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A New Insight into the Differential Quadrature Method in
Solving 2-D Elliptic PDEs
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Abstract: When the local differential quadrature (LDQ) has been successfully
applied to solve two-dimensional problems, the global method of DQ still has a
problem by requiring to solve the inversions of ill-posed matrices. Previously,
when one uses (n− 1)th order polynomial test functions to determine the weight-
ing coefficients with n grid points, the resultant n×n Vandermonde matrix is highly
ill-conditioned and its inversion is hard to solve. Now we use (m−1)th order poly-
nomial test functions by n grid points that the size of Vandermonde matrix is m×n,
of which m is much less than n. We find that the (m− 1)th order polynomial test
functions are accurate enough to express the solutions, and the novel method sig-
nificantly improves the ill-condition of algebraic equations. Such a new DQ as
being combined with FTIM (Fictitious Time Integration Method) can solve 2-D
elliptic type PDEs successfully. There are some examples tested in this paper and
the numerical errors are found to be very small.

Keywords: Differential quadrature (DQ), Vandermonde matrix, Fictitious time
integration method (FTIM), Dirichlet boundary conditions, Elliptic Partial differ-
ential equations

1 Introduction

Generalized differential quadrature (GDQ) was invented by Bellman and Casti
(1971), and it has been an useful numerical technique to treat the differential terms
appeared in differential equation. It follows the concept of classical integral quadra-
ture and the idea is to use the weighted sum of all function values at all selected
grid points to express the derivatives at a point we interest. It is also called a global
method as shown by Shu (2000). As being compared with local method of nu-
merical techniques, like as finite element method and lower-order finite difference
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method, DQ has high accuracy by only needing a small number of grid points dis-
tributed inside the problem domain.

The key procedure in DQ is to properly determine the weighting coefficients. There
are two ways to carry this out. The first way is the polynomial test functions, which
were originally introduced by Bellman, Kashef and Casti (1972). This system has
a unique solution because its coefficent matrix is of Vandermonde form, and the
determinant of Vandermonde matrix is a non-zero value. Unfortunately, when the
number of discrete grid points is large, the matrix is highly ill-conditioned and its
inverse is difficult to find. The second method was proposed by Quan and Chang
(1989a, 1989b) that using the Lagrange interpolation to express the explicit formu-
las for the weighting coefficients. But this method was also not useful when the
number of grid points is large. Because of the limited applications of DQ, the lo-
calized DQ (LDQ) was proposed by Zong and Lam (2002). It is used by applying
the DQ approximation to a small number of grid points inside a neighborhood of
the point we interest rather than to all the grid points in the whole domain. The
derivative at each selected point is the weighted sum of the function values of some
points inside each neighborhood instead of all of points.

In this paper, we propose a new insight into the differential quadrature. For n grid
points, we use only (m−1)th order polynomial test functions instead of (n−1)th
order polynomial test functions, which were originally introduced by Bellman,
Kashef and Casti (1972), of which m is much less than n. We use the improved
polynomial test functions and obtain the weighting coefficients by using the con-
jugate gradient method (CGM) [Liu, Hong and Atluri (2010)] to solve the under-
determinate linear algerbraic equations. We find that the (m− 1)th order poly-
nomial test functions are accurate enough to express the solutions and the novel
method significantly improves the ill-condition of algebraic equations.

Finally the new DQ is combined with the Fictitious Time Integration Method (FTIM)
proposed by Liu and Atluri (2008) to solving some problems. Five examples are
given to show its improved efficacy in one-dimensional problems, Cauchy problem
and elliptic type partial differential equations (PDEs). The numerical errors are
found to be very small as compared to the exact solutions.
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2 A new insight in global DQ

2.1 An improved polynomial test functions in DQ

According to the concept of DQ, the first order derivative of a differentiable func-
tion f (x) with respect to x at a point xi, is approximately expressed as

f ′(xi) =
n

∑
j=1

ai j f (x j), (1)

where ai j is the weighting coefficient contributed from the j-th grid point to the first
order derivative at the i-th grid point. Similarly, in DQ the second order derivative
at the i-th grid point is given by

f ′′(xi) =
n

∑
j=1

bi j f (x j), (2)

where bi j = ∑
n
k=1 aikak j is the weighting coefficient of the second order derivative.

In order to determine the weighting coefficients, the test functions were proposed
by Bellman, Kashef and Casti (1972). They used the polynomials as test functions
with orders from zero to n−1 when the number of grid points is n, that is,

g(xi) = xk−1
i , i = 1, . . . ,n, k = 1, . . . ,n. (3)

Then inserting the test functions g(x) = xk−1 for f (x) into Eq. (1) leads to a set of
linear algebraic equations:



1 1 . . . 1 1
x1 x2 . . . xn−1 xn

x2
1 x2

2 . . . x2
n−1 x2

n

...
... . . .

...
...

xn−2
1 xn−2

2 . . . xn−2
n−1 xn−2

n

xn−1
1 xn−1

2 . . . xn−1
n−1 xn−1

n





ai1
ai2

...

aik

...

ain


=



0
1
...

kxk−1
i

...

(n−1)xn−2
i


. (4)

We can obtain the weighting coefficients ai j from solving the above equations, but
this linear system has the Vandermonde form. The ill-posedness of Vandermonde
system is higher when the number of grid points is larger. Usually, the solutions
were not accurate when the number of grid points was larger than 13. In order to
overcome the ill-posedness, a local DQ was thus proposed. However, local DQ was
only appropriate in small number of grid points.
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Because of the limited applications in DQ, we propose a new insight into the dif-
ferential quadrature. As being a difference from the original (n−1)th order poly-
nomial test functions, we use (m− 1)th order polynomial test functions by n grid
points, of which m is less than n. Then the improved test functions can be expressed
as

g(xi) = xk−1
i , i = 1, . . . ,n, k = 1, . . . ,m. (5)

Correspondingly, we can obtain an under-determinate linear algebraic equations
system:
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For solving the under-determinate linear algebraic equations, we use the least-
square method and conjugate gradient method (CGM) [Liu, Hong and Alturi (2010)]
to obtain the weighting coefficients ai j, where the least-square method is

min‖Ax−b‖⇒ ATAx = ATb. (7)

The flow chart of CGM is given in Fig. 1 for the linear algebraic equations Ax = b,
where A is a positive matrix, r is the vectorial residual error, and α , η and p are
variables. The convergence criterion is fixed to be ε = 10−12.

2.2 Determination of the order of the improved polynomial test functions

In order to determine a suitable order of the improved polynomial test functions, we
use three common functions ex, sinx and cosx to decide m, which is the order of the
improved test functions. In the linear ODEs and PDEs, the solutions sometimes can
be expressed by a combination of these three functions. Then we compare the exact
solutions of their first order derivatives with the approximate solutions obtained
from differential quadrature with the improved test functions from m = 2 to m = n.
The exact solutions f ′e(x) and the approximate solutions f ′a(x) are expressed below
only for a demonstrative case of f (x) = sinx,

f ′e(xi) = cosxi, i = 1, . . . ,n,

f ′a(xi) = ai1 sinx1 + . . .+ain sinxn, i = 1, . . . ,n. (8)
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Figure 1: The flow chart of CGM. 
Figure 1: The flow chart of CGM.

We define the maximum error via

εc =
n

max
i=1

εi =
n

max
i=1
| f ′a(xi)− f ′e(xi)|. (9)

First, we discretize the domain of [a,b] by n grid points, and each grid point is read
as

xi =
i−1
n−1

(b−a)+a, a≤ xi ≤ b. (10)

Here, we fix a = 0 and b = 1. First, we set n = 30 and obtain the weighting coeffi-
cients by CGM. The errors εc from m = 2 to m = n are, respectively, shown in Fig. 2
for the above three selected functions. The smallest errors of these three functions
are 1.39× 10−13, 4.127× 10−14 and 7.25× 10−14 when m = 12. Obviously, the
higher order test functions do not have higher accuracy. So we can decide m = 12
when we set 30 grid points in the range of the domain 0≤ x≤ 1. The highest order
of the improved polynomial test functions is 11.

Then we increase the number of grid points to n = 40 to determine m, and we also
fix the domain to be 0 ≤ x ≤ 1. The errors εc from m = 2 to m = n are shown in
Fig. 3. The smallest errors of these three functions by 40 grid points are 1.992×
10−10, 3.555×10−10 and 8.465×10−10 when m = 10. So we decide to use m = 10
by 40 grid points. The highest order of the improved polynomial test functions is
9. Lastly, we change the number of grid points to n = 50 to determine m. The
errors εc from m = 2 to m = 50 are, respectively, shown in Fig. 4 for the above
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Figure 2: The errors of three functions from 2=m  to 30=m  (when 30=n ) in 10 ≤≤ x . Figure 2: The errors of three functions from m = 2 to m = 30 (when n = 30) in
0≤ x≤ 1.

 

Figure 3: The errors of three functions from 2=m  to 40=m  (when 40=n ) in 10 ≤≤ x . Figure 3: The errors of three functions from m = 2 to m = 40 (when n = 40) in
0≤ x≤ 1.

three selected functions. The smallest errors of these three functions by 50 grid
points are 2.086× 10−10, 3.968× 10−10 and 9.294× 10−10 when m = 10. So we
determine m = 10 when 50 grid points are used. The highest order of the improved
polynomial test functions is 9. The results indicate that the order of the improved
polynomial test functions is influenced by the number of grid points. More grid
points may lose the accuracy, so n = 30 and m = 12 are the best choice.
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Figure 4: The errors of three functions from 2=m  to 50=m  (when 50=n ) in 10 ≤≤ x . Figure 4: The errors of three functions from m = 2 to m = 50 (when n = 50) in
0≤ x≤ 1.

3 Fictitious time integration method

The Fictitious Time Integration Method (FTIM) was proposed by Liu and Atluri
(2008). Its central idea is adding a fictitious time and transforming the linear or
non-linear algebraic equations (NAEs) into a system of nonautonomous first order
ODEs.

We consider a linear or nonlinear algebraic equations system:

Fi(x1, . . . ,xn) = 0, i = 1, . . . ,n. (11)

First, we introduce the following transformation:

yi(t) = (1+ t)xi. (12)

Here, t is a variable which is independent of xi; hence,

ẏi = dyi/dt = xi, i = 1, . . . ,n. (13)

If ν 6= 0, Eq. (11) is equivalent to

0 =−νFi(x1, . . . ,xn), (14)

where ν is a nonzero constant.

Adding Eq. (13) and Eq. (14) we can obtain

ẏi = xi−νFi(x1, . . . ,xn), i = 1, . . . ,n. (15)
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By using Eq. (12) we can derive

ẏi =
yi

1+ t
−νFi

(
y1

1+ t
, . . . ,

yn

1+ t

)
, i = 1, . . . ,n. (16)

Multiplying Eq. (16) by an integrating factor of 1/(1+ t) we can obtain

ẏi

1+ t
=

yi

(1+ t)2 −
ν

1+ t
Fi

(
y1

1+ t
, . . . ,

yn

1+ t

)
, i = 1, . . . ,n. (17)

Then, we have

d
dt

(
yi

1+ t

)
=− ν

1+ t
Fi

(
y1

1+ t
, . . . ,

yn

1+ t

)
, i = 1, . . . ,n. (18)

By using yi/(1+ t) = xi again, we can obtain the first order derivative of xi:

ẋi =− ν

1+ t
Fi(x1, . . . ,xn), i = 1, . . . ,n. (19)

We can get the solutions by using the fictitious time integration method when the
following iterations reach a convergence:

xk+1
i = xk

i −
hν

1+ tk
Fi(xk

1, . . . ,x
k
n), i = 1, . . . ,n, (20)

where h is the time stepsize, the subscript i denotes the i-th variable, and the super-
script k denotes the k-th time step.

Compared with Newton method, the FTIM is not influenced obviously by the ini-
tial values. It also does not need to calculate the Jacobian matrix and its inverse.
Because of the advantages of FTIM, we can solve the algebraic equations easily
and do not spend much time on calculations.

4 Examples

Here, we combine the new DQ with the FTIM in some examples and compare the
numerical solutions with exact solutions. These examples are all of the Dirichlet
boundary problems, including linear and non-linear 1D problems, Cauchy problem
and non-linear elliptic type PDEs. First we use the conjugate gradient method to
calculate the weighting coefficients by the concept of the new DQ, and the conver-
gence criterion used in CGM is ε = 10−12. Then we solve the resultant algebraic
equations by FTIM. In these problems, we also use a scaling factor R which was
proposed by Liu and Atluri (2009), and it can also improve the ill-conditioned al-
gebraic problems effectively. The results of the new DQ and the scaling factor in
DQ are enclosed for comparison.
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4.1 Example 1

In this example we apply the new DQ and FTIM to solve the boundary value prob-
lem of a linear second order differential equation:

2x2y′′(x)−7xy′(x)+10y(x) = 3x. (21)

Under the boundary conditions y(1) = 1 and y(2) = 4, its exact solution is

y(x) = x+
x2(1−

√
x)

2−2
√

2
. (22)

We choose n = 30 and use the new DQ to decide the order of the test functions,
that is m = 12. The scaling factor R = 1.8 and the parameters in FTIM are h = 0.1,
ν =−0.05 and ε = 10−6. The initial guess is yi = y(1)+(i−1)[y(2)− y(1)]/(n−
1), i = 1, . . . ,n. It converges within 2992 steps when using the new DQ and within
5321 steps when using a scaling factor R = 1.8 in DQ. The convergence of resid-
ual error is shown in Fig. 5. The numerical results are shown in Fig. 6(a) and the
numerical errors are displayed in Fig. 6(b). The maximum errors are 6.084×10−4

in the new DQ and 5.878×10−4 in the scaling DQ with R = 1.8. The errors in the
new DQ are as small as that obtained from the DQ by using a scaling factor.

 

Figure 5: The convergence of residual error via number of steps with the new sight DQ and the scaling DQ with 8.1=R  
for example 1. Figure 5: The convergence of residual error via number of steps with the new sight

DQ and the scaling DQ with R = 1.8 for example 1.
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(a) (b) 

Figure 6: (a) Comparing numerical and exact solutions, and (b) numerical errors in the new DQ and the scaling DQ with 
8.1=R  for example 1. Figure 6: (a) Comparing numerical and exact solutions, and (b) numerical errors in

the new DQ and the scaling DQ with R = 1.8 for example 1.

 

Figure 7: The convergence of residual error via number of steps with the new sight DQ and the scaling DQ with 5.1=R  
when 30=n  for example 2. Figure 7: The convergence of residual error via number of steps with the new sight

DQ and the scaling DQ with R = 1.5 when n = 30 for example 2.

4.2 Example 2

In this example we apply the new DQ and FTIM to solve the boundary value prob-
lem of a non-linear second order differential equation:

u′′(x) =
3
2

u2(x). (23)
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(a) (b) 

Figure 8: (a) Comparing numerical and exact solutions, and (b) numerical errors in the new DQ and the scaling DQ with 
5.1=R  when 30=n  for example 2. Figure 8: (a) Comparing numerical and exact solutions, and (b) numerical errors in

the new DQ and the scaling DQ with R = 1.5 when n = 30 for example 2.

 

Figure 9: The convergence of residual error via number of steps with the new sight DQ and the scaling DQ with 7.1=R  
when 50=n  for example 2. Figure 9: The convergence of residual error via number of steps with the new sight

DQ and the scaling DQ with R = 1.7 when n = 50 for example 2.

Under the boundary conditions u(0) = 4 and u(1) = 1, the exact solution is

u(x) =
4

(1+ x)2 . (24)

First we use n = 30 and m = 12 in the new DQ to obtain the weighting coefficients.
The scaling factor R = 1.5 and the parameters in FTIM are h = 0.01, ν =−0.12 and
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(a) (b) 

Figure 10: (a) Comparing numerical and exact solutions, and (b) numerical errors in the new DQ and the scaling DQ with 
7.1=R  when 50=n  for example 2. Figure 10: (a) Comparing numerical and exact solutions, and (b) numerical errors

in the new DQ and the scaling DQ with R = 1.7 when n = 50 for example 2.

ε = 10−10. The initial guess is ui = u(0)+(i−1)[u(1)−u(0)]/(n−1), i = 1, . . . ,n.
It converges within 112180 steps when using the new DQ and within 154225 steps
when using a scaling factor R = 1.5 in DQ. The convergence of residual error is
shown in Fig. 7. The results and errors are shown in Figs. 8(a) and 8(b). The max-
imum errors are 1.23× 10−4 in the new DQ and 3.084× 10−4 in the scaling DQ
with R = 1.5. Then we increase the number of grid points to n = 50 and m = 10 in
the new DQ and the scaling factor is increased to R = 1.7. The parameters in FTIM
remain the same. It converges within 221661 steps when using the new DQ and
within 290829 steps when using a scaling factor R = 1.7 in DQ. The convergence
of residual error is shown in Fig. 9. The results and errors are shown in Figs. 10(a)
and 10(b). The maximum errors are 9.884×10−4 in the new DQ and 1.566×10−3

in the scaling DQ with R = 1.7. The result obtained by the new DQ is good and the
error is very small.

4.3 Example 3

In this example we apply the new DQ and FTIM to solve the 2-D problem of the
Cauchy problem, whose governing equation is

∂u
∂x

+3
∂u
∂y

= 2u, 0≤ x≤ 1, 0≤ y≤ 1. (25)
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Figure 11: The convergence of residual error via number of steps with the new sight DQ and the scaling DQ with 3.1=R  
for example 3. Figure 11: The convergence of residual error via number of steps with the new

sight DQ and the scaling DQ with R = 1.3 for example 3.

Its boundary condition is u(x,0) = ex, and the exact solution is

u(x,y) = exp
(

x+
y
3

)
. (26)

We select n = 30 and m = 12 in each variable of x and y. The scaling factor R = 1.3
and the parameters in FTIM are h = 0.001, ν = 0.1 and ε = 10−5. The initial
guess is ui j = exi , where i, j = 1, . . . ,n. It converges up to 378502 steps when
using the new DQ and 104866 steps when using the scaling DQ with R = 1.3.
The convergence of residual error is shown in Fig. 11. The results and errors are
respectively shown in Figs. 12(a)-12(c) and Figs. 13(a) -13(d).

The maximum errors are 5.171×10−2 in the new DQ and 4.201×10−2 in the scal-
ing DQ with R = 1.3 when x = 0.586; 7.822× 10−2 in the new DQ and 6.354×
10−2 in the scaling DQ with R = 1.3 when x = 1; 2.972×10−2 in the new DQ and
1.775×10−2 in the scaling DQ with R = 1.3 when y = 0.586; 2.872×10−2 in the
new DQ and 5.66×10−2 in the scaling DQ with R = 1.3 when y = 1. The errors in
the new DQ are the same as those using a scaling factor in DQ.

4.4 Example 4

In this example we also apply the new DQ and FTIM to solve a 2-D non-linear
PDE with the governing equation:

∂u
∂x

+u
∂u
∂y

+u = 0, 0≤ x≤ 1, 0≤ y≤ 1. (27)
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(a) 10=m  in the new DQ. 

 
(b) 3.1=R  in the scaling DQ 

 
(c) Exact solution 

Figure 12: (a) Numerical solution in the new DQ, (b) numerical solution in the 
scaling DQ with 3.1=R  and (c) exact solution for example 3. 

Figure 12: (a) Numerical solution in the new DQ, (b) numerical solution in the
scaling DQ with R = 1.3 and (c) exact solution for example 3.
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(a) 586.0=x  (b) 0.1=x  

(c) 586.0=y  (d) 0.1=y  

Figure 13: Comparing numerical errors in the new DQ and the scaling DQ with 
3.1=R : (a) 586.0=x , (b) 0.1=x , (c) 586.0=y , and (d) 0.1=y  for example 3. 

Figure 13: Comparing numerical errors in the new DQ and the scaling DQ with
R = 1.3: (a) x = 0.586, (b) x = 1, (c) y = 0.586, and (d) y = 1 for example 3.

Its boundary condition is u(0,y) = 1+ y, and its exact solution is

u(x,y) =
(

1+ y
2− e−x

)
e−x. (28)

The number of grid points is n = 40 and m = 10 in the new DQ. The scaling factor
R = 1.8 and the parameters in FTIM are h = 0.01, ν = 1 and ε = 10−5. The initial
guess is ui j = 1 + y j, where i, j = 1, . . . ,n. It converges within 3381 steps when
using the new DQ and within 13418 steps when using the scaling DQ with R = 1.8.
The convergence of residual error is shown in Fig. 14. The numerical results of
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Figure 14: The convergence of residual error via number of steps with the new sight DQ and the scaling DQ with 8.1=R  
for example 4. Figure 14: The convergence of residual error via number of steps with the new

sight DQ and the scaling DQ with R = 1.8 for example 4.

the new DQ, the scaling DQ with R = 1.8 and the exact solution are enclosed in
Figs. 15(a)-15(c). The errors are shown in Figs. 16(a)-16(d). The maximum errors
are 5.759×10−5 in the new DQ and 1.294×10−4 in the scaling DQ with R = 1.8
when x = 0.538; 2.912× 10−5 in the new DQ and 1.514× 10−4 in the scaling
DQ with R = 1.8 when x = 1; 1.144× 10−4 in the new DQ and 3.665× 10−4 in
the scaling DQ with R = 1.8 when y = 0.538; 1.488× 10−4 in the new DQ and
4.764×10−4 in the scaling DQ with R = 1.8 when y = 1.

4.5 Example 5

Liu (2008, 2009) was the first by applying the FTIM and a novel finite difference
technique to treat the elliptic type PDEs in arbitrary plane domain. In this example
we apply the new DQ and FTIM to solve the boundary value problem of a non-
linear ellipitic type PDE [Atluri and Zhu (1998a, 1998b); Zhu, Zhang and Atluri
(1998, 1999)]:

∆u(x,y)+α
2u(x,y)+βu(x,y) = p(x,y), 0≤ x≤ 1, 0≤ y≤ 1, (29)

where we fix α = 1 and β = 0.001. The exact solution is

u(x,y) =
−5
6

(x3 + y3)+3(x2y+ xy2). (30)

The exact p(x,y) can be obtained by inserting the above u(x,y) into Eq. (29).
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(a) 10=m  in the new DQ. 

 

(b) 8.1=R  in the scaling DQ 

 

(c) Exact solution 

Figure 15: (a) Numerical solution in the new DQ, (b) numerical solution in the 
scaling DQ with 8.1=R  and (c) exact solution for example 4. 

Figure 15: (a) Numerical solution in the new DQ, (b) numerical solution in the
scaling DQ with R = 1.8 and (c) exact solution for example 4.
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(a) 538.0=x  (b) 0.1=x  

(c) 538.0=y  (d) 0.1=y  

Figure 16: Comparing numerical errors in the new DQ and the scaling DQ with 
8.1=R : (a) 538.0=x , (b) 0.1=x , (c) 538.0=y , and (d) 0.1=y  for example 4. 

Figure 16: Comparing numerical errors in the new DQ and the scaling DQ with
R = 1.8: (a) x = 0.538, (b) x = 1, (c) y = 0.538, and (d) y = 1 for example 4.

The number of grid points is n = 30 and m = 12 in new DQ. The scaling factor
R = 1.7 and the parameters in FTIM are h = 0.0005, ν =−2 and ε = 10−5. The ini-
tial guess is ui j =−0.1, where i, j = 1, . . . ,n. They converge within the same steps
which are 614 steps when using the new DQ and the scaling DQ with R = 1.7.
The convergence of residual error is shown in Fig. 17. The numerical results of
the new DQ, the scaling DQ with R = 1.7 and the exact solution are enclosed in
Figs. 18(a)-18(c). The errors are shown in Figs. 19(a)-19(d). The maximum errors
are 4.555×10−5 in the new DQ and 4.556×10−5 in the scaling DQ with R = 1.7
when x = 0.586; 3.250×10−5 in the new DQ and 3.251×10−5 in the scaling DQ
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Figure 17: The convergence of residual error via number of steps with the new sight DQ and the scaling DQ with 7.1=R  
for example 5. Figure 17: The convergence of residual error via number of steps with the new

sight DQ and the scaling DQ with R = 1.7 for example 5.

with R = 1.7 when x = 0.759; 4.555× 10−5 in the new DQ and 4.556× 10−5 in
the scaling DQ with R = 1.7 when y = 0.586; 3.250× 10−5 in the new DQ and
3.251×10−5 in the scaling DQ with R = 1.7 when y = 0.759. We can observe that
the results in the new DQ and using the scaling factor in DQ are the same.

5 Conclusions

We have used (m−1)th order polynomial test functions by n grid points in a global
differential quadrature formulation, of which the size of Vandermonde matrix is
m×n, and m is much less than n. We find that the (m−1)th order polynomial test
functions are accurate enough to express the solutions, and the novel method sig-
nificantly improves the ill-condition of algebraic equations. The size of the under-
determinate Vandermonde matrix is influenced by the number of grid points. Five
examples were applied by using the new DQ and FTIM to calculate the solutions.
Comparing with exact solutions, the numerical errors of the new DQ are very small,
and the results are sometimes more accurate than those obtained from an improved
DQ which uses the scaling factor. Consequently, the new DQ could be successfully
applied in solving 2-D problems, especially in the elliptic type PDEs, for its easy
numerical-implementation and time saving.
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(a) 12=m  in the new DQ. 

 

(b) 7.1=R  in the scaling DQ 

 

(c) Exact solution 

Figure 18: (a) Numerical solution in the new DQ, (b) numerical solution in the 
scaling DQ with 7.1=R  and (c) exact solution for example 5. 

Figure 18: (a) Numerical solution in the new DQ, (b) numerical solution in the
scaling DQ with R = 1.7 and (c) exact solution for example 5.
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(a) 586.0=x  (b) 759.0=x  

(c) 586.0=y  (d) 759.0=y  

Figure 19: Comparing numerical errors in the new DQ and the scaling DQ 
with 7.1=R : (a) 586.0=x , (b) 759.0=x , (c) 586.0=y , and (d) 759.0=y  for 
example 5. 

 
 

Figure 19: Comparing numerical errors in the new DQ and the scaling DQ with
R = 1.7: (a) x = 0.586, (b) x = 0.759, (c) y = 0.586, and (d) y = 0.759 for example
5.
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