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Surface Heating Problems of Thermal Propagation in
Living Tissue Solved by Differential Transformation

Method
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Abstract: The hybrid method, which combines differential transformation and
finite difference approximation techniques, is utilized to solve hyperbolic-type heat
conduction (bio-heat) problems in one dimension. To capture the thermal behavior
in a living tissue subjected to constant or exponential surface heating with the ther-
mal wave model of bio-heat transfer, the relaxation time and the heat wave, which
propagates in a direction perpendicular to the skin surface, are considered. The re-
sults show that the hybrid method can be used to solve hyperbolic heat conduction
problems accurately.
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1 Introduction

In the analysis of heat conduction problems, the classical Fourier heat conduction
law is often adopted under the assumption that the heat transfer speed is sufficiently
fast for the boundary or initial conditions to be applied to the objects immediately.
This kind of analysis is only suitable for macroscopic heat transfer problems.

When analyzing microscopic heat transfer or very-low-temperature (zero degrees
K) problems, the classical Fourier heat conduction law is no longer valid. The
hyperbolic model is applied to such problems.

Chen and Liu (1998) applied the differential transformation method to solve bound-
ary value problems. Jang, Chen and Liu (2001) used the two-dimensional dif-
ferential transformation method to solve partial differential equations. Chen and
Ho (1996) applied this method to solve eigenvalue problems and later (1999) pro-
posed the two-dimensional differential transform to solve partial differential equa-
tions. Yu and Chen (1998) used the differential transformation method to solve the
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third-order Blasius equation of boundary layer flow and investigated the optimal fin
length of a convective-radiative rectangular-profile longitudinal fin under convec-
tive boundary conditions and variable thermal conductivity using the method. Chen
and Ju (2004) employed the differential transformation method to solve advective-
dispersive transport problems. Chen, Lai and Liu (2009) used hybrid differential
transformation and the finite difference method to analyze nonlinear micro circu-
lar plates. Deng and Liu (2002) conducted an analytical study on bio-heat transfer
problems with spatial or transient heating on the skin surface. Rabin and Shitzer
(1998) simulated the heat transfer effects of biological tissue after cryosurgery.
Torvi and Dale (1994) discussed thermal effects of burnt skin under flash fire con-
ditions. Liu (2008) used the Laplace transform to investigate the thermal behavior
in a living tissue subjected to constant, sinusoidal, or step surface heating with the
thermal wave model of bio-heat transfer. Liu (2011) employed a dual-phase-lag
model to simulate the effect of micro-structural interactions in the fast transient
process of heat transport.

In the present study, the differential transformation method is used to solve hyper-
bolic heat transfer equations in bio-heat transfer problems.

2 Differential transformation method

If x = x(t) is analytic in time domain T , the differential transformation of x at t = t0
can be expressed as:

X(k; t0) = M(k)
[

dk

dtk (q(t)x(t))
]

t=t0

, k ∈ K (1)

where k belongs to the set of non-negative integers denoted as the K domain,
X(k; t0) is the spectrum of x(t) at t = t0, M(k)( ) is the weighting factor, and
q(t)(q(t) 6= 0) is regarded as a kernel corresponding to x(t).
If q(t) and x(t) can be expended using a Taylor series, the inverse transformation
of Eq.(1) can be expressed as:

x(t) =
1

q(t)

∞

∑
k=0

(t− t0)
k

k!
X(k; t0)
M(k)

, ∀ t ∈ T (2)

Generally, the weighting factor M(k) = Hk

k! , where H is the time horizon of interest,
and kernel q(t) = 1. Then, Eq. (1) becomes:

X(k) =
Hk

k!

[
dkx(t)

dtk

]
t=0

, k ∈ K (3)



Surface Heating Problems of Thermal Propagation 39

The inverse transformation is:

x(t) =
∞

∑
k=0

( t
H

)k
X(k) , ∀ t ∈ T (4)

3 Hyperbolic-type bio-heat transfer problems

When the heat transfer effect occurs in a very short time, with a very high tempera-
ture gradient, or in an environment with 0 degrees K, the classical heat convection
equation is no longer valid. Vernotte (1958) proposed a modified heat flux model
for these problems.

3.1 Hyperbolic- type heat conduction equation

Consider the following 3-dimensional Fourier heat conduction equation:

~q =−K∇T (5)

where~q is the heat flux, K is the conductivity(W/m · ◦C), and T is the temperature
of the system(◦C). The modified heat flux model (Vernotte 1958) is:

~q+ τ
∂~q
∂ t

=−K∇T (6)

where τ = α

V 2 is the relaxation time (sec), α is the thermal diffusivity (m2/sec), and
V is the heat wave velocity (m/sec). For material with homogeneous properties, the
relaxation time is about 10−8 ∼ 10−14s. Since the heat wave moves very fast, it is
very difficult to observe heat wave phenomena. In contrast, bio-tissue is composed
of various materials with different properties; its relaxation is about 20∼ 30s.

The bio-heat heat equation can be written as:

−∇ ·~q+WbCb(Tb−T )+qm +qr = ρC
∂T
∂ t

(7)

where ρ, C, and T are the density, specific heat, and temperature of the bio-tissue,
respectively. Wb and Cb are the perfusion rate and specific heat of blood, respec-
tively. qm is the heat generation from metabolism, qr is the heat source term, and
Tb is blood temperature inside capillaries.

Substituting Eq. (6) into Eq. (7) yields:

∇ · (K∇T )+WbCb(Tb−T )+qm +qr + τ

(
−WbCb

∂T
∂ t

+
∂qm

∂ t
+

∂qr

∂ t

)
= ρC

(
τ

∂ 2T
∂ t2 +

∂T
∂ t

)
(8)

Eq.(8) is a hyperbolic-type heat conduction equation.
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3.2 Hyperbolic-type heat conduction equation in cylindrical coordinates

Consider a 2-dimensional cylindrical coordinate system in r and z directions and
let qm =constant and qr = 0. From Eq. (8), the hyperbolic-type heat conduction
equation can be expressed in cylindrical coordinates as:

K
(

1
r

(
∂T
∂ r

)
+

∂ 2T
∂ r2 +

∂ 2T
∂ z2

)
+WbCb(Tb−T )+qm−τWbCb

∂T
∂ t

= ρC
(

τ
∂ 2T
∂ t2 +

∂T
∂ t

)
(9)

Assume that Ti(r,z,0) is the initial steady temperature. Then, Eq. (9) becomes:

K
(

1
r

(
∂Ti

∂ r

)
+

∂ 2Ti

∂ r2 +
∂ 2Ti

∂ z2

)
+WbCb(Tb−Ti)+qm = 0 (10)

Let θ = T −Ti. From Eq. (9) and Eq. (10):

ρCτ
∂ 2θ

∂ t2 +(ρC + τWbCb)
∂θ

∂ t
+WbCbθ −K

(
1
r

(
∂θ

∂ r

)
+

∂ 2θ

∂ r2 +
∂ 2θ

∂ z2

)
= 0 (11)

A differential transformation to time variable t yields:

ρCτ
(k +1)(k +2)

H2 U (k +2)+(ρC + τWbCb)
(k +1)

H
U (k +1)+WbCbU (k)

= K
(

1
r

(
∂U (k)

∂ r

)
+

∂ 2U (k)
∂ r2 +

∂ 2U (k)
∂ z2

)
(12)

where U (k) = U (r,z,k) is the differential transformation function at θ .

Let r and z divide into N1 and N2 equal parts, with the distance of each part being ∆r
and ∆z. Take the central difference approximation of Eq. (12). Then, the iteration
equation of each finite difference grid (ri,z j) can be expressed as:

ρCτ
(k +1)(k +2)

H2 Ui, j (k +2)+(ρC + τWbCb)
(k +1)

H
Ui, j (k +1)+WbCbUi, j (k)

= K

 1
ri, j

(
Ui+1, j(k)−Ui−1, j(k)

2∆r

)
+ Ui+1, j(k)−2Ui, j(k)+Ui−1, j(k)

(∆r)2

+Ui, j+1(k)−2Ui, j(k)+Ui, j−1(k)
(∆z)2

 (13)

4 Numerical simulation

In the present study, 1-dimensional bio-heat transfer problems with various bound-
ary conditions are simulated. Human skin is taken as the bio-tissue with ρ =
1000kg/m3 and C = Cb = 4200J/kg◦C.



Surface Heating Problems of Thermal Propagation 41

4.1 Case 1: 1-dimensional surface heating with constant temperature

In case 1, the temperature variation perpendicular to the skin surface is simulated
(see Fig. 1).

 
Figure 1: Physical model for case 1.

The governing equation for case 1 can be expressed as:

ρCτ
∂ 2θ

∂ t2 +(ρC + τWbCb)
∂θ

∂ t
+WbCbθ −K

∂ 2θ

∂ z2 = 0 (14)

When human skin comes into contact with a hot metal, its temperature can be seen
as constant. Assuming that there is no heat flux at z = L, the initial and boundary
conditions are:

θ(z,0) = 0 (15)

∂θ(z,0)
∂ t

= 0 (16)

θ(0, t) = 12 (17)

∂θ(L, t)
∂ z

= 0 (18)

where L = 0.01208m.



42 Copyright © 2011 Tech Science Press CMES, vol.72, no.1, pp.37-51, 2011

Applying the differential transformation to Eq. (15)-(17) yields:

Ui(0) = 0 (19)

Ui(1) = 0 (20)

U1(0) = 12,U1(k) = 0k 6= 0 (21)

UN1(k)−UN1−1(k) = 0 (22)

In Eq. (14), only heat conduction along the z direction is considered. The differen-
tial transformation form of Eq. (14) is:

For τ = 0:

Ui, j (k +1) =

H
ρC (k +1)

{
−WbCbUi, j (k)+K

(
Ui, j+1 (k)−2Ui, j (k)+Ui, j−1 (k)

(∆z)2

)}
(23)

For τ 6= 0:

Ui, j (k +2) =

H2

ρCτ (k +1)(k +2)

{
−(ρC + τWbCb)

(k+1)
H Ui, j (k +1)−WbCbUi, j (k)

+K
(

Ui, j+1(k)−2Ui, j(k)+Ui, j−1(k)
(∆z)2

) }
(24)

4.2 Case 2: 1-dimensional surface heating with exponential function

When human skin comes into contact with a hot metal, the temperature of the
mental surface decreases with time (see Fig. 2). The human skin temperature can
thus be seen as an exponential function, eβ t .

Assuming that there is no heat flux at z = L, the governing equation and initial and
boundary conditions are:

ρCτ
∂ 2θ

∂ t2 +(ρC + τWbCb)
∂θ

∂ t
+WbCbθ −K

∂ 2θ

∂ z2 = 0 (25)

θ(z,0) = 0 (26)

∂θ(z,0)
∂ t

= 0 (27)

θ(0, t) = 100 · eβ t (28)

∂θ(L, t)
∂ z

= 0 (29)
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Figure 2: Physical model for case 2.

Applying the differential transformation to Eq. (26)-(29) yields:

Ui(0) = 0 (30)

Ui(1) = 0 (31)

U1(k) = 100
(βH)k

k!
eβ ·n·H , n : time step (32)

UN1(k)−UN1−1(k) = 0 (33)

Here, t ′ = t
tmax

, where tmax is the time required for θ to decrease to 0. That is, when
β =−0.01 and −0.02, tmax ≈ 1000s, and when β =−0.1, tmax ≈ 100s.

5 Results and discussion

For case 1:
Fig. 3 shows the temperature variation solved by a sixth-order differential trans-
formation with a time step of 0.01s at z = 0.01m for 3 grid sizes for case 1 with
parameters set to τ = 0s, K = 0.2W /m · ◦C, Wb = 0.5kg/m3 · s. It can be observed
that m = 101 is the best grid number for τ = 0s.

Fig. 4 shows the temperature variation solved by a seventh-order differential trans-
formation with a time step of 0.1s at z = 0.01m for 3 grid sizes for case 1 with
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Figure 3: Grid independence (τ = 0s,z = 0.01m, K = 0.2W /m · ◦C, Wb = 0.5kg/m3 ·
s).

 

Figure 4: Grid independence (τ = 20s,z = 0.01m,K = 0.2W /m ·◦C, Wb = 0.5kg/m3 ·
s).
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Figure 5: Simulation results compared to those reported by Liu (2008) with K =
0.2W /m · ◦C, Wb = 0.5kg/m3 · s, z = 0.00208m.

Figure 6: Simulation results compared to those reported by Liu (2008) with K =
0.2W /m · ◦C, Wb = 0.5kg/m3 · s, z = 0.01m.
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parameters set to τ = 20s, K = 0.2W /m · ◦C, Wb = 0.5kg/m3 · s. For insufficient
grid sizes (m < 10001), some numerical instability influences the simulation accu-
racy.

The simulation results (Fig.5-6) show good agreement with those reported by Liu
(2008). When τ = 0s, the temperature distributions increase smoothly. When
τ = 20s, the heat waves move with a finite velocity, which can be expressed as
V =

√
α/τ , the time heat wave required to reach z=0.00208m is t = 0.00208/V =

0.00208/
√

0.2/(1000×4200×20) = 42.627s, and

t = 0.01/V = 0.01/
√

0.2/(1000×4200×20) = 204.939s

for z = 0.01m.

The blood flow rate plays a very important role in bio-heat transfer. Fig. 7 shows
that the blood temperature is higher on the skin surface than it is inside capillaries.
The blood flow takes the heat away proportionally.

 
Figure 7: Temperature distribution for various blood flow rates Wb with τ = 20s,
t = 160s, K = 0.2W /m · ◦C.

For case 2:
Fig. 8-9 show the results of grid independence. The appropriate grid sizes are 101
for τ = 0s and 3001 for τ = 20s.
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Figure 8: Grid independence (τ = 0s, t ′ = 0.02, β = −0.01, K = 0.2W /m · ◦C,
Wb = 0.5kg/m3 · s).

 
Figure 9: Grid independence (τ = 20s, t ′ = 0.02, β = −0.01, K = 0.2W /m · ◦C,
Wb = 0.5kg/m3 · s).
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Figure 10: Temperature distributions for various values of t ′ (τ = 0s, β = −0.01,
K = 0.2W /m · ◦C, Wb = 0.5kg/m3 · s).

 
Figure 11: Temperature distributions for various values of t ′ (τ = 20s, β =−0.01,
K = 0.2W /m · ◦C, Wb = 0.5kg/m3 · s).
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Figure 12: Temperature distribution for various values of β and τ (t ′ = 0.02, K =
0.2W /m · ◦C, Wb = 0.5kg/m3 · s).

 
Figure 13: Temperature distribution for various values of blood flow rate Wb (τ =
20s, t ′ = 0.02, β =−0.01, K = 0.2W /m · ◦C).
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Fig. 10-11 show that with increasing value of t ′, the temperature on the skin surface
decreases, but heat wave penetrates deeper into the skin. It is worth mentioning that
for τ = 20s, β = −0.01, K = 0.2W /m · ◦C, and Wb = 0.5kg/m3 · s, the heat wave
propagates deeper with increasing time and the time required to reach z = 0.001m
is t ′ = 0.001/

√
0.2/(1000×4200×20)/1000 = 0.0205s.

Fig. 12 shows that the temperature changes more apparently with largerβ . Forτ =
0, the velocity of heat wave propagation is infinity, and for τ 6= 0, the heat wave
propagates with a velocity of V =

√
α/τ .

Fig. 13 shows that an increase in the blood flow rate decreases the temperature but
it does not affect the penetration depth.

6 Conclusion

Differential transformation combined with the finite difference method was used
to simulate 1-dimensional thermal propagation for living tissue for surface heating
problems. The simulation results show good accuracy. Due to the relaxation time
effect, the heat transfer propagates in the form of a heat wave, whose velocity can be
expressed as V =

√
α/τ =

√
K/ρCτ . The thermal conductivity, K, is proportional

to V 2.
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