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A novel MLPG-Finite-Volume Mixed Method for
Analyzing Stokesian Flows & Study of a new Vortex

Mixing Flow
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Abstract: The two dimensional steady state Stokes equations are solved by us-
ing a novel MLPG-Mixed Finite Volume method, that is based on the independent
meshless interpolations of the deviatoric velocity strain tensor, the volumetric ve-
locity strain tensor, the velocity vector and the pressure. The pressure field directly
obtained from this method does not suffer from the malady of checker-board pat-
terns. Numerical simulations of the flow field, and trajectories of passive fluid
elements in a new complex Stokes flow are also presented. The new flow geome-
try consists of three coaxial cylinders two of smaller diameter, that steadily rotate
independently, inside a third one of elliptical cross section, whose wall slides at a
constant angular speed. We show, by performing detailed comparisons with ana-
lytical solutions, that the present mixed-MLPG method, coupled with an algorithm
to track passive massless fluid elements, provides accurate results for the pressure
and velocity fields, and for their spatial derivatives along the streamlines of the flow
domain.

Keywords: Meshless Local Petrov-Galerkin approach (MLPG), Chaotic advec-
tion, Stokesian flows.

1 Introduction

Even though the Stokesian flows constitute a great simplification of the Navier-
Stokes flows, they have been successfully used to model creeping flows that are
present in nature as well as in industry. The development and optimal design of
microfluidics devices, over the past two decades, have been based on the solution
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of the Stokes equations, see Stremler, Haselton, and Aref (2004). The steady state
velocity field, obtained by the solution of the Stokes equations, has been used to
study the enhancement of mixing in laminar flows through the phenomenon of
chaotic advection. Chaotic advection in Stokes flows is a subject that has been ad-
dressed by physicists, fluid dynamicists and engineers over almost three decades
[Aref (1984); Chaiken, Chevray, Tabor, and Tan (1986); Jana, Metcalfe, and Otino
(1994); Aref (2002)]. The technological efforts to increase the Reynolds number
of the flow to become turbulent, and consequently to increase the rate of mixing of
industrial high viscous flows, increase the costs enormously, see Shankar and Ki-
dambi (2009) and references therein. Chaotic advection in the Stokes flow regime,
where the transport is governed by the diffusion coefficient of the fluid, has been
exploited by MEMS technology and biological applications, to accelerate the rate
of mixing [Karniadakis, Beskok, and Aluru (2005)].

The majority of theoretical studies of chaotic advection have been carried out by
using an analytical background velocity field (which is derived from a biharmonic
stream function) that randomly advects the fluids elements [Aref and Balachandar
(1986); Chaiken, Chevray, Tabor, and Tan (1986); Chaiken, Chu, Tabor, and Tan
(1987)]. One of the preferred analytical solutions of the velocity field, that has
been used to calculate the mixing and chaotic advection properties of time mod-
ulated Stokes flows (where a sequence of steady flows are alternated to force a
time dependence of the Stokes flow) is that reported by Ballal and Rivlin (1976).
Very recently Shankar and Kidambi (2009) have proposed the analytical embedding
method for eigenfunction expansions, to calculate the flow field in mixers with ar-
bitrary shape. Metcalfe, Lester, Ord, Kulkarni, Rudman, Trefry, Hobbs, Regenaur-
Lieb, and Morris (2010) have proposed to use an irrotational flow with periodic
orientation to efficiently generate chaotic advection, the flow field in this case is
the analytical solution of a dipole potential flow. Along the history of chaotic ad-
vection, several theoretical results, concerning the parameters that characterize the
degree of mixing, such as the Poincaré sections or Liapunov exponents have been
successfully verified by experimental techniques [Chaiken, Chevray, Tabor, and
Tan (1986); Jana, Metcalfe, and Otino (1994); Price, Mullin, and Kobine (2003);
Metcalfe, Lester, Ord, Kulkarni, Rudman, Trefry, Hobbs, Regenaur-Lieb, and Mor-
ris (2010)]. Several numerical methods have also been used to calculate the back-
ground Stokes flow field. A whole review of the many papers dealing with the
numerical solution of the Stokes equations with application to chaotic advection is
almost impossible. So we will just mention some of the papers in which different
numerical approaches have been used. Jana, Metcalfe, and Otino (1994) used the
boundary integral equation method to obtain the steady state flow field in a vortex
mixing flow. Anderson, Ternet, Peters, and Meijer (2006) used the spectral element
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method to calculate the steady state three dimensional velocity field in a lid-driven
cubical cavity. The fictitious-domain coupled with the finite element method was
used to calculate the steady state two dimensional flow field in a lid-driven cavity,
and in a serpentine channel, in the presence of solid particles [Hwang, Anderson,
and Hulsen (2005); Kang, Hulsen, Anderson, den Toonder, and Meijer (2007)].
Many numerical techniques have also been used to calculate the basic flow field
when inertial effects are taken into account (finite element method, finite volume
method, spectral element method and mapping methods), see Wang, Feng, Otino,
and Lueptow (2009) and references therein.

By using a numerical approach, it is possible to calculate more complex mixing vor-
tex flows in which analytical solutions are not available. An accurate background
velocity field is the starting point of reliable chaotic advection studies. Therefore
an efficient and accurate algorithm for the solution of the flow field must be used.

In this paper the two dimensional steady state Stokes equations are solved by using
a novel Meshless Local Petrov Galerkin (MLPG) finite-volume mixed numerical
method. For a basic description of the MLPG method, see Atluri and Zhu (1998);
Atluri and Shen (2002a); Atluri and Shen (2002b); Atluri (2004), and for mixed
MLPG methods in solid mechanics, see Atluri, Han, and Rajendran (2004). The
present mixed method for Stokesian flows is based on the independent meshless
interpolation of the velocity vector, the deviatoric velocity strain tensor, the vol-
umetric velocity strain and the pressure, using the Moving Least Squares (MLS)
interpolation over randomly distributed points (nodes) in the flow domain. The
present method does not involve any Lagrange multipliers, and hence bypasses
the LBB type stability conditions [see, for instance Brezzi and Fortin (1991), and
Ying and Atluri (1983)]. It is well known that special techniques, such as stag-
gered grids, segregated algorithms, or lower order interpolation polynomials for
the pressure field, must be used in the existing numerical methods, to satisfy the
incompressibility constraint, and to avoid the checkerboard distribution of the pres-
sure field. In the present study, the novel MLPG method is used to enforce the
incompressibility condition in a strong-form, at each node (without involving any
Lagrange multiplier or reduced-integration-penalty approaches) and the obtained
pressure field solution is very stable and smooth. Once the background velocity
field is known, it is used to calculate the smooth orbits of passive fluid elements.
The newly proposed active mixer consists of three coaxial cylinders, two of smaller
diameter inside a third of elliptical cross section. The two inner circular cylinders
rotate independently, about their axes, to drive the flow, whereas the external el-
liptical housing remains stationary, however its wall slides with a constant angular
velocity, hence the tangential velocity that drives the internal flow, is a function of
the polar radius of the ellipse. The elliptical shape of the outer cylinder provides
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not only a variant in the geometry of vortex mixing flows previously reported in
the literature, but also a variant in the boundary condition on the outer channel that
drives the fluid. The purpose of the new mixer is to split the flow into several flow
streams, with the objective of increasing the mixing surface area. We study the ca-
pabilities of the active mixer to split the flow field in terms of the forcing parameter
(angular speed of the three cylinders) while the geometry is kept fixed. In previous
studies, mixers, constituted by three cylinders, in which the outer circular cylin-
der rotates about its axis, with constant angular velocity, have been analyzed [Jana,
Metcalfe, and Otino (1994); Price, Mullin, and Kobine (2003)]. We show that the
new geometry produces a great variety of complex Stokes flows.

This paper is organized as follows. In Sect. 2, the present MLPG Mixed Finite-
Volume method is described. The MLS numerical method is used to digitally gen-
erate the trial functions of the independent variables of the flow field (the velocity
vector, deviatoric velocity strain tensor, volumetric velocity strain, and pressure),
and the interpolation functions to accurate evaluate the velocity of the fluid at the
location of the passive tracer along its smooth orbit. In Sect. 3 we present the
results for steady state Stokes flows in eccentric cylinders. A comparison of the
numerical results with the analytical solution given by Ballal and Rivlin (1976) is
carried out. In Sect. 3 we also show the flow field and the pathlines (streamlines)
of passive traces in the new complex Stokes vortex mixing flow. Finally in Sect. 4
we present the concluding remarks.

2 The Meshless Local Petrov Galerkin (MLPG) Mixed-Finite-Volume method

In this section, we sketch the present method of analysis of the Stokesian flows.
We first give a brief historical sketch of the various methods [mostly finite element
and finite volume] developed in earlier literature. Thereby, we motivate on present
approach of the Meshless Local Petrov Galerkin (MLPG) Mixed-Finite-Volume
method for analysing Stokesian incompressible flows. We consider an incompress-
ible viscous fluid in a domain with spatial coordinates xi. We use the notation: ρ

the fluid density; F i are body forces (excluding inertia) for unit mass; σi j the fluid
stress; σ ′i j the deviatoric stress; p the hydrostatic pressure; vi the velocities; Di j the
velocity strains; D′i j the deviatoric velocity strain; Dkk the spherical part of velocity
strain; vi the prescribed velocities on a boundary segment Sv; t i the prescribed trac-
tions on a boundary segment St ; and () ,i denotes a partial derivative w.r.t. xi. The
well-known field equations governing the Stokesian flow of a Newtonian fluid are:

vi,i = Dkk = 0 (incompressibility), (1)
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σi j, j +ρF i = 0; σi j = σ ji (momentum balance), (2)

Di j = v(i, j) ≡
1
2

(vi, j + v j,i) (kinematic compatibility), (3)

σi j =
∂A

∂Di j
(constitutive law), (4)

where

A = A(p,Di j) =−pDkk + µDi jDi j, (5)

and µ is the coefficient of viscosity. And thus,

σi j =−pδi j +2µDi j =−pδi j +2µD′i j, (6)

σi jn j = ti = t i (traction b.c.), (7)

vi = vi (velocity b.c.). (8)

In Eq. (7), ni are components of a unit outward normal to S. We further note that;

σi j =−pδi j +σ
′
i j, (9)

and thus,

σ
′
i j = 2µD′i j ≡ 2µDi j. (10)

If the velocity fields satisfy Eq. (8) a priori, and Di j is defined identically through
Eq. (3), conditions given by Eqs. (2) and (7), can be derived as the Euler-Lagrange
equations of the stationary condition of the functional:

Π(p,vi) =
∫

V

[
−pvkk + µvi, jvi, j−ρF ivi

]
dv−

∫
St

t ivids. (11)
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In a large number of earlier publications [as summarized, for instance, in Bratianu
and Atluri (1983)], the so-called primitive variable finite element methods, i.e.,
that based on assumed functions for p and vi over each ’finite-element’, were de-
veloped. However, it is also well-known that, because of the limitations of the types
of interpolations which can be used for a fixed number of nodes in each element
for velocities, and pressures (the number of nodes assigned to "pressure" in each
element may be different from those for the velocities), the numerical stability of
these primitive-variable finite-element methods are plagued by the so-called LBB
conditions [as summarized for instance in Brezzi and Fortin (1991), and in Ying
and Atluri (1983)]. The lack of satisfaction of these LBB conditions (which, by no
means, is trivial) manifests itself in the notorious "checker-board pattern" for the
computed pressures.

Many attempts to circunvent the LBB conditions were made in earlier literature
(as also discussed in Bratianu and Atluri (1983)), such as the Reduced-Integration-
Penalty (RIP) methods, wherein p in Eq. (11) is replaced by a "penalty-term",
p = λvkk, thus leading to:

Π(λ ,vi) =
∫

V

[
−λv2

kk + µvi, jvi, j−ρF ivi
]

dv−
∫

St

t ivids, (12)

where λ is an arbitrarily large chosen penalty parameter to "tune" the solution. To
obtain good results, it was found necessary to "selectively-under-integrate" numer-
ically the penalty term λv2

kk. However, while the RIP methods are very simple to
implement, the fidelity of the computed pressure solution is still often very ques-
tionable. An alternative formulation based on an independent assumption of σ ′i j
and p which, together, satisfy the momentum balance conditions in each element,
and velocity field ṽi at the inter-element boundary, was used by Bratianu and Atluri
(1983) and Ying and Atluri (1983). These "hybrid" methods were based on the
stationary condition of the "global" functional:

e∗
(
σ
′
i j, p,vi

)
= ∑

n

{
−
∫

Vn

1
4µ

σ
′
i jσ
′
i jdv+

∫
∂Vn

ni
(
σ
′
i j− pδi j

)
vids−

∫
Stn

t ivids
}

,

(13)

where Vn is the nth element, and ∂Vn its boundary. This method, also suffers from
the LBB conditions on the independent fields σ ′i j, p, and vi (see Ying and Atluri
(1983)), while many successful elements (obeying the LBB conditions) were de-
veloped in Bratianu and Atluri (1983) and very smooth solutions for pressure were
obtained; without any selective reduced integration, or other remedies.
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Figure 1: Scheme of the MLPG method. The global flow domain is defined as Ω

with global boundary Γ. The local sub-domains Ωs with boundary Γs, may overlap
each other.

In this paper, we make a fundamental departure from the finite element methods
based on "global variational principles" (involving the weak-forms over the entire
domain V as in Eqs. (11), (12) or (13)).

We consider the fluid domain to be sprinkled with a set of arbitrarily and randomly
distributed "nodes" as shown in Fig. 1. We consider a "local" interpolation, which
is complete, and continuous (to any desired degree) [see Atluri (2004)]. By "lo-
cality" we mean that the value of the interpolation at any point X in Fig. 1 is
determined uniquely only by the respective values of the interpolant at the N nodes
which are in the "domain of influence" of the node X. Such an interpolation, the
Moving Least Squares interpolation, has been extensively discussed in literature,
and summarized for instance in Atluri and Shen (2002b); Atluri and Shen (2002a)
and Atluri (2004). Formulations of the MLPG method, for Navier-Stokes flows,
using primitive variables p and vi only, were presented in the pioneering papers by
Lin and Atluri (2000) and Lin and Atluri (2001). In MLS interpolation, the inter-
polations for, say velocities, in the local domain ΩS near X, may be approximated,
by using the information provided by a number of scattered nodes located at XK ,
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K = 1...N, in the vicinity of X, as:

vi (X) = PT (X)ai (X) , ∀X ∈ΩS, (14)

where PT (X) = [p1(X), p2(X), ....pm(X)] is a monomial basis of order m, and
ai (X) are vectors containing unknown coefficients (for each of the ith velocity com-
ponent) which are functions of X, and whose order depends on the monomial basis.
The coefficients ai are determined by minimizing the weighted discrete L2 norm:

Ji (X) =
N

∑
K=1

wK (X)
[
PT (XK)ai (X)− v̂iK

]2 ≡ [P ·ai (X)− v̂i]W [P ·ai (X)− v̂i] ,

(15)

where wK are weight functions centered at node XK and v̂iK are the fictitious values
of vi at node XK . As shown in Atluri (2004), after minimizing Ji of Eq. (15), Eq.
(14) may be written as:

vi (X) = PT (X)A−1 (X)B(X) v̂i ≡
N

∑
K=1

Φ
(J) (X) v̂i (XJ) , (16)

where v̂i (XJ) is the fictitious nodal value of the velocity vi and Φ(J) (X) are the
corresponding nodal trial functions centered at node XJ . The matrices A and B in
Eq. (16) are defined by [Atluri (2004)]:

A(X) = PT WP , B(X) = PT W, ∀X ∈ ∂ΩS. (17)

The weight function wK (X) centered at node XK determines the range of influence
of node K, and the weight function is selected to have a compact support. A 4th

order spline function is used for wK (X) in the present study.

With this background on the local (compactly supported), complete, and continuous
trial functions for any variable, such as velocity vi, we now return to the MLPG
finite-volume mixed method of the present study, following the related work for
solid mechanics, reported in Atluri, Han, and Rajendran (2004).

We rewrite the equations of the Stokesian flow, instead of using the "primitive vari-
ables" (vi and p), by using the "mixed variables" vi, D′i j, Dkk, and p. Thus, the
equations for Stokesian flow are written as:

−p,i +F i +2µD′i j, j = 0 (equilibrium), (18)
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Dkk = 0 (incompressibility), (19)

Dkk = vk,k (compatibility-1), (20)

D′i j =
1
2

[
vi, j +v j,i−

2
3

vkkδi j

]
(compatibility-2). (21)

For each of the mixed variables vi, Dkk, D′i j and p, we assume independent MLS
approximations, at each point X in the domain, in terms of values at N neighbouring
(’local’) nodes, as:

vi (X) =
N

∑
J=1

Φ
(J) (X) v̂(J)

i ; v(J)
i = vi (XJ) , (22)

Dkk (X) =
N

∑
J=1

Φ
(J) (X) D̂(J)

kk ; D(J)
kk = Dkk (XJ) , (23)

D′i j (X) =
N

∑
j=1

Φ
(J) (X) D̂

′(J)
i j ; D

′(J)
i j = D′i j (XJ) , (24)

p(X) =
N

∑
j=1

Φ
(J) (X) p̂(J); p(J) = p(XJ) . (25)

Thus, the nodal trial function for each of the mixed variables, is the same, namely,
Φ(J) (X), centered at node XJ . We satisfy the three Eqs. (18) in a "weak-sense",
using a local weak-form over a local-sub-domain, ΩI

te, centered at each node XI ,
using test-functions ui, corresponding to each trial-function vi, as:

∫
ΩJ

te

(
−p,i +F i +2µD′i j, j

)
uidΩ = 0. (26)
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In this paper, we take ui to be ’unity’ over each ΩJ
te, thus labeling the present

approach a ’finite-volume’ method. The fact that the trial and test functions in
the ’local weak-form’ are different, the present method is labeled as the Meshless
Local Petrov-Galerkin finite-volume-mixed method. When ui=1, Eq. (26) reduces
to the ’weak-form’ of the equilibrium equations:∫

ΩJ
te

F idΩ+
∫

∂ΩJ
te

(
2µD′i jn j− pni

)
ds , (i = 1,2,3) , (27)

which are simply the "force balances" on ΩJ
te, where ∂ΩJ

te is the surface of ΩJ
te.

In the present method we satisfy Eqs. (19)-(21) in a "strong-form" at each collo-
cation node XK . Thus the "incompressibility" condition is satisfied in a "strong-
form", without any Lagrange multipliers, and hence there are no LBB conditions in
the present approach, which is made possible, essentially through the local mesh-
less interpolations. The compatibility conditions for velocity strains, Eqs. (20) and
(21) are also satisfied in a "strong-form" at each collocation point XJ . When Eq.
(24) is substituted in Eq. (27) we obtain:

∫
ΩJ

te

F idΩ+
∫

∂ΩJ
te

[
2µ

(
N

∑
K=1

Φ
(K) (X) D̂′(K)

i j

)
n j−

(
N

∑
K=1

Φ
(K) (X) p(K)

)
ni

]
ds = 0.

(28)

At each node XJ , Eqs. (28) represent 3 equations, in terms of the 7 variables D̂′(J)
i j

and p(J) at node XJ , as well as the 7 variables D̂′(K)
i j and p(K) at the other (N−1)

nodes XK in the vicinity of XJ .

When Eq. (20) is satisfied in a "strong-form" at each node XJ , we obtain:

N

∑
K=1

Φ
(K) (XJ) D̂(K)

kk = 0, (29)

which represents one constraint equation at each node XJ , in terms of the variable
D̂(J)

kk at node XJ , as well as the variables D̂(K)
kk at the other (N−1) nodes XK in the

vicinity of XJ . When Eq. (20) is satisfied in a "strong-form" at each node XJ , we
obtain:

N

∑
K=1

Φ
(K) (XJ) D̂(K)

kk =
N

∑
K=1

Φ
(K),i (XJ) v̂(K)

i , (J = 1....N) , (30)

which represents N algebraic equations, relating the N unknowns D̂′(J)
kk to the 3N

unknowns v̂(J)
i . Thus D̂(J)

kk can be solved in terms of v̂(J)
i , and when these are used
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in Eq. (29), we obtain one constraint equation at each node XJ , in terms of the 3
unknowns v(J)

i at node XJ , as well as the variables v(K)
i at each of the other (N−1)

nodes XK in the vicinity of XJ . When Eq. (21) is satisfied in a "strong-form" at
each XJ , using Eq. (24) and Eq. (25) in Eq. (21), we obtain:

N

∑
K=1

Φ
(K) (XJ) D̂′(K)

i j ≡
1
2

{ N

∑
K=1

[
Φ

(K),i (XJ) v̂(K)
j

]
+

N

∑
K=1

[
Φ

(K), j (XJ) v̂(K)
i

]
−

2
3

[
Φ

(K),k (XJ) v̂(K)
k

]}
[i, j = 1,2,3; J = 1....N] .

(31)

Eq. (31) represent 6 constraint equations relating each of the 6 variables D′(J)
i j at

each of the nodes J = 1...N, to the (3N) variables v(J)
i [i = 1,2,3; J = 1...N]. By

solving Eq. (31) for each i, j=1,2,3, one may express D̂′(J)
i j (J = 1...N) in terms of

the 3N velocity variables v̂(J)
i . Thus the 6N variables D̂′(J)

i j are expressed in terms

of the 3N variables v̂(J)
i . When these D̂′(J)

i j are used in Eq. (28), one obtains at

each node XJ , 3 equations in terms of the 4 variables (v̂(J)
i and p̂(J)). These 3

equations, when coupled with the one constraint equations obtained at each node XJ

through Eq. (29) and Eq. (30), represent the needed 4 equations to solve for the 4
variables v̂(J)

i and p(J) at each node XJ . It is interesting to observe that in the present
method, the solution for D(J)

kk in Eq. (30), as well as for the solution of each D̂′(J)
i j

(i, j = 1,2,3) in Eq. (31), all in terms of v̂(J)
k , involve only the inversion of the non-

singular [because of the nature of the MLS interpolation] N×N matrix Φ(J) (XL).
Since no Lagrange Multipliers, and no saddle-point type variational statements are
involved either in the satisfaction of the incompressibility constraint, Eq. (19), or in
the satisfaction of the constraint equations between mixed and primitive variables,
Eqs. (20) and (21), there are no LBB conditions to be satisfied in the present
MLPG Mixed-Finite-Volume Method. Instead, in the present method, Eqs. (19),
(20) and (21), are all satisfied in a "strong-form" at every node XK , while Eqs.
(18) are satisfied in a "finite-volume" type weak-form. In closing this Section 2,
we note that the boundary conditions Eqs. (7) and (8) are satisfied in a "strong-
form" (collocation), as discussed in Zhu, Zhang, and Atluri (1998), Atluri and Shen
(2002a), Atluri and Shen (2002b), and Atluri (2004).

Another method that has been widely used to solve either the Stokes or the Navier-
Stokes equations is the mesh-based finite volume method of Spalding (1972) and
Patankar (1980). This numerical technique is a particular version of the method
of global weighted residuals [Patankar (1980)]. The finite volume formulation is
based on the use of a unit function as the test function, and the trial functions are
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commonly piecewise linear interpolation functions defined between the grid points
(which are surrounded by a control volume). The mesh-based finite volume tech-
nique is based on the use of staggered grids (the velocity components are calcu-
lated at grid points that are staggered with respect to the grid points were pressure
is computed) to ensure that the resulting system of equations is not singular, and
to avoid the checkerboard pattern of the pressure field, however the mesh gener-
ation, particularly for complex 3D domains, is not trivial. In the finite volume
approach of Spalding (1972) and Patankar (1980), the value of the flow variables
and their spatial derivatives at the boundaries of the control volume, is determined
by making assumptions about the spatial variation of the flow variables between
the grid points (first and second-order upwind schemes, QUICK, power law, and
Central differencing schemes, etc.). It is well-known that depending on the choice
of the interpolation scheme, false diffusion can arise. Pressure-velocity coupling
algorithms are used to obtain an equation for the pressure from the momentum and
continuity equations. The most commonly used pressure-velocity coupling algo-
rithm is the SIMPLE approach (and improved versions such as SIMPLER, SIM-
PLEC and PISO). The success of the pressure-velocity coupling algorithm depends
on the correct formulation of the pressure equation in terms of "pressure correc-
tions", which are functions of the mass imbalance at each finite volume. The finite
volume also uses a segregated solution procedure, in which a sequential process is
carried out to solve firstly an equation for a certain variable, then the equation for
the next variable, etc. The SIMPLE algorithm (and improved versions) together
with the segregated approach, constitute an iterative process that may lead to a con-
verged solution of the problem. The use of the finite volume method of Spalding
(1972) and Patankar (1980) for the solution fluid flow problems in systems with
complex geometry are based on the formulation of the fluid equations in a gener-
alized coordinate system. Even though the mesh-based finite volume method of
Spalding (1972) and Patankar (1980) and the presently proposed novel meshless
finite-volume mixed MLPG method, both have a unit function as a test function, it
is clearly seen that they have fundamental differences, i.e. in the MLPG method:
(i) the flow variables are calculated at the same nodes, (ii) there are no segregated
or pressure-velocity coupling algorithms, (iii) there is no need to use interpola-
tion schemes, such as QUICK, to calculate the value of the flow variables (or their
derivatives) at the boundary of the local subdomain, (iv) an iterative process to get
converged results is not necessary, (v) the trial functions can be of any order, and
(vi) the solution of fluid flow problems with complex geometry can be formulated
in a Cartesian coordinate system without the use of an isoparametric mapping or
formulation of the fluid equations in a body fitted coordinate system.
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3 Results and Discussion

Two cases of confined complex Stokes flows have been solved in this investigation.
Complex Stokes flows exhibit primary cells (driven by a moving boundary) and
secondary cells (driven by primary cells), and closed and separating streamlines,
see Jana, Metcalfe, and Otino (1994). In this section we show the appropriateness
of the present mixed-MLPG method coupled with a passive massless particle track-
ing algorithm (which is based on the MLS interpolation functions), to calculate the
steady state velocity and pressure fields, and path lines (or stream lines) and vortex
structures (primary and secondary cells) in the flow.

The first case under study, to be presented in Sect. 3.1, has an analytical solution,
therefore it will be used to verify the accuracy of the proposed mixed MLPG-finite-
volume method. The second case that is presented in Sect. 3.2 does not possess an
analytical solution, therefore the pressure and velocity fields can only be obtained
by numerical computations or by experimental techniques. The second case is a
variant of the vortex mixing flow geometry proposed by Jana, Metcalfe, and Otino
(1994), and Price, Mullin, and Kobine (2003). Whereas the previous flow geometry
consists of three coaxial circular cylinders, two of smaller diameter inside a third,
our new flow geometry consists also of three coaxial cylinders, but the external
cylinder has an elliptical cross-section. In the previous studies, the outer circular
cylinder rotates about its axis, with constant angular velocity (hence the tangential
velocity on the surface of the outer cylinder, that drives the flow, is also a constant).
However in our new vortex mixing flow, the outer elliptical cylinder does not rotate
about its axis, but its wall slides with a constant angular velocity, hence the tan-
gential velocity that drives the internal flow, is a function of the polar radius of the
ellipse.

3.1 Stokes flow between eccentric rotating cylinders

Numerical simulations of the Stokes flow in the annular region between two coaxial
infinitely long circular cylinders, induced by the independent uniform rotation of
one, or both of the cylinders about their axes (which do not coincide with each
other), are presented in this section. We carry out the comparison between the
numerical results and the analytical solution given by Ballal and Rivlin (1976).

The physical problem is shown in Fig. 2 together with a typical distribution of the
MLPG nodes used to represent the solution domain. The inner and outer cylin-
ders are of radius r2 and r1, respectively, with the distance between the centers of
the cylinders is given by the eccentricity e. The outer cylinder can rotate about its
own axis with an angular speed ω1, either counter-clockwise or clockwise, while
the inner cylinder always rotates around its own axis clockwise with an angular
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Figure 2: Stokes flow between eccentric rotating cylinders. The circular housing
rotates at angular speed ω1 and the inner cylinder rotates at angular speed ω2. The
characteristic length scale of the housing is l=r1, the relevant parameters are: the
aspect ratio A=r1/r2, the eccentricity ratio ε=e/(r1−r2) and the angular speed ratio
ω̂=ω2/ω1. A typical MLPG nodes distribution is also shown.
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velocity ω2. The relevant parameters of the system are the aspect ratio A=r1/r2,
the eccentricity ratio ε = e/(r1− r2) and the angular speed ratio ω̂ = ω2/ω1. In
the numerical experiments we keep the aspect ratio fixed to A = 2, while the ec-
centricity ratio ε acquires the values: 0.26, 0.5 and 0.7. For the cases with ε=0.26
and ε=0.7, the outer cylinder was kept stationary (i.e. ω̂ = ∞), while for the case
with ε=0.5, the angular speed ratio ω̂ has the values: ∞, 0.25 and -0.25. The pos-
itive sign means that the outer cylinder rotates clockwise, while the negative sign
indicates that the outer cylinder rotation is counter-clockwise.

Fig. 3 shows the pressure isocontours as a function of the eccentricity ratio ε and
the angular speed ratio ω̂ . Left column shows the mixed-MLPG results, whereas
right column displays the analytical solution. It is clearly observed that the mixed-
MLPG method provides a pressure field that does not show the typical chessboard
distribution that is obtained by those numerical algorithms that calculate the un-
known variables of the flow at the same location (non-staggered nodes distribu-
tion) and use the same polynomial expansion for the pressure and velocity fields.
It is important to remark that by using the novel mixed-MLPG method, an itera-
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Figure 3: Stokes flow between eccentric rotating cylinders. Dimensionless isocon-
tours of the pressure field. For all the cases the aspect ratio is fixed to A=2, and the
number of MLPG nodes is equal to 1250. The pressure is normalized with respect
to the maximum pressure in the flow domain. Left column: mixed-MLPG method
results, the dimensionless velocity vectors are also shown. Right column: analyti-
cal results [Ballal and Rivlin (1976)]. (A) ε=0.26 and ω̂=∞. (B) ε=0.5 and ω̂=∞.
(C) ε=0.7 and ω̂=∞. (D) ε=0.5 and ω̂=0.25. (E) ε=0.5 and ω̂=-0.25.

tive (segregated) process (like SIMPLE-family algorithms) is not required to obtain
the correct pressure field. Figs. 3(A) and 3(B), show that the agreement between
the mixed-MLPG results and the analytical solution, reported by Ballal and Rivlin
(1976), is successful and encouraging. Fig. 3(C) shows that in the small gap region,
some deviations from the analytical solution are observed. However in the wide gap
region it can be seen that the agreement is also successful. Figs. 3 (A)-(C) show
that due to the clockwise rotation of the inner cylinder, pressure begins to increase
from the widest gap region to the small gap region (along the clockwise direction,
or for positive x1 values). Note that as the ε value is increased, the region with
higher pressure moves towards the smallest gap region, and becomes smaller. Due
to symmetry conditions, the same behaviour shows the region with lower pressure,
i.e. from the widest gap region to the small gap region, along the counter-clockwise
direction (for negative x1 values), it moves towards the smallest gap region, and
becomes smaller. Figs. 3(D) and 3(E), show the cases for co-rotating and counter-
rotating cylinders, respectively (see the large arrow indicating the rotation of the
outer cylinder). Fig. 3(E) shows that due to the counter-clockwise rotation of the
outer cylinder, the region with highest pressure is located on the negative side of
the x1-axis. Note that in the wide gap region the results are also encouraging. The
main reason for disagreement between the numerical results and the analytical so-
lution, particularly in the small gap region for ε=0.7, see Fig. 3 (C), is because
the accuracy of the results provided by the MLPG method strongly depends on the
definition of two length scales. The first one is called the domain of support (or size
of the support) of the weight function used in the MLS interpolation scheme. The
second length scale is the size (radius) of the local sub-domain (i.e. support of the
local Heaviside step test function domain) enclosing every sample node (see Atluri
and Shen (2002b) and Atluri and Shen (2002a), for a detailed description of the two
length scales). In this study, both length scales are calculated in terms of the average
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distance h (a constant value) between the MLPG nodes in the flow domain. In the
results we show in Fig. 3, the average distance h is obtained by taking into account
all the nodes in the flow. Hence if the distance between the nodes is almost uniform,
as is the case with ε=0.26 or ε=0.5, the accuracy of the results only depends on the
values of the two length scales in terms of the constant h. However, if the nodes are
distributed not uniformly (high concentration of nodes in the small gap region and
low concentration of nodes in the wide gap region), as is the case when ε=0.7, the
accuracy of the results will also depend on the spatial variation of the two length
scales (spatial variation of the local average distance between the nodes). Research
work at the Center for Space Research and Education at UCI, is being conducted
to find (besides the rate of convergence, and error estimation studies of the novel
mixed-MLPG method) the optimal choice of the two length scales for the solution
of the Stokes problem with complex geometry and non-uniform nodes distribution.
The results we present in Fig. 3 were preceded by several numerical computations
in which in order to obtain MLPG results which are independent of the number of
nodes used, tests were carried out from 625 nodes (25 nodes along the radial direc-
tion and 25 nodes along the angular direction) to 1250 nodes (25 nodes along the
radial direction and 50 nodes along the angular direction). In all the cases displayed
in Fig. 3, the size of support of the weight function is calculated as 2.65h, while
the size of support for the test function is given by 0.5h.

Fig. 4 shows the streamline patterns, generated by tracking the orbit of massless
fluid elements (right column), and the analytical stream functions (left column,
with arrows indicating the flow direction). The selected time increment ∆t used to
numerically solve the dynamical equations of a Lagrangian tracer, determines the
number of calculated locations along its orbit. On the average 1×106 fluid element
positions were calculated to generate a closed streamline, as it is shown on the
left column of Fig. 4. The velocity of the fluid at the instantaneous location of the
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Figure 4: Stokes flow between eccentric rotating cylinders. The aspect ratio is fixed
to A=2. Left column: mixed-MLPG method results, path lines (or streamlines)
generated by following the orbit of passive massless fluid elements, velocity vectors
are also shown. Right column: Stream function analytical results [Ballal and Rivlin
(1976)] with arrows indicating the flow direction. (A) ε=0.26 and ω̂=∞. (B) ε=0.5
and ω̂=∞. (C) ε=0.7 and ω̂=∞. (D) ε=0.5 and ω̂=0.25. (E) ε=0.5 and ω̂=-0.25.

passive tracer is calculated by using the MLS interpolation technique. It is observed
in Fig. 4 that the complex Stokes flow exhibits secondary cell motion that is driven
by contact with primary cells. Fig. 4 (A) shows that for ε=0.26, no flow separation
occurs on the outer cylinder. However, Fig. 4 (B) shows that for ε=0.5, separation
takes place on the outer boundary (see the pair of parabolic critical points on the
stationary outer surface in the analytical solution). It has been analytically found
that when A=2, no separation occurs for ε < 0.32424, this confirm our findings.
Note that Figs. 4 (A)-(C), correspond to Figs. 18 (a), (c) and (d) of Ballal and
Rivlin (1976)’s paper. Right panel of Fig. 4 (C) also shows the pair of parabolic
critical points on the stationary outer surface. It is seen that when the external
cylinder is stationary, the only stagnation point in the interior of the fluid, exists
on the x2-axis (centre of the vortex, or elliptic critical point), this is a theoretical
finding. Figs. 4 (D) and (E), show the streamlines when the cylinders rotate in the
same direction and when they rotate in opposite directions, respectively. Note the
large arrow indicating the sense of rotation of the outer cylinder. Fig. 4 (D) shows
that due to both the geometrical configuration (A and ε values) and the angular
speed ratio ω̂ , of the system under study, only one interior stagnation point occurs
at the centre of the vortex (on the x2-axis). Fig. 4 (D) resembles Fig. 14 (b) of
Ballal and Rivlin (1976)’s paper, i.e. without intersection of the streamlines and no
interior critical hyperbolic points. In Fig. 4 (E) we observe that the only stagnation
point lies on the x2-axis, (centre of the vortex), this is also a theoretical finding. It
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is clearly observed in Fig. 4 that the numerical results and the analytical solution
are in successful agreement.

Fig. 5 shows the v1 velocity component as a function of the bipolar coordinates (ξ
and η), in which is formulated the analytical solution [Ballal and Rivlin (1976)].
The coordinate ξ = ξ1 corresponds to the surface of the outer cylinder, while the
coordinate ξ = ξ2 represents the surface of the inner cylinder. The coordinate η

is measured from the region of largest gap (η=0), to π (clockwise direction, or
positive x1), and to −π (counter-clockwise direction, or negative x1). Left column
of Fig. 5 shows the v1 velocity component evaluated at the circle ξ = (ξ1+ξ2)/2 as a
function of the variable η (from -π to π). It is observed in Figs. 5 (A) and 5(B) that
when the external housing is stationary, and when ε=0.26 and ε=0.5, the agreement
is satisfactory. Notice that due to the clockwise rotation of the inner cylinder the
highest positive v1 value is located at the largest gap region (η = 0), whereas the
highest negative v1 value is located at the smallest gap region (η = ±π). Left
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Figure 5: Stokes flow between eccentric rotating cylinders. Dimensionless v1 ve-
locity component as a function of the bipolar coordinates (ξ , η). Left column
v1(η) at the location (ξ1 + ξ2)/2. Right column v1(ξ ) at the smallest gap region
i.e. at η=π . Continuous line: Analytical results [Ballal and Rivlin (1976)]. Circles:
mixed-MLPG method results. (A) ε=0.26 and ω̂=∞. (B) ε=0.5 and ω̂=∞. (C)
ε=0.5 and ω̂=-0.25.

panel of Fig. 5 (C) shows that the numerical solution follows the trend of the
analytical results when the cylinders counter-rotate. A discrepancy is observed at
the smallest gap location (η = ±π) and at the widest gap location (η=0). It is
observed that due to the highest value of the counter-clockwise angular speed of
the outer cylinder (ω̂ = −0.25), and due to the vortex formation at the largest gap
region, see Fig. 4 (E), v1 always remains positive with largest value at the small
gap region. Right column of Fig. 5 shows at the smallest gap region (η = π) the
v1 velocity component from the outer cylinder ξ1 to the inner cylinder ξ2 (note that
the variable ξ has been normalized with respect to the ξ2 value). It is observed that
when the outer cylinder is stationary, and for ε=0.26 and ε=0.5, see Figs. 5 (A) and
(B), the agreement is successful. However when a counter-rotation between both
cylinders occurs, a small difference is observed in the middle region 0.7≤ ξ ≤ 0.9,
see Fig. 5 (C). Right column of Figs. 5 (A) and (B) show that at ξ = ξ1, the velocity
v1 is zero, and due to the clockwise rotation of the inner cylinder, v1 becomes
negative and acquires the tangential negative v1 velocity of the internal cylinder (at
ξ = ξ2). It is observed in Fig. 5 (C) that due to the counter-clockwise rotation of
the outer cylinder, v1 is positive from ξ = ξ1 to ξ ≈ 0.97. Beyond this value v1
becomes negative and acquires the tangential negative speed of the inner cylinder
at ξ = ξ2. It is convenient to mention that in order to perform the comparison
between the analytical solution (obtained in a bipolar coordinate system (ξ , η))
and the numerical results (obtained in a Cartesian coordinate system), firstly the
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Figure 6: Stokes vortex mixing flow in the space bounded by two inner indepen-
dently rotating circular cylinders, and an elliptical housing whose wall slides at
constant angular speed ω1. The characteristic length scale of the housing is l=a.
See the text for the definition of the relevant parameters. A typical MLPG nodes
distribution is also shown.

bipolar coordinate system was mapped to a Cartesian coordinate system by using
the transformation rules given by Ballal and Rivlin (1976) (see Eqs. (3.1) of their
paper), and secondly a rotation and translation was performed in order to obtain the
analytical results in our Cartesian coordinate system, whose origin is located at the
centre of the inner cylinder, see Fig. 2.

After showing the agreement between the results provided by the mixed MLPG
method and the analytical solution, we may say that the novel numerical algorithm
can be used to calculate with enough accuracy the background velocity (and pres-
sure) field, that is used to advect passive fluid elements in creeping flows. In the
next section we show that the calculation of trajectories of Lagrangian passive fluid
elements, will conduct to the study of vortex structures and critical points that ex-
hibit our new vortex flow mixer.

3.2 A new complex Stokes flow

The physical problem is shown in Fig. 6. The fluid fills the space between the
outer channel with elliptical cross section and two inner circular cylinders of equal
radii r2. The centres of the inner cylinders are located along the major diameter of
the outer channel and are set symmetrically (a distance e) about the center of the
ellipse. The relevant parameters of the system, such as the aspect ratio A = a/b,
the confining aspect ratio c = r2/b, the eccentricity ratio ε = e/a and the angular
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speed ratio ω̂ = (ω2r +ω1)/ω2l (where ω2l and ω2r are the angular velocities of
the inner left and right cylinders respectively, and ω1 is the angular speed of the
elliptical sliding wall) can be selected to tune the flow topology. In this paper we
select to vary the forcing parameter ω̂ , whereas the geometrical parameters are kept
fixed to the values A=2, c=0.5 and ε=0.5. In the analyzed cases, the outer cylinder
can slide its wall either counter-clockwise or clockwise; the right inner cylinder can
also rotate counter-clockwise or clockwise; however the left inner cylinder always
rotates clockwise with the same fixed angular velocity ω2l . Table 1 shows the
values of the forcing parameter ω̂ for the fifteen cases under study. In Table 1 the
definition of the angular speed direction of the cylinders is as follows: C-ω2l means
that the angular speed of the left inner cylinder is clockwise, CC-ω2r means that the
angular speed of the right inner cylinder is counter-clockwise, and CC-ω1 means
that the angular speed of the sliding wall of the ellipse is counter-clockwise.

Table 1: Forcing parameter ω̂ = (ω2r +ω1)/ω2l in the Stokes vortex mixing flow.
CC means counter-clockwise direction and C means clockwise direction of the
cylinders angular speed.

Case CC-ω1 ω1 = 0 C-ω1

A (C-ω2l , CC-ω2r) -1.5 -1 -0.5
B (C-ω2l , C-ω2r) 0.5 1 1.5
C (C-ω2l , ω2r=0) -0.5 0 0.5

D (C-ω2l , CC-ω2r) -1 -0.5 0
E (C-ω2l , C-ω2r) 0 0.5 1

In this section we show the velocity and pressure fields provided by the novel
mixed-MLPG method in terms of the forcing parameter ω̂ . The topology of the
streamlines (generated by following the orbit of massless fluid elements) is also
shown. Pressure gradient vectors and velocity vectors along the trajectory of fluid
elements enclosing internal critical points are also presented. We also show that at
a given internal critical point, the eigenvalues of the Jacobian matrix J satisfy the
dynamical systems theory. In a 2-D flow field, the two eigenvalues of a hyperbolic
critical point are real numbers with R1×R2 < 0 (a positive value refers to repul-
sion, while a negative value refers to attraction), whereas the two eigenvalues of
an elliptic critical point are imaginary numbers with I1=-I2. Our findings confirm
the accuracy of the computed pressure and velocity fields obtained by the novel
mixed-MLPG method.

Figs. 7 and 8 show the dimensionless pressure field contours together with the
velocity vectors, and the topology of the streamlines respectively, for the cases
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Figure 7: Dimensionless pressure distribution and velocity vectors in the Stokes
vortex mixing flow. Number of MLPG nodes is equal to 2890. The pressure field
is normalized with respect the maximum pressure in the flow domain. See Table 1
for the definition of columns and rows.
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described in Table 1. Note that there is a direct correspondence between the rows
and columns of Table 1 and the rows and columns of Figs. 7 and 8. It is clearly
observed that by using the mixed-MLPG method, the pressure distribution does not
show a chessboard behaviour. For case A, the angular speed of the inner cylinders
is the same but with opposite directions, therefore ω2r=-ω2l (by convention we
have defined clockwise direction as positive, while counter-clockwise direction as
negative). For case B, ω2r=ω2l . For case C, ω2r=0. For case D, ω2r=-ω2l/2.
And for case E, ω2r=ω2l/2. In all cases, the angular speed of the outer elliptical
cylinder is either ω1=-ω2l/2, ω1=0, and ω1=ω2l/2, see Table 1. Due to the elliptical
geometry of the outer cylinder, the sliding wall tangential velocity that drives the
fluid, is a function of the polar radius of the ellipse. In Cartesian coordinates the
x1 and x2 components of the tangential velocity of points located at the sliding wall
are given as

v1 =−b
a

x2ω1 and v2 =
a
b

x1ω1, (32)

where a and b are the semi-major and semi-minor axes of the ellipse respectively,
and x1 and x2 are the coordinates of the points along the elliptical cylinder, see Fig.
6. Fig. 7 shows that due to the viscous stresses generated by driving fluid into
the converging regions, all the cases exhibit the highest and lowest values of the
pressure in the small gap regions (theory of lubrication).

Left column of Fig. 7 shows that for counter-rotating inner left cylinder and exter-
nal cylinder (see rows (A)-(E)), in the small gap region, a reduction of the highest
and lowest values of the pressure, with respect to the pressure in the small gap re-
gion around the right cylinder (except row (B) which shows symmetry conditions),
is observed. Due to the counter-flowing streams and to the small pressure drop, a
vortex with center on the x1 axis is formed close to the inner left cylinder, near the
negative semi-major axis a, see left column of Fig. 8 rows (A)-(E). Left column of
Fig. 7 shows that for co-rotating inner right cylinder and external cylinder, see rows
(A) and (D), due to both co-flowing streams and high pressure drop in the small gap
region, no vortex is created near the positive semi-major axis a, see left column of
Fig. 8 rows (A) and (D). Left column of Fig. 7 also shows that for counter-rotating
inner right cylinder and external cylinder see rows (B) and (E), due to the shear
stress generation by the counter-flowing streams, a vortex is created with center on
the x1 axis and near the positive semi-major axis a, see left column of Figs. 8 rows
(B) and (E). For zero speed angular velocity of the inner right cylinder, see left
column of Fig. 7, row (C), due to the high pressure drop in the small gap region,
no vortex is created near the positive semi-major axis a, see left column of Fig. 8
row (C). Right column of Fig. 7 shows that for co-rotating inner left cylinder and
external cylinder, the pressure pattern around the left cylinder, is independent of
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the right cylinder rotation, see rows (A)-(E). The corresponding streamlines shown
on right column of Fig. 8, confirm the fact that around the inner left cylinder (ro-
tating always clockwise), in the small gap region, the streamlines are similar in all
cases, see rows (A)-(E). Right column of Fig. 7 shows that for counter-rotating
inner right cylinder and external cylinder (see rows (A), (C) as a special case, and
(D)), the pressure drop is reduced with respect to the pressure conditions around the
left cylinder. Due to the combined effects of counter-flow and low pressure drop,
a vortex with center on the x1 axis appears in the neighbourhood of the inner right
cylinder, near to the positive semi-major axis a, see right column of Fig. 8, rows
(A), (C), (D). On the other hand for co-rotating inner right cylinder and external
cylinder (see right column, rows (B) and (E), of Figs. 7 and 8), due to the com-
bined effects of co-flowing streams and high pressure drop, in the small gap region
vortices are not observed.

The central column of Figs. 7 and 8, shows the results for ω1=0. As the angular
speed of the left inner cylinder is a constant, the results show the effect of rotation
of the inner right cylinder on the pressure pattern and topology of the streamlines.
Due to the boundary conditions and the geometry of the mixer, in the small gap
region no vortices are generated when ω1=0. Fig. 7 shows that in the central region
of the mixer (widest region), the pressure field acquires intermediate values with
small pressure gradients that lead to the formation of critical points, as it is shown
in Fig. 8. The streamlines shown in Fig. 8 have been generated by calculating
5×105 locations of a lagrangian tracer along each closed orbit. The topology of the
streamlines shows that hyperbolic as well as elliptic critical points occur in the flow
field. In Fig. 8, it is possible to observe hyperbolic critical points on left and central
columns, row (B), on left and central columns, row (C), on left column, row (D),
and on left and central column, row (E)). Whereas elliptic points occur in almost
all the cases, with the exception of rows (B)-(E) with ω1=0 (central column). The
critical points we show in Fig. 8 probably are not the only ones, because on regions
of small velocity, flow structures may be present.

Fig. 9 shows the velocity vector (left column) and the negative pressure gradient
vector (right column) at points located along closed streamlines for two cases: case
(B) with C-ω1 (top row) and case (C) with CC-ω1 (bottom row). Panel on the left
column, top row shows that as the streamline encloses an elliptic critical point, its
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Figure 8: Stokes vortex mixing flow streamlines with fixed geometry and variable
forcing parameter ω̂ as it is specified by Table 1. Number of MLPG nodes is equal
to 2890.
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Poincaré index is equal to 1, see the corresponding case on Fig. 8. Panel on the
left column, bottom row shows that as the streamline encloses one hyperbolic point
(with Poincaré index equal to -1), and two elliptic points (with Poincaré index equal
to 1), its Poincaré index is equal to 1, see the corresponding case on Fig. 8. Panels
on the right column (top and bottom rows) show that the negative pressure gradient
vector allows to identify the pressure forces that balance the viscous stresses, acting
on the fluid element along its orbit. Panels on the right column clearly show the
regions of repulsive and attracting forces that characterize not only the behaviour
of streamlines converging into a saddle (hyperbolic) critical point, but also, in this
case, the behaviour of streamlines surrounding an elliptic critical point. Panels
on the right column also show that by travelling counter-clockwise once along the
streamline, and counting the number counter-clockwise revolutions made by the
negative pressure gradient vector with its base on the streamline and its head point-
ing in the direction of the negative gradient, it is found that its " Poincaré index"
is -1, as is the case of a streamline enclosing a saddle point, with repulsion and
attraction features. To the knowledge of the authors a detailed topological skeleton
of the pressure gradient vector field in active mixers with two inner cylinders has
not been reported in the literature. Previous studies on chaotic advection have been
mostly based on the topological skeleton of the velocity vector field.

Finally, we have evaluated the eigenvalues of the Jacobian matrix J

J =

∣∣∣∣∣ ∂v1
∂x1

∂v1
∂x2

∂v2
∂x1

∂v2
∂x2

∣∣∣∣∣ , (33)

at the elliptic critical point enclosed by the streamline shown in Fig. 9 top row (see
also Fig. 8 (B) right column), and at the critical points (one hyperbolic and two
elliptic) enclosed by the the streamline shown in Fig. 9 bottom row (see also Fig. 8
(C) left column).

Table 2, shows the eigenvalues of the Jacobian matrix. It is observed that for the
elliptic critical points (ECP), the real part of the complex numbers is much smaller
than the imaginary part, hence the critical points represent a vortex center. On the
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(C)
Figure 9: Complex Stokes vortex mixing flow. Top row: case (B) with C-ω1.
Bottom row: case (C) with CC-ω1, see Fig. 8 and Table 1. Left column velocity
vectors along a closed streamline. Right column: negative pressure gradient vectors
along a closed streamline.

Table 2: Eigenvalues of the Jacobian matrix J at the critical points enclosed by
the streamlines shown in Fig. 9. ECP means elliptical critical point. HCP means
hyperbolic critical pont. Numbers within parenthesis are the dimensionless coor-
dinates x1 and x2 of the critical point. R1 and R2 are real numbers. I1 and I2 are
imaginary numbers.

Case R1 R2 I1 I2

B (C-ω2l , C-ω2r, C-ω1). ECP(0,0) 2×10−6 2×10−6 4.5 -4.5
C (C-ω2l , ω2r=0, CC-ω1). HCP(0,0) 8.4 -8.4 0 0

C (C-ω2l , ω2r=0, CC-ω1). ECP(-0.02,-0.25) 3.5×10−4 3.5×10−4 10.4 -10.4
C (C-ω2l , ω2r=0, CC-ω1). ECP(-0.02,0.25) -3.6×10−4 -3.6×10−4 10.4 -10.4

other hand, Table 2 shows that for the hyperbolic critical point (HCP) the imaginary
part of the complex number is zero. Our findings confirm the fact that by using the
novel mixed-MLPG method the velocity field at internal critical points, satisfies the
nonlinear systems theory.

4 Conclusions

A novel MLPG Mixed finite-volume method, based on meshless independent in-
terpolations for the velocity vector, the deviatoric velocity strain tensor, the volu-
metric velocity strain tensor and the pressure field, has been presented to calculate
the pressure and velocity fields in steady state complex Stokes flows. This method
does not involve any LBB conditions, and the computed pressure field is smooth
and does not suffer from the malady of a checkerboard pattern. The comparison be-
tween the analytical solution and the results provided by the novel mixed method
for the case of eccentric circular cylinders was excellent. The numerical simula-
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tion of a new complex Stokes vortex mixing flow shows that complex flow patterns
are generated that may lead to mixing enhancement of highly viscous fluids. The
velocities, and the spatial derivatives of the velocity and pressure fields, at points
along the orbits of massless tracers, have been successfully interpolated by using
the MLS numerical technique. The mixed-MLPG method can be used to verify
results provided by theoretical approaches aimed to identify in a simple way the
critical points in the flow domain. We propose to use the mixed-MLPG method to
obtain the topological skeleton of the pressure gradient vector field in steady state
complex Stokes flows.
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