flexural
rigidity of a monolayer graphene sheet is contributed primarily from the π–bonds
of carbon atoms. To date, there is limited study on the force constant Kω of sp2

carbons. Therefore, the investigation on the proper value of Kω for graphene is
very desirable.

3. Both the in-plane elastic constants and flexural rigidities of monolayer graphene
predicted by the present MSM models suggest that a monolayer graphene sheet is
a kind of orthotropic material as its mechanical properties along the two principal
directions of graphene are different.

Acknowledgement: The financial support provided by the grants of NSFC-10872143



90 Copyright © 2011 Tech Science Press CMES, vol.71, no.1, pp.67-92, 2011

is thankfully acknowledged.

References

Bunch, J. S.; van der Zande, A. M.; Verbridge, S. S., et al (2007): Electrome-
chanical resonators from graphene sheets. Science, vol. 315, pp. 490-493.

Chang, T.; Gao, H. (2003): Size-dependent elastic properties of a single-walled
carbon nanotube via a molecular mechanics model. J. Mech. Phys. Solids, vol. 51,
pp. 1059-1074.

Chen, W-H; Cheng, H-C; Liu, Y-L (2010): Radial mechanical properties of
single-walled carbon nanotubes using modi?ed molecular structure mechanics. Com-
put. Mater. Sci., vol. 47, pp. 985-993.

Cornell, W. D.; Cieplak, P.; Bayly, C. I. et al (1995): A second generation force
field for the simulation of proteins, nucleic acids, and organic molecules. J. Am.
Chem. Soc., vol. 117, pp. 5179-5197.

Geim, A. K. (2009): Graphene: status and prospects. Science, vol. 324, pp. 1530-
1534.

Georgantzinos, S. K.; Giannopoulos, G. I.; Anifantis, N, K. (2009): An efficient
numerical model for vibration analysis of single-walled carbon nanotubes. Comput.
Mech., vol. 43, pp. 731-741.

Gibson, R. F.; Ayorinde, E. O.; Wen, Y-F. (2007): Vibrations of carbon nanotubes
and their composites: A review. Composites Sci. & Tech., vol. 67, pp. 1-28.

Hashemnia, K.; Farid, M.; Vatankhah, R. (2009): Vibrational analysis of car-
bon nanotubes and graphene sheets using molecular structural mechanics approach.
Comput. Mater. Sci., vol. 47, pp. 79-85.

Horing, N. J. M. (2010): Aspects of the theory of graphene. Phil. Trans. R. Soc.
A., vol. 368, pp. 5525-5556.

Huang, Y.; Wu, J.; Hwang, K. C. (2006): Thickness of graphene and single-wall
carbon nanotubes. Physical Review B, vol. 74, 245413.

Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I (2001): C2F, BN, and C nanoshell
elasticity from ab initio computations. Physical Review B, vol. 64, 235406.

Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. (2008): Measurement of the elastic
properties and intrinsic strength of monolayer graphene. Science, vol. 321, pp.
385-388.

Li, C. Y.; Chou, T. W. (2003): A structural mechanics approach for the analysis
of carbon nanotubes. Int. J. Solids Struct., vol. 40, pp. 2487-2499.

Li, D.; Kaner, R. B. (2008): Graphene-based materials. Science, vol. 320, pp.



A New Molecular Structural Mechanics Model 91

1170-1171.

Li, H.; Guo, W. (2006): Finite element model with equivalent beam elements
of single walled carbon nanotubes. Chinese J. Theor. Appl. Mech., vol. 38, pp.
488-495. (in Chinese)

Lu, Q.; Arroyo, M.; Huang, R. (2009): Elastic bending modulus of monolayer
graphene. J. Physics D: Appl. Phys., vol. 42, 102002.

Novoselov, K. S.; Geim, A. K.; Morozov, S. V. et al (2004): Electric field effect
in atomically thin carbon films. Science, vol. 306, pp. 666-669.

Odegard, G. M.; Gates, T. S.; Nicholson, L. M.; Wise, K. E. (2002): Equivalent-
continuum modeling of nano-structured materials. Composites Sci. & Tech., vol.
62, pp. 1869-1880.

Rappe, A. K.; Casewit, C. J.; Colwell, K. S. et al (1992): UFF, a full periodic
table force field for molecular mechanics and molecular dynamics simulations. J.
Am. Chem. Soc., vol. 114, pp. 10024-10039.

Ru, C. Q. (2000): Effective bending stiffness of carbon nanotubes. Physical Re-
view B, vol. 62, pp. 9973-9976.

Sakhaee-Pour, A. (2009): Elastic properties of single-layered graphene sheet.
Solid State Commun., vol. 149, pp. 91-95.

Shi, G.; Atluri, S. N. (1987): Plastic-hinge analysis of flexible-jointed frames us-
ing explicitly derived tangent stiffness matrices. Proc.6th OMAE, Houston, Texas,
pp. 393-401.

Shi, G.; Atluri, S. N. (1988): Elasto-plastic large deformation analysis of space
frames: A plastic-hinge and stress-based explicit derivation of tangent stiffness.
Int. J. Num. Meth. Eng., vol. 26, pp. 589-615.

Shi, G.; Atluri, S. N. (1989): Static and dynamic analysis of space frames with
non-linear flexible connections. Int. J. Num. Meth. Eng., vol. 28, pp. 2635-2650.

Theodosiou, T. C.; Saravanos, D. A. (2007): Molecular mechanics based finite el-
ement for carbon nanotube modeling. CMES: Computer Modeling in Engineering
& Sciences, vol. 19, pp. 121-134.

Wang, C, Y.; Zhang, L. C. (2008): A critical assessment of the elastic properties
and effective wall thickness of single-walled carbon nanotubes. Nanotechnology,
vol. 19, pp. 1-5.

Xiao, S.; Hou, W. (2006): Studies of size effects on carbon nanotubes’ mechanical
properties by using different potential functions. Fullerenes Nanotubes & Carbon
Nanostruct., vol. 14, pp. 9-16.

Yakobson, B. I.; Brabec, C. J.; Bernholc, J. (1996): Nanomechanics of carbon



92 Copyright © 2011 Tech Science Press CMES, vol.71, no.1, pp.67-92, 2011

nanotubes: instabilities beyond linear response. Physics Review Letters, vol. 76,
pp. 2511-2514.

Zhao, P.; Shi, G. (2011): Study of Poisson ratios of graphene and single-walled
carbon nanotubes based on an improved molecular structural mechanics model.
ICCES’11-Nanjing (to appear).


