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Abstract: In this paper we present parallel explicit approximate inverse matrix
techniques for solving sparse linear systems on shared memory systems, which are
derived using the finite element method for biharmonic equations in three space
variables. Our approach for solving such equations is by considering the bihar-
monic equation as a “coupled equation approach” (pair of Poisson equation), using
a FE approximation scheme, yielding an “inner-outer” iteration method. Addi-
tionally, parallel approximate inverse matrix algorithms are introduced for the ef-
ficient solution of sparse linear systems, based on an anti-diagonal computational
approach that eliminates the data dependencies. Parallel explicit preconditioned
conjugate gradient-type schemes in conjunction with parallel approximate inverse
matrix algorithms are presented for the efficient solution of sparse linear systems.
Theoretical estimates on computational complexity of the parallel explicit precon-
ditioned conjugate gradient method along with theoretical speedups and efficiency
are also presented. Applications of the proposed methods on characteristic bihar-
monic problems are discussed and numerical results are given.
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1 Introduction

Let us consider a class of problems defined by the following biharmonic equation
in three space variables:

∇
4u(x,y,z) =

∂ 4u
∂x4 +

∂ 4u
∂y4 +

∂ 4u
∂ z4 +2

∂ 4u
∂x2∂y2 +2

∂ 4u
∂x2∂ z2 +2

∂ 4u
∂y2∂ z2 =

f (x,y,z),(x,y,z) ∈ R, (1)

where R is a three dimensional bounded domain, subject to the boundary condi-
tions:

u(x,y,z) = g1(x,y,z),(x,y,z) ∈ ∂R, (2)

∂u(x,y,z)
∂η

= g2(x,y,z),(x,y,z) ∈ ∂R, (3)

and ∂/∂η is the derivative in the direction of the outward normal to the boundary,
while f and g1, g2 are given functions defined on R and ∂R respectively. Important
applications in engineering and science are described by such equations, which
occur in elasticity and in fluid flow, etc.

By considering the Finite Element (FE) method, in general we have to solve a large
sparse linear system of algebraic equations. Hence sparse matrix computations,
which have inherent parallelism, are therefore of central importance in scientific
and engineering computing and furthermore the need for high performance com-
puting, which is about 70% of supercomputer time, has had some effect on the
design of modern computer systems.

Methods for solving biharmonic equations on a rectangular region have been dis-
cussed by many researchers, [Axelsson (1973); Buzbee and Dorr (1974); Ehrlich
(1973, 1971); Gravvanis and Giannoutakis (2005); Greenspan and Schultz (1972);
Nodera and Takahashi (1981); Smith (1968); Yousif and Evans (1993)], and several
iterative methods have been examined either considering the biharmonic equation
as a “coupled equation approach” (pair of Poisson equation) or by applying iterative
schemes directly to the fourth order equation.

Our approach is to consider the “coupled equation approach” viz ∇4 = ∇2∇2, by
solving

c∇
2u = v and ∇

2v = c f , (4)
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where two discrete Poisson equations, using the FE method, must be solved yield-
ing an “inner-outer” iteration method, [Ehrlich (1971); Smith (1968)].

Let us consider the resulting finite element linear system for the discrete Poisson
equation, i.e.,

Au = s (5)

where A is a non-singular sparse unsymmetric (n×n) matrix of irregular non-zero
structure (where all the off-center band terms are grouped in regular bands of width
`1 and `2 at semi-bandwidths m and p respectively), Eq. 6, while u is a FE solu-
tion at the nodal points and s is a vector, of which the components result from a
combination of source terms and imposed boundary conditions.

� -p
� -m � -`1 � -`2

A≡



b1 c1
a2 b2 c2

a3 sπ,τ

wκ,η

ap−1 bp−1 cp−1
ap bp cp

vλ ,θ

qδ ,ζ cn−1
an bn



(6)
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An important achievement over the last decades is the appearance and use of Pre-
conditioning Methods for the numerical solution of Partial Differential Equations,
[Benzi, Meyer, and Tuma (1996); Evans (1983); Saad (1996)]. The well known
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preconditioning methods based on Incomplete factorization techniques or Approx-
imate Inverses by minimizing the Frobenious norm of the error or the residual for
fixed sparsity pattern, [Benzi, Meyer, and Tuma (1996); Kolotilina and Yeremin
(1993); Saad (1996); Saad and van der Vorst (2000)], are very difficult to imple-
ment them on parallel systems.

The emergence of Krylov subspace methods, based on projection methods, has
placed explicit preconditioned generalized conjugate gradient - type methods in
much competitive demand for solving sparse systems, [Saad and van der Vorst
(2000)]. The suitable preconditioner M required is an optimized form of the ex-
plicit finite element generalized approximate inverse matrix algorithms for com-
puting explicitly various families of approximate inverses of the preconditioned
linear system:

MAu = Ms (7)

The preconditioner M has therefore to satisfy the following conditions: (i) MA
should have a “clustered” spectrum, (ii) M can be efficiently computed in parallel
and (iii) finally “M × vector” should be fast to compute in parallel, [Benzi, Meyer,
and Tuma (1996); Evans (1983); Gravvanis (2002); Grote and Huckle (1997); Huckle
(1999, 1998); Kolotilina and Yeremin (1993); Saad (1996); Saad and van der Vorst
(2000)].

Our main motive is the derivation of suitable inherent parallel preconditioned meth-
ods for which several forms of the approximate inverse are produced, according to
a “fish-bone” computational procedure by using either the “Location-Principle” or
the “Magnitude- Principle”. Such preconditioning iterative methods are particu-
larly suitable on parallel systems. Optimized forms of the approximate inverse
algorithm, in which both sparseness of the original matrix is relatively retained
and storage requirements are substantially reduced, have been efficiently used for
solving sparse systems.

The challenge encountered when computing parallel approximate inverses is its in-
ternal data dependencies, which create both a critical path and an order of compu-
tations, such that any computational strategy adopted should abide by those depen-
dencies. For the parallel construction of the approximate inverse preconditioner, a
transformation of the sequential “fish-bone” pattern to an antidiagonal wave pat-
tern has been carried out in order to overcome the data dependencies. The elements
located on an antidiagonal are independent, as the computation of each element
requires at least its right element and can be computed concurrently by the avail-
able processors. Thus, a consecutive antidiagonal movement through the banded
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matrix would eliminate all dependencies. The computation of each antidiagonal is
assigned to the available processors by continuous blocks of elements. The degree
of parallelism depends on the “retention” parameter (length of the antidiagonal) and
the number of processors. By increasing the value of the “retention” parameter, the
workload per process overcomes the parallelization overheads, and the obtained
speedups tend to the upper theoretical bound. The inherently parallel linear oper-
ations between vectors and matrices involved in the explicit preconditioned conju-
gate gradient schemes exhibit significant amounts of loop-level parallelism that can
lead to high performance gain on shared address space systems, [Giannoutakis and
Gravvanis (2009); Gravvanis and Giannoutakis (2008)].

The cost-effectiveness of explicit preconditioned iterative schemata over parallel di-
rect solution methods, [Gravvanis (2002); Saad and van der Vorst (2000)], for solv-
ing sparse linear systems is now commonly accepted especially for three dimen-
sional problems. It is known that approximate factorization procedures and inverse
matrix algorithms are in general complicated. However as the demand for solv-
ing biharmonic equations grows, the need to use efficient sparse equations solvers
based on approximate factorization procedures and inverse matrix algorithms be-
comes one of great importance, [Gravvanis (2002, 2000, 1999a, 1997); Gravvanis
and Giannoutakis (2005); Gravvanis and Lipitakis (1996a); Lipitakis and Gravvanis
(1995)].

In Section 2, we present a new class of finite element parallel approximate inverse
matrix algorithms, based on an antidiagonal wave pattern in order to overcome the
data dependencies. In Section 3, explicit preconditioned conjugate gradient type
methods along with theoretical results on the computational complexity are pre-
sented. Additionally, parallel explicit preconditioned conjugate gradient methods
with theoretical estimates on the speedup and efficiency are also given. Finally
in Section 4, the performance and applicability of the proposed methods, are illus-
trated by solving characteristic 3D biharmonic problem, is discussed and numerical
results are given.

2 Parallel approximate inverse finite element matrix techniques

In this section we present parallel explicit approximate inverse matrix techniques
for inverting a sparse (n×n) matrix A by computing the elements of a class of in-
verses, [Gravvanis (2009, 2002, 1999a); Gravvanis and Giannoutakis (2008); Grav-
vanis and Lipitakis (1996a,b); Lipitakis and Gravvanis (1995)].

Let us now consider the approximate factorization of the coefficient matrix A,
[Gravvanis (1999b)], i.e.:
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A∼= Lr1,r2Ur1,r2 ,r1 ∈ [1, . . . ,m−1),r2 ∈ [1, . . . , p−1). (8)

where r1, r2 are the so-called “fill-in” parameters, i.e. the number of outermost off-
diagonal entries retained in semi-bandwidth m and p respectively, and Lr1,r2 , Ur1,r2

are sparse strictly lower and upper (with main diagonal unity elements) triangular
matrices respectively (of the same profile as the coefficient matrix A), as shown in
Eq. 9 and Eq. 10.

The elements of the Lr1,r2 , Ur1,r2 factors can be obtained by using the Finite Element
Approximate LU-type factorization procedure (henceforth called FEALUFA-3D
algorithm), [Gravvanis (1999b)]. The memory requirements of the FEALUFA-
3D algorithm are ≈O(2r1 +2r2 +4`1 +4`2 +3)n words, while the computational
work required by the factorization process is O

[
2(r1 + `1−1)2 +2(r2 + `2−1)2

+3]n multiplicative operations), [Gravvanis (1999b)].

Efficient computational implementation issues for the storage techniques of the
coefficient matrix and the decomposition factors and in particular the submatrices
involved have been given in [Gravvanis (1999a)]. Stability analysis of LU-type
factorization has been studied in [Elman (1986)].

Lr1,r2 ≡



ω1
β1 ω2

β2

e1,1 · · · er1,1
... 0

e1,`1

βp−2 ωp−1
βp−1 ωp

f1,1 · · · fr2,1
...

f1,`2

f1,n−p+1 · · · fr2+`2−1,n−p+1 e1,n−m+1 · · · er1+`1−1,n−m+1 βn−1 ωn
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Ur1,r2 ≡



1 g1 h1,1 · · · h1,`1 t1,1 · · · t1,`2

1 g2
...

...
hr1,1 tr2,1 t1,n−p+1

...

tr2+`2−1,n−p+1

1 gp−1
1 gp

h1,n−m+1
...

0 hr1+`1−1,n−m+1

gn−1
1



(10)
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Let Mδ l
r1,r2

= (µi, j), i ∈ [1,n], j ∈ [max(1, i−δ l +1) ,min(n, i+δ l−1)] be the ap-
proximate inverse of the coefficient matrix A. Then, the elements of a class of
banded forms of the approximate inverse, by retaining δ l and δ l− 1 elements in
the lower and upper part of the inverse, can be computed by solving recursively the
systems:

Mδ l
r1,r2

= (Lr1,r2Ur1,r2)
−1 , (11)

or equivalently

Mδ l
r1,r2

Lr1,r2 = (Ur1,r2)
−1 and Ur1,r2Mδ l

r1,r2
= (Lr1,r2)

−1 ,δ l ∈ [1,ρ p], (12)

where ρ = 1,2, . . . , p−1. Then, the elements of the optimized approximate inverse,
by using an optimized storage scheme, [Gravvanis (2000, 1999a, 1997); Gravvanis
and Lipitakis (1996b)], were computed by the so-called Optimized Generalized
Approximate Inverse Finite Element Matrix algorithmic procedure (OGAIFEM-
3D algorithm), [Gravvanis (1997)].

The memory requirements of the OGAIFEM-3D algorithm are n×(2δ l−1) words
and the computational work involved is of ≈ O [n× (2δ l−1)× (2r1 +2r2 +2`1+
2`2 +1)] multiplicative operations, [Gravvanis (1997)]. This form of the opti-
mized approximate inverse is particularly effective for solving “banded” sparse FE
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systems of large order, i.e. δ l < n/2, or “narrow-banded” sparse FE systems of
very large order, i.e. δ l << n/2, [Gravvanis (2002, 1996); Lipitakis and Gravvanis
(1995)].

According to the proposed computational strategy this class of approximate in-
verses can be considered that includes various families of approximate inverses
having in mind the desired requirements of accuracy, storage and computational
work as can be seen by the following diagrammatic scheme, [Gravvanis (1999a,
1997); Lipitakis and Gravvanis (1995)]:

class I class II class III class IV
A−1 ≡M← M̃δ l

r1=m−1,r2=p−1 ← Mδ l
r1=m−1,r2=p−1 ← Mδ l

r1,r2
← Mi (13)

where the entries of M̃δ l
r1=m−1,r2=p−1 have been retained after the computation of

the exact inverse (r1 = m−1,r2 = p−1), while the entries of Mδ l
r1=m−1,r2=p−1 have

been computed and retained during the computational procedure of the (approxi-
mate) inversion. The entries of Mδ l

r1,r2
have been retained after the computation of

the approximate inverse (r1 < m−1,r2 < p−1). The Mi class of inverse retains
only the diagonal elements of the pseudo-inverse, i.e. δ l = 1, that is we invert the
diagonal elements of Lr1,r2 , i.e. a fast inverse algorithm.

Note that the largest in magnitude elements of the approximate inverse matrix are
clustered around the diagonals at distances ρ1m and ρ2 p, (ρ11 = 1,2, . . . ,m−1 and
ρ2 = 1,2, . . . , p− 1), from the main diagonal in a “recurring wave”-like pattern,
[Gravvanis (1999a, 1997); Gravvanis and Lipitakis (1996a,b); Lipitakis and Grav-
vanis (1995)]. Therefore, it is reasonable to assume, the value of the “retention”
parameter δ l can be chosen as multiples of the semi-bandwidths m and p.

It should be also noted that if `1 = `2 = 1, Eq. 6, the algorithm is reduced to one
for solving unsymmetric finite difference linear systems of semi-bandwidth m and
p, which is usually encountered in solving 3D boundary value problems by FD
discretization, [Gravvanis and Lipitakis (1996b)]. If `2 = 0, Eq. 6, the algorithm
is reduced to one for solving unsymmetric finite element linear systems of semi-
bandwidth m, which is usually encountered in solving 2D boundary value problems
by FE discretization, [Gravvanis and Lipitakis (1996a); Lipitakis and Gravvanis
(1995)]. If `1 = 1 and `2 = 0, Eq. 6, the algorithm is reduced to one for solv-
ing unsymmetric finite difference linear systems of semibandwidth m, which is
usually encountered in solving 2D boundary value problems by FD discretization,
[Gravvanis (2002, 2000)]. In general, by setting appropriately the values of the
semibandwidth parameters m and p as well as the values of the width parameters
`1 and `2 of the coefficient matrix A, Eq. 6, then the presented algorithmic approach
can be used for solving linear systems resulting from more general type problems.
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For the parallelization of the OGAIFEM-3D algorithm, an antidiagonal motion
(wave-like pattern), starting from the element µn,n down to µ1,1, has been used,
because of the dependency of the elements of the inverse during its construction,
[Giannoutakis and Gravvanis (2009); Gravvanis and Giannoutakis (2008)]. More
specifically, any element within the banded approximate inverse requires its corre-
sponding right or lower element to be computed first. This sequence of computa-
tions, without any loss of generality and for simplicity reasons, is shown for the
banded approximate inverse in Eq. 14, Eq. 15, (with n = 8, δ l = 4). The values
of the parentheses at the superscript of each element (e.g. µ

(k)
i, j ), indicate that the

element µi, j was computed at the (k)-th sequential step of the algorithm (k-th an-
tidiagonal), while the elements with the same superscript (i.e. (k)) were computed
concurrently.

Mδ l
r1,r2

=
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Banded Approximate Inverse

For the parallel construction of the optimized form of the approximate inverse, as
diagrammatically shown in Eq. 14, Eq. 15, a simple transformation of the indexes
of the elements of the approximate inverse is used, [Gravvanis (2002, 1999b); Grav-
vanis and Lipitakis (1996a)].
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Mδ l
r1,r2

=
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� -δ l
Optimized Approximate Inverse

Let us consider that the command forall denotes the parallel for instruction (forks /
joins threads), for executing parallel loops. Then, the algorithm for the implemen-
tation of the Parallel ANti Diagonal OGAIFEM-3D algorithm (henceforth called
the PANDOGAIFEM- 3D algorithm), on shared memory computer systems, can
be described as follows:

// lower triangle-shaped zone
for k = 1 to δ l

forall ` = 1 to k
call inverse(n− `+1,n− k + `)

m = 2
// middle antidiagonal length zone
for k = (δ l +1) to n

forall ` = m to (k−m+1)
call inverse(n− `+1,n− k + `)

if (k−δ l) mod 2 = 0 then
m = m+1

m = m−1
for k = (n−1) downto (δ l +1)

forall ` = m to (k−m+1)
call inverse(`,k− `+1)

if (k−δ l) mod 2 = 1 then
m = m−1

// upper triangle-shaped zone
for k = δ l downto 1
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forall ` = 1 to k
call inverse(`,k− `+1)

where the function inverse(i, j), computes the element µi, j according to the OGAIFEM-
3D algorithm:

r`1 = r1 + `1, r`2 = r2 + `2, r`11 = r`1−1, r`21 = r`2−1, mr1 = m− r1
pr2 = p− r2, m`1 = m+ `1, p`2 = p+ `2, nmr1 = n−m+ r1, npr2 = n− p+ r2
if i≥ j then

if j > nmr1 then
if i = j then

if j = n then
µ1,1 = 1/ωn,

else
µn−i+1,i− j+1 =

(
1−β jµn− j,δ l−i+ j+1

)
/ω j (16)

else
µn−i+1,i− j+1 =−β jµn−i+1,i− j/ω j (17)

else
if j > npr2 and j ≤ nmr1 then

if i = j then
µn−i+1,i− j+1 =

(
1−β jµn− j,δ l−i+ j+1

−
nmr1− j

∑
k=0

er`11−k, j+k+1−r1 µx,y

)
/ω j (18)

call rs(n,δ l, i, j +mr1+ k,x,y)
else

µn−i+1,i− j+1 =
(
−β jµn−i+1,i− j−

nmr1− j
∑

k=0
er`11−k, j+k+1−r1 µx,y

)
/ω j (19)

call rs(n,δ l, i, j +mr1+ k,x,y)
else

if j ≤ npr2 and j ≥ r`1 then
if i = j then

µn−i+1,i− j+1 =
(

1−β jµn− j,δ l−i+ j+1−
nmr1− j

∑
k=0

er`11−k, j+k+1−r1 µx1,y1

−
npr2− j

∑
k=0

fr`21−k, j+k+1−r2 µx2,y2

)
/ω j (20)

call rs(n,δ l, i, j +mr1+ k,x1,y1) call rs(n,δ l, i, j + pr2+ k,x2,y2)
else

µn−i+1,i− j+1 =
(
−β jµn−i+1,i− j−

nmr1− j
∑

k=0
er`11−k, j+k+1−r1 µx1,y1
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−
npr2− j

∑
k=0

fr`21−k, j+k+1−r2 µx2,y2

)
/ω j (21)

call rs(n,δ l, i, j +mr1+ k,x1,y1) call rs(n,δ l, i, j + pr2+ k,x2,y2)
else

if i = j then
if i = 1 then

µ1,1 =
(

1−β1µn− j,δ l−i+ j+1−
`1

∑
k=1

e1,kµn+2−m−k,δ l+m+k−2

−
`2

∑
k=1

f1,kµn+2−p−k,δ l+p+k−2

)
/ω1 (22)

else

µn−i+1,i− j+1 =

(
1−β jµn− j,δ l−i+ j+1−

`1

∑
k= j+1−r1

e j,kµx1,y1−
j−1
∑

k=1
e j−k,`1+kµx2,y2

−
`2

∑
k= j+1−r2

f j,kµx3,y3−
j−1
∑

k=1
f j−k,`2+kµx4,y4

)
/ω j (23)

call rs(n,δ l, i,m+ k−1,x1,y1) call rs(n,δ l, i,m`1+ k−1,x2,y2)
call rs(n,δ l, i, p+ k−1,x3,y3) call rs(n,δ l, i, p`2+ k−1,x4,y4)

else

µn−i+1,i− j+1 =

(
−β jµn−i+1,i− j−

`1

∑
k= j+1−r1

e j,kµx1,y1−
j−1
∑

k=1
e j−k,`1+kµx2,y2

−
`2

∑
k= j+1−r2

f j,kµx3,y3−
j−1
∑

k=1
f j−k,`2+kµx4,y4

)
/ω j (24)

call rs(n,δ l, i,m+ k−1,x1,y1) call rs(n,δ l, i,m`1+ k−1,x2,y2)
call rs(n,δ l, i, p+ k−1,x3,y3) call rs(n,δ l, i, p`2+ k−1,x4,y4)

if i≤ j then
if j > nmr1 then

µn−i+1,δ l+i− j =−g jµx,y (25)
call rs(n,δ l, j +1, i,x,y)

else
if j > npr2 and j ≤ nmr1 then

µn−i+1,δ l+i− j =−g jµx1,y1−
nmr1− j

∑
k=0

hr`11−k, j+k+1−r1 µx2,y2 (26)

call rs(n,δ l, j +1, i,x1,y1) call rs(n,δ l, j +mr1+ k, i,x2,y2)
else

if j ≤ npr2 and j ≥ r`1 then

µn−i+1,δ l+i− j =−g jµx1,y1−
nmr1− j

∑
k=0

hr`11−k, j+k+1−r1 µx2,y2
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−
npr2− j

∑
k=0

tr`21−k, j+k+1−r2 µx3,y3 (27)

call rs(n,δ l, j +1, i,x1,y1) call rs(n,δ l, j +mr1+ k, i,x2,y2)
call rs(n,δ l, j + pr2+ k, i,x3,y3)

else

µn−i+1,δ l+i− j =−g jµx1,y1−
`1

∑
k= j+1−r1

h j,kµx2,y2−
j−1
∑

k=1
h j−k,`1+kµx3,y3

−
`2

∑
k= j+1−r2

t j,kµx4,y4−
j−1
∑

k=1
t j−k,`2+kµx5,y5 (28)

call rs(n,δ l, j +1, i,x1,y1) call rs(n,δ l,m+ k−1, i,x2,y2)
call rs(n,δ l,m`1+ k−1, i,x3,y3) call rs(n,δ l, p+ k−1, i,x4,y4)
call rs(n,δ l, p`2+ k−1, i,x5,y5)

The procedure rs(n,δ l,s,q,x,y), [Gravvanis (2002, 2000)], can then be described
as follows :

if s≥ q then
x = n+1− s (29)
y = s−q+1 (30)

else
x = n+1−q (31)
y = δ l +q− s (32)

The computational process is logically divided into 2n− 1 sequential steps repre-
senting the 2n− 1 antidiagonals in a matrix of order n, while synchronization be-
tween processes is needed after the computation of each antidiagonal, to ensure that
the elements of the matrix are computed correctly. The workload on each antidiago-
nal varies between 1 and δ l elements for the lower and upper triangle-shaped zones,
while for the middle antidiagonal length zone interchanges between δ l−1 and δ l
elements, see Eq. 14, Eq. 15. Thus, the parallel computational complexity for the

lower or upper triangle-shaped zones is
δ l
∑

i=1

⌈
i

no_procs

⌉
O(2r1 +2r2 +2`1 +2`2 +1)

multiplications, while for the middle zone is (2n−2δ l−1)
⌈

δ l
no_procs

⌉
O(2r1 +2r2

+2`1 +2`2 +1) multiplications, where no_procs denotes the number of proces-
sors. Since the elements of each, which can lead to low efficiencies on some plat-
forms where excessively fine granularity antidiagonal are partitioned between the
processors (no_procs), adding more processors results in finer granularity makes it
harder to amortize the parallelization overheads.
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The theoretical speedup and efficiency of the PAND-OGAIFEM-3D algorithm are:

Sδ l
p =

tserial

tparallel
=

1
1

no_procs + t1
δ lO(2r1+2r2+2`1+2`2+1)

(33)

and

Eδ l
p =

1
1+ t1no_procs

δ lO(2r1+2r2+2`1+2`2+1)
(34)

where t1 is the latency of one fork / join operation and tm denotes the computational
time of one multiplication. It is obvious that for δ l→ ∞ then Sδ l

p → no_procs and
Eδ l

p → 1.

3 Explicit preconditioned conjugate gradient methods

In this section we present a class of explicit preconditioned conjugate gradient-type
schemes based on the derived Optimized Generalized Approximate Inverse Finite
Element Matrix algorithm (OGAIFEM-3D algorithm) of Section 2. The use of
the approximate inverse matrix techniques in the preconditioned conjugate gradi-
ent schemes eliminates the implicitness due to the forward-backward substitutions
required and allows the derivation of parallel explicit preconditioned conjugate gra-
dient schemes, [Giannoutakis and Gravvanis (2009); Gravvanis and Giannoutakis
(2008, 2005)].

The Explicit Preconditioned Generalized Conjugate Gradient Square (EPGCGS)
algorithm can be expressed by the following compact algorithmic scheme:

Let u0 be an arbitrary initial approximation to the solution vector u. Then,

set u0 = 0, and e0 = 0, (35)
solve r0 = Mδ l

r1,r2
(s−Au0), (36)

set σ0 = r0, and p0 = (σ0,r0). (37)

Then, for i = 0,1, . . ., (until convergence) compute the vectors ui+1, ri+1, σi+1 and
the scalar quantities αi, βi+1 as follows:

form qi = Aσi, (38)
calculate αi = pi/

(
σ0,Mδ l

r1,r2
qi
)
, (39)

compute ei+1 = ri +βiei−αiMδ l
r1,r2

qi, (40)
di = ri +βiei + ei+1, (41)



FE Approximate Inverse Preconditioning for solving 3D Biharmonic Problems 319

form ui+1 = ui +αidi, and qi = Adi, (42)
compute ri+1 = ri−αiMδ l

r1,r2
qi, (43)

set pi+1 = (σ0,ri+1) and βi+1 = pi+1/pi, (44)
compute σi+1 = ri+1 +2βi+1ei+1 +β 2

i+1σi. (45)

The computational complexity of the EPGCGS method is ≈ O [(4δ l +4`1 +4`2
+15)n mults +8n adds]ν operations, where ν is the number of iterations required
for convergence to a certain level of accuracy, while `1, `2 are the width parameters
of the coefficient matrix A at semi-bandwidth m and p respectively.

In the following we present the Explicit Preconditioned Generalized BIconjugate
Conjugate Gradient-STAB (EPGBICG-STAB) method, which can be expressed by
the following compact scheme:

Let u0 be an arbitrary initial approximation to the solution vector u. Then,

set u0 = 0 compute r0 = s−Au0, (46)
set r′0 = r0, ρ0 = α = ω0 = 1 and v0 = p0 = 0. (47)

Then, for i = 0,1, . . ., (until convergence) compute the vectors ui, ri and the scalar
quantities α , β , ωi as follows:

calculate ρi =
(
r′0,ri−1

)
, (48)

β = (ρi/ρi−1)
/

(α/ωi−1), (49)
compute pi = ri−1 +β (pi−1−ωi−1vi−1), (50)
form yi = Mδ l

r1,r2
pi, vi = Ayi, (51)

α = ρi
/(

r′0,vi
)
, (52)

compute xi = ri−1−αvi, zi = Mδ l
r1,r2

xi, (53)
ti = Azi, (54)

set ωi =

(
Mδ l

r1,r2
ti,Mδ l

r1,r2
xi

)
(

Mδ l
r1,r2

ti,Mδ l
r1,r2

ti
) , (55)

compute ui = ui−1 +αyi +ωizi and ri = xi−ωiti. (56)

The computational complexity of the EPGBICG-STAB method is ≈O [(6δ l +4`1
+4`2 +14)n mults +6n adds]ν operations, where ν is the number of iterations
required for convergence to a certain level of accuracy.

The effectiveness of the explicit preconditioned conjugate gradient - type methods
using the OGAIFEM-3D algorithm is related to the fact that the approximate in-
verse exhibits a similar “fuzzy” structure as the original coefficient matrix A and is
a close approximant to the coefficient matrix A.
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The basic properties of the preconditioned conjugate gradient method along with
similar convergence analysis have been presented in [Gravvanis (1996); Notay
(1993); van der Sluis and van der Vorst (1986)]. Then, the following Theorem
on the rate of convergence and computational complexity of the EPGCGS method
can be stated as follows:

Theorem 3.1 Let Ωδ l
r1,r2

= Mδ l
r1,r2

A be the preconditioning matrix of the Explicit
Preconditioned Generalized Conjugate Gradient Square (EPGCGS) scheme. Sup-
pose there exist positive numbers ξ1, ξ2, such that [ξ1,ξ2]⊃ [λmin,λmax] , where ξ1

is independent of the mesh size and ξ2 = O
(

n(δ l + `1 + `2)
−1
)

. Then, the number
of iterations of the EPGCGS method required to reduce the L∞ - norm of the error
by a factor ε > 0 is given by

ν = O
(

kn1/2 (δ l + `1 + `2)
−1/2 logε

−1
)

. (57)

Furthermore, the total number of arithmetic operations required for the computa-
tion of the solution uν is given by

O
(

kn3/2 (δ l + `1 + `2)
−1/2 logε

−1
)

. (58)

It should be noted that according to the convergence analysis of the explicit ap-
proximate inverse preconditioning, the rate of convergence is improved when the
value of the “retention” parameter δ l is chosen as multiples of m and p, [Gravvanis
(1996)]. It is evident that when the value of δ l is chosen as multiples of m and
p, then the required overall computational complexity can be prohibitively high.
Thus the determination of the optimum value of the “retention” parameter δ l is
important and the value of δ l = 1 is recommended, which gives the lowest overall
computational complexity and minimum storage requirements. Hence, the class V
of the approximate inverse requires only the diagonal elements of Lr1,r2 , and the
approximate inverse matrix-vector product in the CG-type method is reduced to a
vector-vector product, which is optimal.

Let no_procs denote the number of processors available. Then, the two most com-
putationally dominating operations of the explicit preconditioned conjugate gradi-
ent - type schemes (i.e. multiplication of the optimized approximate inverse with a
vector and inner products), can be computed in parallel by partitioning the approx-
imate inverse matrix and the vectors by a block - row distribution.

The Parallel Explicit Preconditioned Generalized Conjugate Gradient Square (PE
PGCGS) algorithm can be expressed by the following compact scheme:

Let u0 be an arbitrary initial approximation to the solution vector u. Then,
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forall j = 1 to n
(r∗0) j = s j−A(u0) j (59)

forall j = 1 to n

(r0) j =
min(n, j+δ l−1)

∑
k=max(1, j−δ l+1)

µ j,k (r∗0)k (60)

forall j = 1 to n
(σ0) j = (r0) j (61)

forall j = 1 to n (reduction +p0)
p0 = (σ0) j ∗ (r0) j (62)

Then, for i = 0,1, . . ., (until convergence) compute in parallel the vectors ui+1, ri+1,
σi+1 and the scalar quantities αi, βi+1 as follows:

forall j = 1 to n
(qi) j = A(σi) j (63)

forall j = 1 to n

(gi) j =
min(n, j+δ l−1)

∑
k=max(1, j−δ l+1)

µ j,k (qi)k (64)

forall j = 1 to n (reduction+ti)
ti = (σ0) j ∗ (gi) j (65)

αi = pi/ti (66)
forall j = 1 to n

(ei+1) j = (ri) j +βi (ei) j−αi (gi) j (67)
( fi) j = (ri) j +βi (ei) j +(ei+1) j (68)
(ui+1) j = (ui) j +αi ( fi) j (69)

forall j = 1 to n
(qi) j = A( fi) j (70)

forall j = 1 to n

(gi) j =
min(n, j+δ l−1)

∑
k=max(1, j−δ l+1)

µ j,k (qi)k (71)

forall j = 1 to n
(ri+1) j = (ri) j−αi (gi) j (72)

forall j = 1 to n (reduction+pi+1)
pi+1 = (σ0) j ∗ (ri+1) j (73)

βi+1 = pi+1/pi (74)
forall j = 1 to n

(σi+1) j = (ri+1) j +2βi+1 (ei+1) j +β 2
i+1 (σi) j (75)

The computational complexity of the PEPGCGS method is≈O[(4δ l +4`1 +4`2 +
15)local_n multiplications + 8local_n adds]ν operations, where ν denotes the
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number of iterations required for convergence to a predetermined tolerance level
where local_n = n/no_procs denotes the number of rows assigned to each pro-
cessor. The algorithm for the PEPGBICG-STAB method can be implemented in a
similar manner.

It should be noted that the parallelization of the coefficient matrix A×vector oper-
ation has been implemented by taking advantage of the sparsity of the coefficient
matrix A.

In our implementation, the parallel for pragma in OpenMP with static scheduling
has been used in order to generate code that forks/joins threads.

The theoretical speedup and efficiency of the PEPGCGS algorithm are:

Sδ l
p =

1
1

no_procs + 11t1
O(4δ l+4`1+4`2+15)ntm

(76)

and

Eδ l
p =

1

1+ 11t1no_procs
O(4δ l+4`1+4`2+15)ntm

(77)

where t1 is the latency of one fork / join operation and tm denotes the computational
time of one multiplication. It is obvious that for δ l→ ∞ then Sδ l

p → no_procs and
Eδ l

p → 1.

4 Numerical results

In this final section the applicability and effectiveness of the derived parallel finite
element approximate inverse preconditioning is shown.

Let us consider the following biharmonic problem in three dimensions:

∇
4u(x,y,z) =

∂ 4u
∂x4 +

∂ 4u
∂y4 +

∂ 4u
∂ z4 +2

∂ 4u
∂x2∂y2 +2

∂ 4u
∂x2∂ z2 +2

∂ 4u
∂y2∂ z2

= 1,(x,y,z) ∈ R, (78)

where R is a three dimensional domain, subject to the boundary conditions

u(x,y,z) = ∂u(x,y,z)/∂η = 0,(x,y,z) ∈ ∂R (79)

The domain is covered by a non-overlapping triangular network resulting in a
hexagonal mesh. The “fill-in” parameters were set to r1 = r2 = 2 and the width
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parameters were set to `1 = `2 = 3. The iterative process was terminated when
‖ri‖∞

< 10−5.

The numerical results presented in this section were obtained on an SMP machine
consisting of 8 (dual 4 core machine) 2.0 GHz, 64-bit xeons, with 8 GB RAM
running Debian GNU/Linux (University College at Cork). For the parallel imple-
mentation of the algorithms presented, the Intel Fortran Compiler with OpenMP
directives has been utilized with no optimization enabled at the compilation level.
It should be noted that due to administrative policies, we were not able to explore
the full processor resources (i.e. more than 8 threads). In our implementation,
the parallel for pragma has been used. Additionally, static scheduling has been
used (schedule(static)), whereas the use of dynamic scheduling has not produced
improved results.

The convergence behavior of the EPGCGS and EPGBI-CGSTAB method, using
the “coupled equation approach” based on FEALUFA-3D and OPTGAIFEM-3D
algorithms, for several values of the order n and the “retention” parameter δ l is
given in Tab. 1 and Tab. 2 respectively.

Taking into consideration the resources available and the memory requirements of
the proposed method, the maximum order of the linear system was chosen to be
n = 4826809, with semi-bandwidths m = 170 and p = 28562 with the retention
parameter set to δ l = 1 or δ l = 2.

The convergence behavior of the EPGCGS and EPGBI-CGSTAB method for large
order sparse linear systems is given in Tab. 3.

Table 1: The convergence behavior of the EPGCGS method for several values of n,
m, p and δ l.

Retention parameter δ l
n m p 1 2 m 2m 3m 4m p 2p

729 10 82 14 14 12 10 10 10 8 8
2744 15 197 20 18 16 12 12 12 10 10
6859 20 362 18 18 16 12 12 12 10 10

24389 30 842 18 18 16 12 12 12 10 10

The speedups and efficiencies of the PAND-OGAIFEM-3D algorithm for several
values of the “retention” parameter δ l with n = 24389, m = 30, p = 842 are given
in Tab. 4 and Tab. 5 respectively. In Fig. 1 the speedups and processors allo-
cated for several values of the “retention” parameter δ l is presented for the PAND-
OGAIFEM-3D algorithm along with theoretical estimates, with n = 24389, m = 30,
p = 842.
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Table 2: The convergence behavior of the EPGBI-CGSTAB method for several
values of n, m, p and δ l.

Retention parameter δ l
n m p 1 2 m 2m 3m 4m p 2p

729 10 82 9 9 8 7 7 7 6 5
2744 15 197 10 10 9 7 7 7 6 6
6859 20 362 11 11 9 8 8 8 7 6
24389 30 842 11 11 9 8 8 8 7 6

Table 3: The convergence behavior of the EPGCGS and EPGBICG-STAB method
for large linear systems.

EPGCGS EPGBI-CGSTAB
n m p δ l = 1 δ l = 2 δ l = 1 δ l = 2

205379 60 3482 20 20 11 11
493039 80 6242 20 20 11 11
970299 100 9802 20 20 11 11
3307949 150 22202 24 22 11 11
4826809 170 28562 26 22 12 11

Table 4: Speedups and processors allocated of the PAND-OGAIFEM-3D algo-
rithm, for several values of δ l, with n = 24389, m = 30 and p = 842.

Speedups for the PAND-OGAIFEM-3D algorithm
Retention Number of processors
parameter no_procs =2 no_procs =4 no_procs =8

δ l = m 1.600 2.667 3.200
δ l = 2m 1.692 2.750 3.667
δ l = 3m 1.700 3.091 4.250
δ l = 4m 1.846 3.200 4.800
δ l = p 1.879 3.245 5.950
δ l = 2p 1.955 3.406 6.949

The class IV approximate inverse Mi , Eq. 13, retains only its diagonal elements
which are computed based on the inversion of the diagonal elements of the lower
triangular matrix Lr1,r2 . It should be mentioned that the parallel speedup of this
class of approximate inverse was obtained to be equal to the number of processors,
which is the theoretical estimate for speedup, indicating that this class is a fast
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Table 5: Efficiencies and processors allocated of the PAND-OGAIFEM-3D algo-
rithm, for several values of δ l, with n = 24389, m = 30 and p = 842.

Efficiencies for the PAND-OGAIFEM-3D algorithm
Retention Number of processors
parameter no_procs =2 no_procs =4 no_procs =8

δ l = m 0.800 0.667 0.400
δ l = 2m 0.846 0.688 0.458
δ l = 3m 0.850 0.773 0.531
δ l = 4m 0.923 0.800 0.600
δ l = p 0.939 0.811 0.744
δ l = 2p 0.977 0.851 0.869

Figure 1: Speedups and processors allocated of the PAND-OGAIFEM-3D algo-
rithm, for several values of δ l, with n = 24389, m = 30 and p = 842.

inverse matrix algorithm.

Additionally, the speedups and efficiencies of the PEPGCGS method for several
values of the “retention” parameter δ l with n = 24389, m = 30, p = 842 are given
in Tab. 6 and Tab. 7 respectively. In Fig. 2 the speedups and processors allocated for
several values of the “retention” parameter δ l is presented along with theoretical
estimates for the PEPGCGS method, with n = 24389, m = 30, p = 842.
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Figure 2: Speedups and processors allocated of the PEPGCGS method along with
theoretical estimates, for several values of δ l, with n = 24389, m = 30 and p = 842.

Table 6: Speedups and processors allocated of the PEPGCGS method, for several
values of δ l, with n = 24389, m = 30 and p = 842.

Speedups for the PEPGCGS algorithm
Retention Number of processors
parameter no_procs =2 no_procs =4 no_procs =8

δ l=1 1.365 2.146 2.748
δ l=2 1.372 2.215 3.143
δ l=m 1.429 2.500 3.333
δ l=2m 1.722 3.100 5.167
δ l=3m 1.760 3.143 6.286
δ l=4m 1.850 3.364 6.727
δ l=p 1.910 3.859 7.195
δ l=2p 1.963 3.951 7.209

It can be observed, that due to coarse granularity and the reduced overheads of the
parallel construction of the approximate inverse, the parallel efficiency is almost
close to the upper theoretical bound for all values of the “retention” parameter δ l
that are multiples of the semi-bandwidths m and p.
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Table 7: Efficiencies and processors allocated of the PEPGCGS method, for several
values of δ l, with n = 24389, m = 30 and p = 842.

Efficiencies for the PEPGCGS algorithm
Retention Number of processors
parameter no_procs =2 no_procs =4 no_procs =8

δ l=1 0.683 0.537 0.343
δ l=2 0.686 0.554 0.393
δ l=m 0.714 0.625 0.417
δ l=2m 0.861 0.775 0.646
δ l=3m 0.880 0.786 0.786
δ l=4m 0.925 0.841 0.841
δ l=p 0.955 0.965 0.899
δ l=2p 0.981 0.988 0.901

Additionally for large values of the “retention” parameter, i.e. multiples of the
semibandwidths m and p, the speedups and the efficiency tend to the upper theoret-
ical bound, for the parallel preconditioned conjugate gradient type method, since
the coarse granularity amortizes the parallelization overheads.

5 Conclusions

The design of parallel explicit approximate inverses and preconditioned conjugate
gradienttype schemes results in efficient parallel methods for solving sparse lin-
ear systems on symmetric multiprocessor systems. The main advantage of the
proposed method is that the approximate inverse is computed explicitly and can
be efficiently used in conjunction with parallel preconditioned conjugate gradient-
type methods for solving biharmonic problems in three space variables, using an
“inner-outer” iteration scheme.

Finally, we state that the new parallel finite element approximate inverse precon-
ditioning, can be efficiently used for solving non-linear biharmonic problems on
shared memory computer systems. Further parallel algorithmic techniques will be
investigated in order to improve the parallel performance of the explicit approxi-
mate inverse preconditioning methods on shared memory computer systems, partic-
ularly by increasing the computational work output per processor and eliminating
process synchronization and any associated latencies.
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