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Computation of Nonlinear Schrödinger Equation on an
Open Waveguide Terminated by a PML
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Abstract: It is known that the perfectly matched layer (PML) is a powerful tool
to truncate the unbounded domain. Recently, the PML technique has been intro-
duced in the computation of nonlinear Schrödinger equations (NSE), in which the
nonlinearity is separated by some efficient time-splitting methods. A major task in
the study of PML is that the original equation is modified by a factor c which varies
fast inside the layer. And a large number of grid points are needed to capture the
profile of c in the discretization. In this paper, the possibility is discussed for using
some nonuniform finite difference schemes in spatial discretization. It is proved
that the uniform refinement inside the PML will cause spurious reflections at the
interface, and therefore is invalid. As a remedy, a new method for the discretiza-
tion is proposed by applying an additional coordinate transformation. This method
effectively reduces the error caused by the discretization of PML, and it is quite
useful in long time computation of time-dependent problems in open waveguides.
These discussions are essential for the further research of the numerical solutions
of NSE on unbounded domains.

Keywords: nonlinear Schrödinger equation, open waveguide, PML, nonuniform
discretization.

1 Introduction

The Schrödinger equation is the central equation to quantum mechanics as New-
ton’s laws are to classical mechanics. In many cases, analytic solutions to the time-
dependent Schrödinger equation (TDSE) are not obtainable, therefore numerical
simulations are needed in order to obtain approximate solutions. In numerical sim-
ulations, the greatest difficulty arises from the fact that the scale of quantum me-
chanics is too small, which leads the equation to be defined on an almost infinite
spatial domain. Under this circumstance, the domain should be restricted into a
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small scale by doing some truncations, such as some artificial boundaries when
numerical methods are applied. To make the truncated problem complete, special
boundary conditions should be designed and applied at the artificial boundaries.

For truncating the unbounded domain, there are two main categories of methods
which follow two different philosophies [Hagstrom, Bruno, et al. (2003); Antoine,
Arnold, et al. (2008)]. The first one is using some exact boundary conditions,
which are usually derived from the formal solutions or relations at the edges of the
interested domain. The solution of the bounded problem coincides with the solution
of the original unbounded problem in the interested domain. As a result, they are
also referred as absorbing boundary conditions (ABCs) or transparent boundary
conditions (TBCs) [Antoine, Besse, and Descombes (2006)]. The other method is
using some absorbing layers to surround the interested domain, and the truncations
are going to be done inside the additional layers. The equation is designed to be
decaying in the layers, therefore the truncations will cause fewer reflections.

The most popular and mathematically elegant absorbing layer is called as the per-
fectly matched layer (PML), which was firstly introduced by Berenger for Maxwell’s
equations [Berenger (1994)]. Soon Chew and Weedom realized that the artifi-
cial boundary conditions using PMLs, or shortly the PML method, could be in-
terpreted as a complex coordinate stretching inside the additional layers, in which
the solution damps [Chew and Weedon (1994)]. In the following years, the PML
method by complex coordinate stretching was generalized to more complicated
settings and equations [Lu and Zhu (2007); Appelo, Hagstrom, and Kreiss (2007)].
This technique for bounding the computation domain has also been used for the
Schrödinger equation [Hagstrom, Bruno, et al. (2003); Ahland, Schulz, and Voges
(1999); Zheng (2007)].

In this paper, we focus on some problems when the PMLs are introduced to the
computation of a kind of nonlinear Schrödinger (NSE) equations. In our computa-
tion, the time-splitting method is used to separate the nonlinearity, and the PMLs
are added to limit the computation domain in solving the linear problems. A major
feature of the PML is its absorbing function. In practice, the absorbing functions
are varying sharply, therefore more grid points are needed to capture the profiles
of the absorbing functions. Otherwise, the numerical errors would not be small as
it is estimated in the error analysis [Nissen and Kreiss (2011)]. Since the absorb-
ing functions in the interested domain are constants, we hope that the refinement
could be done inside the PML only, in order to reduce the computation efforts and
storage. In finite difference discretization, the direct refinement inside the PML
will generate an uniform-but-unequal scheme, which is uniform separately inside
and outside the PML but with two different step sizes. We have proved that this
scheme will cause spurious reflections, even if the suitable interface conditions are
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introduced. As a remedy, we have developed a new technique, which redistributes
the grid points by an additional coordinate transformation, then the grid points are
rearranged denser inside the PML. Since the refinement is done gradually, the un-
physical reflection will not be observable.

The rest of this paper is organized as follows. In section 2, we explain the time-
splitting scheme for the numerical simulation of nonlinear Schrödinger equations,
and the PMLs are introduced in the spatial discretization of the linear problems. In
section 3, we give a brief demonstration of the spurious reflections in the simulation
of the linear Schrödinger equation with the uniform-but-unequal difference scheme,
and also give a quantified analysis of the reflection ratio for simple cases. In sec-
tion 4, the technique for redistributing grid points is introduced, which reduces the
numerical reflections in long time computations. Examples and conclusions are
presented in last two sections.

2 Time splitting method and PML

In this paper, a kind of semi-infinite Schrödinger equations are considered:

i∂tu+∂ 2
x u+ γ|u|2αu = 0,x > 0, t > 0,

u(0, t) = 0, lim
x→+∞

u(x, t) = 0,

u(x,0) = u0(x),
(1)

where α is an integer and γ is a real constant. The nonlinearity contains a potential
function dependent on |u|2, which is common in practice. We assume that the initial
function u0 is mostly inside a finite region Ω0. This assumption is essential for the
efficiency of PML method.

2.1 The time splitting idea for NSE

In our computation, the time splitting method is used to separate the nonlinear-
ity. That is to say, instead of solving the nonlinear problem (1), we turn to solve
several linear problems and ODEs. During the computation, the discretization usu-
ally follows the method of lines, in other words, the spatial discretization is firstly
introduced and the resulting system of ODEs can be solved by some suitable time-
stepping methods.

Assume the temporal stepsize is τ , and tn = nτ , Un = u(x, tn), the evolution from
tn to tn+1 is considered as follows. In order to separate the nonlinearity, we use
Strang’s second order splitting method [Strang (1968)], which achieves the accu-
racy of O(τ2).
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The first step is to solve an ODE:

i
du
dt

+ γ|u|2αu = 0 (2)

in time sequence [tn, tn+1/2], with the initial function given by Un. When γ is real,
we have

du
dt

= iγ|u|2αu,
dū
dt

=−iγ|u|2α ū,

and

d
dt
|u|2 =

d
dt

uū = ū
du
dt

+u
dū
dt

= 0.

It is shown that |u|2 is not time-dependent, therefore (2) can be replaced by

i
du
dt

+ γ|Un|2αu = 0, (3)

which is analytically solvable over [tn, tn+1/2], and the solution is:

u = Unei(t−tn)γ|Un|2α

.

Let

U∗ = u|t=tn+1/2 = Une
iτ
2 γ|Un|2α

.

The second step is to solve a linear Schrödinger (LS) equation

i∂tu+∂
2
x u = 0,x > 0, tn < t < tn+1 (4)

with the initial function given by U∗.

To solve the semi-infinite linear problem, different methods based on different spa-
tial discretization and boundary conditions could be used. The methods based on
finite element are well-defined and widely used [Han and Huang (2004)], neverthe-
less they are less extended and the implementations are difficult in practice. The
spectral methods [Bao, Jin, and Markowich (2002)], or pseudo-spectral methods,
are global approximations which achieve high accuracy with relatively few grid
points. However, there are few literatures using the spectral method in domains
with PMLs. This is mainly reason that accuracy of pseudo-spectral method de-
pends on smoothness of the functions, which is poor in the PML cases. In the
same time, finite differences are flexible in terms of boundary conditions and spa-
tial adaptivity, and easy to implement in practical computations. In this paper, PML
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method is applied to truncate the domain, and the finite difference method is used
in the discretization of the LS equation with PML.

The third step is to solve (2) again in time sequence [tn+1/2, tn+1] to complete the
evolution, with the initial function given by the solution of equation (4) at t = tn+1,
namely U∗∗, where |u|2 is replaced by |U∗∗|2. In the same manner, we obtain

Un+1 = U∗∗e
iτ
2 γ|U∗∗|2α

.

2.2 PML with coordinate stretching

The PML method is involved in the second step. A most important property of
the PML is that wave can penetrate the interface between the interested physical
domain and the PML without any reflection. Moreover, the wave inside the PML
decays exponentially along the propagating axis, therefore the direct truncation in
a short distance inside the absorbing layer will not induce many reflections. Math-
ematically, it equals that a coordinate stretching is applied inside the PML region,
which makes the wave damped. Using the definition of coordinate stretching, PML
is easy to extend to the unbounded linear Schrödinger equation

i∂tu+∂
2
x u = V (x)u, x > 0. (5)

For a general discussion, we consider the linear case when the potential function is
V = V (x), which is assumed to be constant outside a finite region Ω′. We focus on
the solution inside Ω = Ω0

⋃
Ω′. It is also called as the interested physical domain.

In the 1D case, it can be set as [0,H]. Considering the exterior problem when x > H,
we have V (x) = Vr and

i∂tu+∂
2
x u = Vru, x > H. (6)

Let the modal solution be u = eλx+st , where s with Re(s) > 0 is the argument in the
Laplace-transformed space. Substituting into (6), it turns out is + λ 2 = Vr. Since
the solution vanishes when the wave travels toward infinity, we have

λ =−
√
−is+Vr,

in which the square root is chosen to satisfy Re(
√
−is+Vr) > 0. It is easy to verify

that λ is in the second quadrant. The PML is added in the exterior region {x > H},
in which the transformation

x̄ = x+R
∫ x

H
σ(r)dr (7)
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is applied. In (7), R is a complex number, and the real function σ is referred
as the absorbing function, which is a very important feature of PML. With the
transformation (7), the modal solution inside the PML is therefore

ū = eλ x̄+st = eλx+steλR
∫ x

H σ(r)dr.

To make the solution damped, the real part of λR must be negative. As mentioned
above, λ is in the second quadrant. So the complex number R = eiθ can take values
with θ between 0 and π/2. In this paper, R = eiπ/4 is used for average. Notice that

∂ x̄
∂x

= 1+Rσ(x),

the damped solution ū satisfies

i∂t ū+ c∂x(c∂xū) = Vrū,

with c = 1/(1+Rσ) for x ∈ (H,+∞), while it satisfies the original equation (5) in
Ω.

Waves inside the PML decay exponentially, therefore the direct truncation at H +d
for some d > 0 will not introduce notable reflections, the solution inside Ω is thus
almost the same as that of original problem (5).

If the thickness of PML is d, (5) is approximated by the bounded problem:

i∂tu+ c∂x(c∂xu) = V (x)u, x ∈ [0,H +d],
u(0, t) = u(H +d, t) = 0,

(8)

where σ(x) = 0 inside the interval [0,H]. The relation σ(H) = 0 and σ ′(H) = 0
must be satisfied to keep the non-reflection property. Though it is not a sufficient
condition.

3 the spurious reflection on nonuniform grid

The PML-modified equation has the coefficient c(x), which depends on the absorb-
ing function σ(x). Usually σ varies very fast. And the reflections of PML method
mostly come from the numerical discretization of the PML profile. Based on these
facts, more points are needed inside the PML to make the numerical reflections
small. In order not to increase too much computation efforts and storage, and mak-
ing use of the property that σ(x) = 0 inside the interested region Ω, we hope that
grid points only inside the PML could be refined uniformly. Unfortunately, this
kind of finite difference scheme would approximate the dispersion relation differ-
ently on both side of the interface, and therefore induce spurious reflections. The
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reflections do not physically exist and are not avoidable in this uniform-but-unequal
scheme even when some suitable interface conditions are added. Whether the PML
exists or not, this kind of discretization is not available due to the unphysical re-
flections. Similar to Vichnevetsky (1981) for wave equations, the remaining of this
section will demonstrate this fact and quantify the spurious reflections for some
simple cases. A remedy will be introduced in next section.

For convenience, we take no account of the PML, and consider the linear homoge-
nous Schrödinger equation i∂tu+∂xxu = 0 for the discussion of spurious reflections.
In the continuous version, the dispersion relation is

ω =−κ
2, (9)

when the planewave solution ei(κx−ωt) is inserted into the equation. Using the
uniform finite difference scheme in space, we have

i∂tu j +
u j−1−2u j +u j+1

h2 = 0, (10)

at the point x j. Insert the semi-discrete planewave solution u j(t) = ei(κ jh−ωt), the
dispersion relation for the semi-discrete equation is

ω =−4sin2(κh/2)
h2 . (11)

It converges to (9) when h tends to zero.

Applying the Fourier transformation with respect to time in (10), it turns to

−ω û j +
û j−1−2û j + û j+1

h2 = 0.

It has an equivalent matrix form:

Û j = SÛ j−1, (12)

where

Û j =
[

û j+1
û j

]
,S =

[
2z −1
1 0

]
,

and z = 1 + ωh2/2. The matrix S depends on ω and h, and it can be diagonalized
as S = XDX−1, where

X =
[

r l
1 1

]
,D =

[
r 0
0 l

]
,
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with r = z+
√

z2−1, l = z−
√

z2−1. So

Û j = XDX−1Û j−1. (13)

Denote that Ĉ j = X−1Û j, (13) can be rewritten as

Ĉ j = DĈ j−1. (14)

In fact,

Û j =
[

û j+1
û j

]
= XĈ j =

[
r l
1 1

][
ĉr, j

ĉl, j

]
,

where the vector Ĉ j =
[
ĉr, j ĉl, j

]T is the decomposition of the wave along the
propagating axis, i.e. û j = ĉr, j + ĉl, j. And the diagonal matrix D characterizes the
behaviors of wave during the spatial shifting. As mentioned above,

D =
[

z+
√

z2−1 0
0 z−

√
z2−1

]
,

with z = 1+ωh2/2 and ω =−4sin2(κh
2 )/h2, the value of r and l are either real or

complex. As a result, the wave has either the propagation or the diffusion behavior
with different frequency, which is consistent with the solution of LS equation.

When the discretization is uniform, the decomposition of S is identical in every
sequence, X is cancelled in each spatial transition. Therefore,

ĈN = DNĈ0,

the dispersion relation is approximated correctly.

However, by the nonuniform discretization, the situation is much more different.
Suppose that the computation grids are divided into two parts: the step size of the
first part at the left hand side is h1, while that of the second part is h2. We impose
the interface conditions carefully as follows. If the interface point is xd , we set the
continuous conditions as:

u(xd−) = u(xd+),
du(xd−)

dx
=

du(xd+)
dx

.

To approximate these conditions, we set the grid points xN = xd − h1/2, xN+1 =
xd + h2/2. In this case, the interface xd is not a grid point, but half step sizes to
the nearest grid points each side. Using the symmetric extension points, we can
present the second order derivative together with the continuous conditions. It is to
say, we set x′N+1 = xd +h1/2,x′N = xd−h2/2 as the symmetric points of xN and xN+1
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Figure 1: The ’uniform-but-unequal’ discretization, both left and right of the point
xd are discretized uniformly, but the step sizes of both sides are different.

with respect to xd , and denote û′N+1 = û(x′N+1), û
′
N = û(x′N). This is shown in Fig.1.

With this treatment on the interface, the second derivative of u at xN,xN+1 could be
expressed as:

∂ 2
x uN ≈

ûN−1−2ûN + û′N+1

h2
1

,

∂ 2
x uN+1 ≈

û′N−2ûN+1 + ûN+2

h2
2

.

And the interface conditions are approximated as:

ûN + û′N+1

2 = û′N + ûN+1

2 ,
û′N+1− ûN

h1
= ûN+1− û′N

h2
.

(15)

For each uniform discrete part of the computation domain, the spatial transmission
relation is similar to (13), except that the matrix X is not always the same.[

ûN+2

ûN+1

]
= XN+1DN+1X−1

N+1

[
ûN+1

û′N

]
,

[
û′N+1

ûN

]
= XNDNX−1

N

[
ûN

ûN−1

]
.

Due to the interface conditions (15), we have the relation[
ûN+1

û′N

]
= H

[
û′N+1

ûN

]
,

where

H =
[

1 1
1
h2
− 1

h2

]−1[ 1 1
1
h1
− 1

h1

]
.
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The transmission relation across the interface is therefore

ÛN+1 = XN+1DN+1X−1
N+1HXNDNX−1

N ÛN−1. (16)

Similarly, since XN+2 = XN+1, we have

ĈN+1 = DN+1X−1
N+1HXNDNĈN−1. (17)

Obviously, X−1
N+1HXN 6= I with our H, thus the dispersion relation is not correctly

approximated. The reflections will therefore occur due to the difference between
XN and XN+1. They do not physically exist, but disturb the computation badly.

If we assume there is a right-moving wave in {x < xd} and no left-moving wave in
{x≥ xd}, we can solve for the reflection ratio ρ = |ĉl,N/ĉr,N| by inserting ĉl,N+1 = 0
to (17), to give

ρ =
rN

lN

(1−h1/h2)(rNrN+1−1)+(1+h1/h2)(rN+1− rN)
(1−h1/h2)(lNrN+1−1)+(1+h1/h2)(rN+1− lN)

The reflection ratio grows when the difference between h1 and h1 becomes larger.
And it vanishes in the case h1 = h2, where rN = rN+1.

4 the redistributing technique for the discretization of PML

Because of the spurious reflections, we cannot capture the profile of absorbing
function more efficiently by using finer grids only inside PML. Considering that the
reflections appear as soon as the spatial step size changes abruptly, we are propos-
ing another nonuniform discrete scheme by reducing the step size gradually, which
results in relatively more grid points in the PML region. And the numerical re-
flections due to PML are smaller comparing to the uniform-but-unequal case. This
improvement is useful when concerning the wave that is impacting with PML.

To do this, we introduce a coordinate transformation which increases the density
of grid points in the PML region. For example, if we are considering the linear
homogenous Schrödinger equation on [0,H] , and a PML of thickness d is added
on the right hand side; and suppose the absorbing function of the PML is σ(x), and
therefore c(x) = 1

1+Rσ(x) . Then the modified equation with a PML is

i∂tu+ c(x)∂xc(x)∂xu = 0,x ∈ [0,H +d], (18)

where c(x) = 1 for x ∈ [0,H]. Our goal is to move some grid points into the PML
region [H,H + d] with the help of the coordinate transformation. Consider the
function

x =
tanh(r0ξ/(H +d))

tanhr0
(H +d), (19)
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Figure 2: The function tanh(r0ξ )/ tanhr0 with r0 = 2. It maps the uniform grid on
ξ -plane to non-uniform grid on x-plane, which is denser for large x.

where r0 is a given parameter, it is easy to see that it maps the uniform grid points
on ξ to the nonuniform ones on x, as plotted in Fig.2, which just meets our de-
mand. However, in the numerical computation, the discrete points are distributed
uniformly over [0,H + d] on ξ -plane. And look into the x-plane, more points are
therefore inside the PML region.

To solve the equation (18), it is transformed to the ξ -plane. We have

dx
dξ

=
r0

tanhr0 cosh2(r0ξ/(H +d))
,

the Schrödinger equation on ξ -plane is:

i∂tu+ p(ξ )∂ξ p(ξ )∂ξ u = 0,ξ ∈ [0,H +d], (20)

where p(ξ ) = tanhr0
r0

c(x(ξ ))cosh2(r0ξ/(H +d)). An additional coordinate trans-
formation (19) other than the PML-transformation (7) is introduced to redistribute
the grid points. The procedure for solving Eq. (20) is the same as (18) except that
c(x) is replaced by p(ξ ).
The method for nonlinear equations (1) is similar, when the PML is involved in the
second step with solving the linear problems. The numerical examples in the next
section will show this fact.

5 numerical results

To show the impact of our method, we compute the semi-infinite linear problem
(18) in the previous section. We set H = 5, and the thickness of PML is d = 1. The
absorbing function is

σ(x) =
σ0τ(x)5

1+ τ(x)2 , (21)
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where τ(x) = max(x−H,0), and σ0 is the absorbing strength factor. It is a gen-
eralization of polynomial absorbing functions in Nissen and Kreiss (2011), and it
varies more sharply. We use σ0 = 100 here. The initial function is

u0(x) = e−(x−2.5)2+ik0(x−2.5),

and thus the exact solution is

ue(x, t) =

√
i

−4t + i
exp
−i(x−2.5)2− k0(x−2.5)+ k2

0t
−4t + i

.

We use the method of lines, in which the spatial discretization is firstly introduced,
for example c∂xc∂xu ≈ D2 or p∂x p∂xu ≈ D̃2. The uniform discrete scheme and
the coordinate-transformed scheme are both used in different computations. We
keep ∆x = ∆ξ = 0.02 for comparison. And the Crank-Nicolson scheme is used
afterwards for time evolution as

Un+1−Un

τ
=

i
2

D2(Un+1 +Un).

The C-N scheme is unconditionally stable in time, we use the temporal step size
τ = 0.0005 here, and the result is plotted in Fig.3, where the phase velocity of the
initial wave is k0 = 2. A comparison of relative errors is also plotted in Fig.4, where
the relative error is defined by:

ε(tn) =
‖Un−ue(x, tn) ‖[0,H]

‖ ue(x, tn) ‖[0,H]

which concerns only the solutions inside the interested domain [0,H] with L2-norm.

It can be seen in Fig.3 that the uniform discrete PML works very well, since it
absorbs the incoming waves as soon as it enters the PML at x = H. The reflec-
tions are too small to be observed. However, by comparing the relative errors, we
know that the uniform discrete scheme works better at the first stage, in which the
wave does not reach the PML, and the discretization error of the interested do-
main dominate. Later on, as the PML continuously comes into work, the error
from the discretization of PML plays a more and more important role. As the fig-
ure shown, after about t > 0.5, the coordinate-transformed scheme with parameter
r0 = 4 works better and better, since it captures the profile of absorbing function
better, and therefore reduces the discretization error from PML.

To show the invalidity of the uniform-but-unequal scheme as in Section 3, we com-
pute the same case with this scheme. In order to make the numerical reflections
at the interface more observable, PMLs are added to remove the reflections at the
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Figure 3: The solution of linear equation i∂tu+∂xxu = 0. Left: numerical solution
with PML which is uniformly discrete. Right: the exact solution.
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Figure 5: The spurious reflection due to the different step sizes in different part
of the domain. Left: the solution with uniform-but-unequal scheme. Right: the
solution with uniform scheme.

boundary. An initial wave with phase velocity k0 = 10 is used. The spatial step in
the interested domain is h1 = 0.1, while that in the PML is h2 = 0.02. The spurious
reflection is easy to be observed in the left plot of Fig.5, therefore the result is not
trustable.
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Finally, return to our major topic: the nonlinear Schrödinger equations (1). Con-
sidering an instance of (1) with γ = 2,α = 1. That is

i∂tu+∂
2
x u+2|u|2u = 0,

which supports the exact solution

ue(x, t) =
√

a∗ sech
√

a(x−3− ct)ei( c
2(x−3)+(a− c2

4 )t),

the interested domain is [0,10] with a PML with the thickness d = 1, whose profile
is the same as (21). The time-splitting scheme which introduced in section II is
used. The transformation (19) with r0 = 2 is used in the spatial discretization.
We use a = 2, c = 15 here as in Zheng (2007), and the remaining parameters are
tmax = 0.8, τ = 0.0005, h = 0.02. The picture is shown in Fig.6, for nonlinear
Schrödinger equation, our method works as well.

6 conclusions

The PML is widely used in the simulation of problems on unbounded domain, it
is flexible and easy to implement in practice. However, in the computation of time
dependent problems, we have observed the phenomena that the PML becomes less
efficient as time goes by. One of the possible reasons is that the error from the
discretization of PML increases when the wave goes deep into the layer. This
error mostly comes from the discretization of the corresponding absorbing function,
which varies sharply in most of the cases. In order to improve the performance
of PML, we have considered several non-uniform finite difference scheme in this
paper. Firstly, we have proved that the uniform-but-unequal scheme is not feasible
due to the spurious reflection. It is proved that the temptation of directly refinement
inside the PML region is invalid. Next, we propose a new method which uses
an additional coordinate transformation to redistribute the grid points, in order to
make it denser in PML. We move more points into the PML region, then the profile
of absorbing function is better captured, and the discretization error turns smaller.
This method is more accurate, especially when the PML begins to absorb the waves.
Numerical results have shown that it works better than the uniform PML in long
time computation of TDSE.
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Figure 6: Solution of nonlinear Schrödinger equation using our method. Left: the
solution using our coordinate transformation. Right: the exact solution.

References

Ahland, A.; Schulz, D.; Voges, E. (1999): Accurate mesh truncation for
Schrödinger equations by a perfectly matched layer absorber: Application to the
calculation of optical spectra. Physical Review B, vol. 60, no. 8, pp. 5109–5112.

Antoine, X.; Arnold, A. et al. (2008): A review of transparent and artificial
boundary conditions techniques for linear and nonlinear Schrödinger equations.
Commun. Comput. Phys., vol. 4, no. 4, pp. 729–796.

Antoine, X.; Besse, C.; Descombes, S. (2006): Artificial Boundary Conditions
for One-Dimensional Cubic Nonlinear Schrodinger Equations. SIAM Journal on
Numerical Analysis, vol. 43, no. 6, pp. 2272–2293.

Appelo, D.; Hagstrom, T.; Kreiss, G. (2007): Perfectly matched layers for
hyperbolic systems: general formulation, well-posedness, and stability. SIAM
Journal on Applied Mathematics, vol. 67, no. 1, pp. 1–23.

Bao, W.; Jin, S.; Markowich, P. (2002): On time-splitting spectral approx-
imations for the Schrödinger equation in the semiclassical regime. Journal of
Computational Physics, vol. 175, no. 2, pp. 487–524.

Berenger, J. (1994): A perfectly matched layer for the absorption of electromag-
netic waves. Journal of computational physics, vol. 114, no. 2, pp. 185–200.

Chew, W.; Weedon, W. (1994): A 3D perfectly matched medium from modified
Maxwell’s equations with stretched coordinates. Microwave and optical technol-
ogy letters, vol. 7, no. 13, pp. 599–604.

Hagstrom, T.; Bruno, O. et al. (2003): New results on absorbing layers and
radiation boundary conditions. Topics in Computational Wave Propagation-Direct
and Inverse Problems, vol. 1, pp. 42.



362 Copyright © 2011 Tech Science Press CMES, vol.71, no.4, pp.347-362, 2011

Han, H.; Huang, Z. (2004): Exact artificial boundary conditions for Schrödinger
equation in R2. Comm. Math. Sci, vol. 2, no. 1, pp. 79–94.

Lu, Y.; Zhu, J. (2007): Perfectly matched layer for acoustic waveguide modeling-
Benchmark calculations and perturbation analysis. CMES: Computer Modeling in
Engineering and Sciences, vol. 22, no. 3, pp. 235.

Nissen, A.; Kreiss, G. (2011): An optimized perfectly matched layer for the
Schrödinger equation. Commun. Comput. Phys., vol. 9, no. 1, pp. 147–179.

Strang, G. (1968): On the construction and comparison of difference schemes.
SIAM Journal on Numerical Analysis, vol. 5, no. 3, pp. 506–517.

Vichnevetsky, R. (1981): Propagation Through Numerical Mesh Refinement for
Hyperbolic Equations. Math. & Comp. in Simul., vol. 23, no. 4, pp. 344–353.

Zheng, C. (2007): A perfectly matched layer approach to the nonlinear
Schrödinger wave equations. Journal of Computational Physics, vol. 227, no.
1, pp. 537–556.


