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A Fast Multipole Dual Boundary Element Method for the
Three-dimensional Crack Problems

H. T. Wang1,2 and Z. H. Yao3

Abstract: A fast boundary element solver for the analysis of three-dimensional
general crack problems is presented. In order to effectively model the embedded
or edge cracked structures a dual boundary integral equation (BIE) formulation is
used. By implementing the fast multipole method (FMM) to the discretized BIE,
structures containing a large number of three-dimensional cracks can be readily
simulated on one personal computer. In the FMM framework, a multipole expan-
sion formulation is derived for the hyper-singular integral in order that the multipole
moments of the dual BIEs containing the weakly-, strongly- and hyper-singular ker-
nels are collected and translated with a unified form. In the numerical examples, the
accuracy of the proposed method for the evaluations of both the crack opening dis-
placement (COD) and stress intensity factor (SIF) is tested, and its performance in
both the memory consumption and solution time in comparison with several other
algorithms is investigated. The results are shown to demonstrate the effectiveness
of this method for large-scale crack problems.

Keywords: dual boundary element method, fast multipole, large-scale, crack
opening displacement, stress intensity factor

1 Introduction

The main attractive feature of the boundary element method (BEM) for the anal-
ysis of linear elastic fracture mechanics (LEFM) is that only the boundary of the
analyzed domain needs to be discretized (Cruse 1996). This results not only in the
simplification of the crack meshing process, but also in a reduction of the degrees
of freedom with respect to other numerical methods. In addition, the BEM pro-
vides an efficient way to deal with the inherent nature of singularity at the crack tip
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via special treatments on only the crack tip boundary elements. Direct application
of the displacement BEM to crack problems leads to a degenerated system matrix
when two crack surfaces coincide. To overcome this mathematical difficulty, sev-
eral techniques have been developed in the last several decades, including the crack
Green’s function method (Snyder and Cruse 1975), the displacement discontinu-
ity method (Weaver 1977) and the multi-region method (Blandford, Ingraffea and
Liggett 1981). The dual boundary element method (DBEM) is a novel technique
that provides a single-region formulation for the analysis of general crack prob-
lems. The DBEM was first introduced for the analysis of two-dimensional crack
problems by Portela and Aliabadi (1992) and three-dimensional crack problems by
Mi and Aliabadi (1992). This technique was then extensively studied and success-
fully applied to a wide range of fracture mechanics problems (Portela, Aliabadi and
Rooke 1993, Mi and Aliabadi 1994, Chen and Chen 1995, Salgado and Aliabadi
1996, Young 1996, Aliabadi 1997, Cisilino and Aliabadi 1997 and 2004, Chen,
Chen, Yeih and Shieh 1998, Wilde and Aliabadi 1999, Partheymüller, Haas and
Kuhn 2000, Burczynski and Beluch 2001, Chao, Chen and Lin 2001, Albuquerque,
Sollero and Aliabadi 2004, Purbolaksono and Aliabadi 2005, Kebir, Roelandt and
Chambon 2006).

Conventionally, the system matrix denoted by [A] arising from the BEM is fully-
populated. This feature poses a serious challenge to the BEM since to solve the
equation system [A]{X} = {B} by use of standard direct or iterative solvers, a com-
putational cost of O(N3) or O(N2) is required, where N is the number of unknowns.
In order to improve the efficiency of the BEM, much effort has been devoted to the
implementation of fast algorithms to the BEM solutions. Of particular interest was
the fast multipole method (FMM) originally proposed by Rokhlin (1985) for clas-
sical potential theory. The FMM has been successfully extended for the fast BEM
solutions for large-scale problems in the area of elasticity (Fu, Klimkowski, Rodin
and colleagues 1998, Popov and Power 2001, Takahashi, Nishimura and Kobayashi
2003, Liu, Nishimura, Otani and colleagues 2005, Wang and Yao 2005, Liu 2006,
Sanz, Bonnet and Dominguez 2008, Wang, Hall, Yu and Yao 2008, Wang and Yao
2008). A comprehensive review can be found in the literature (Nishimura 2002).

For the fast multipole BEM solutions of crack problems, we categorize recent in-
vestigations into two groups according to the dimensional cases. One group con-
sists of researches concerning two-dimensional cracks. Helsing (1999) and Hels-
ing and Jonsson (2002) used the FMM accelerated BEM to treat two-dimensional
many elastic cracks and demonstrated the efficiency of the proposed algorithms in
large scales. Englund (2006) combined the FMM and a modified integral equation
formulation to compute accurately the stress field in a two-dimensional finite edge-
cracked domain. Liu (2008) developed a new fast multipole formulation for the hy-



A Fast Multipole Dual Boundary Element Method 117

persingular BIE in conjunction with the DBEM to deal with two-dimensional multi-
domain elastostatic problems with inclusions and cracks. In his study, the crack
is discretized with piecewise constant boundary elements. Wang and Yao (2006)
proposed a fast multipole DBEM formulation and a special crack-tip element for
the two-dimensional general fatigue crack growth problems. Another group of pa-
pers contribute to the fast BEM solutions of three-dimensional crack problems.
Nishimura, Yoshida and Kobayashi (1999) proposed a FM-BEM based on the ef-
ficient solid harmonic expansion formulation of the hypersingular kernels to solve
three-dimensional many crack problems in an infinite domain for the Laplace equa-
tion using piecewise constant elements. Then Yoshida, Nishimura and Kobayashi
(2001) applied the FMM-accelerated Galerkin BEM to three-dimensional elastic
crack problems in an infinite domain using piecewise linear elements. Lai and
Rodin (2003) developed a FM-BEM in conjunction with a weakly singular kernel
to solve three-dimensional many crack problems in an infinite domain. In their
work, the quadratic elements are used in order to get better results in comparison
with linear or constant elements.

In addition to the FMM, another fast algorithm increasingly used recently for elas-
tic crack problems is the Adaptive Cross Approximation method (ACA) proposed
by Bebendorf and Rjasanow (2003). The ACA is an algebraic method whose ap-
proximation is based only on the knowledge of indivisual matrix entries. This
kernel-independent feature makes it possible for the ACA to be developed as a
black-box fast BEM solver. Researches on the ACA-accerelated DBEM for three-
dimensionl general elastic crack problems have been reported by Kolk, Weber and
Kuhn’s group (Kolk, Weber and Kuhn 2005, Kolk and Kuhn 2006, Weber, Kolk and
Kuhn 2009) and Aliabadi’s group (Benedetti, Aliabadi and Davì 2008, Benedetti,
Milazzo and Aliabadi 2009, Benedetti and Aliabadi 2010). It was shown in the liter-
ature (Buchau, Rucker, Rain and colleagues 2003, Brancati, Aliabadi and Benedetti
2009, Brunner, Junge, Rapp and colleagues 2010) that the ACA, especially the
partially-pivoted ACA, has better efficiency in computational speed than the FMM.
However, in contrast with the frequent report that the fast multipole BEM is capa-
ble for large-scale problems with several hundred thousand and even millions of
unknowns, there is little report on the application of the ACA-accelerated BEM for
the modeling of more than 100,000 unknowns. The major reason behind this is that
the cost of storing the whole ACA matrix is approximately O(NlogN) (Bebendorf
and Rjasanow 2003), which makes ACA less efficient in storage than the FMM
when N reaches up to a large value. The fast multipole BEM solver is considered
to be competitive for the modeling of large and complex cracked structures whose
scale beyond ACA’s ability. To the best of the knowledge of the authors no applica-
tion of the FMM in conjunction with the DBEM to three-dimensional general crack
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problems is reported in the literature.

In this paper, a fast multipole DBEM for the analysis of three-dimensional gen-
eral crack problems is presented. First, the basic idea of the DBEM for the three-
dimensional linear elastic fracture mechanics is briefly reviewed and special treat-
ments on both the element types and the nature of stress singularity at crack fronts
are discussed. Next major features of the fast multipole DBEM in three-dimensions
are illustrated, highlighting a multipole expansion formulation derived for the hyper-
singular integral in order that the multipole moments of the dual BIEs containing
the weakly-, strongly- and hyper-singular kernels are collected and translated in a
unified way. The numerical examples demonstrate both the accuracy and efficiency
of the proposed method.

2 Dual Boundary Element Method for Three-dimensional Fracture Mechan-
ics

The model of an elastic structure containing several edge and embedded cracks is
shown in Fig. 1. Let V and S0 denote the domain and boundary of the elastic solid,
respectively; S+

C and S−C the two coincide surfaces of the cracks.

The dual boundary integral equations (DBIEs) for three-dimensional elastic frac-
ture mechanics without body force are expressed as (Mi and Aliabadi 1992, Cisilino
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Figure 1: Model of an elastic solid containing edge and embedded cracks
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and Aliabadi 1997),

ci j (x)u j (x)+
∫

S0

[
T ∗i j (x,y)u j (y)−U∗i j (x,y) t j (y)

]
dS (y)

=−
∫

S+
C

T ∗i j (x,y)∆u j (y)dS (y) (x ∈ S0)
(1a)

1
2
[
u+

i (x)+u−i (x)
]
+
∫

S0

[
T ∗i j (x,y)u j (y)−U∗i j (x,y) t j (y)

]
dS (y)

=−
∫

S+
C

T ∗i j (x,y)∆u j (y)dS (y),
(
x ∈ S−C

) (1b)

1
2
[
t+i (x)− t−i (x)

]
+
∫

S0

[
S∗i j (x,y)u j (y)−D∗i j (x,y) t j (y)

]
dS (y)

=−
∫

S+
C

S∗i j (x,y)∆u j (y)dS (y),
(
x ∈ S+

C

) (1c)

where x and y denote the source and field points, respectively; ui and ti(i = 1,2,3)
are the boundary displacement and traction vectors respectively; ci j (x) is a free
term related to the shape of the boundary at point x; ∆ui = u+

i − u−i is the relative
displacement between S+

C and S−C ; U∗i j (x,y) and T ∗i j (x,y) are the kernel functions of
3-D elasticity defined as,

U∗i j (x,y) =
1

16πG(1− v)r
[(3−4v)δi j + r,i r, j] (2a)

T ∗i j (x,y) =
1

8π(1− v)r2

{
(1−2v)(r, j ni− r,i n j)−

∂ r
∂n

[(1−2v)δi j +3r,i r, j]
}

(2b)

with r denoting the distance of x and y, and G, v being the shear modulus and
Poisson’s ratio, respectively. D∗i j (x,y) and S∗i j (x,y) are derivatives of U∗i j (x,y) and
T ∗i j (x,y), respectively,

D∗i j (x,y) = nk (x)

[
λδki

∂U∗l j (x,y)

∂xl
+G

(
∂U∗k j (x,y)

∂xi
+

∂U∗i j (x,y)
∂xk

)]

=
1

8π (1− v)r2

{
(1−2v)

[
δi j

rknk (x)
r

+
rin j (x)− r jni (x)

r

]
+3

rir jrk

r3 nk (x)
}

(3a)
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S∗i j (x,y) = nk (x)

[
λδki

∂T ∗l j (x,y)

∂xl
+G

(
∂T ∗k j (x,y)

∂xi
+

∂T ∗i j (x,y)
∂xk

)]

=− G
4π(1− v)r3

3 ∂ r
∂n

[
5r′ir′ jr′knk (x)− (1−2v)r′ jni (x)

]
+(1−4v)n j (y)ni (x)

−3v
[
r′ir′ jnk (y)nk (x)+ r′kr′ jni (y)nk (x)+δi jr′knk (x) ∂ r

∂n + r′in j (x) ∂ r
∂n

]
−(1−2v) [ni (y)n j (x)+nk (y)nk (x)δi j +3r′ir′kn j (y)nk (x)]


(3b)

with nk (x) and nk (y) being the outward normal vectors at point x and y, respec-
tively; λ is the Lame constant.

In order to discretize DBIEs we use collocation method and eight-node quadratic
element. Note from Eqs.(1)-(3) that the boundary integrals have weak, strong and
hyper singularities. To deal with the strongly- and hyper-singular integrals the con-
cept of finite part integral is used, which requires that the traction and displace-
ment derivatives should be Hölder continuous. In order to satisfy such continuity
requirements during the meshing process for discretization of the boundary in a
simple and efficient way, we adopt the modeling strategy proposed by Mi and Ali-
abadi (1992), using discontinuous elements (see Fig. 2(a)) for the crack modeling,
edge-discontinuous elements (see Fig. 2(b)) on surfaces approaching the corner or
intersecting the crack surface, and continuous elements (see Fig. 2(c)) on all other
surfaces. The positioning parameter λ (0 < λ < 1) of collocation nodes in Fig. 2
stands for the degree of continuity.

In order to achieve the square root displacement variation near the crack front, the
quarter point discontinuous elements are generated by simply moving the two mid-
side geometry points of each crack-front element to the quarter position, as shown
in Fig. 3. The quarter point technique is only straightly applicable to straight
cracks. For curved cracks the crack-front elements with special shape functions
may be adopted in the future work.

The stress intensity factors (SIFs) are calculated using the two-point crack open-
ing displacement formulae. The steps are: 1) The relative displacements of two
surfaces of the crack, ∆u, at the collocation points are obtained by the DBEM anal-
ysis; 2) ∆u are extrapolated to the position of geometry points; 3) SIFs are given, at
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Figure 2: Element Types: (a) discontinuous element (b) edge-discontinuous ele-
ment (c) continuous element
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Figure 3: Generation of quarter point element
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geometry point Q in Fig.3, by,

KQ
I =

4KP1
I −KP2

I
3

KQ
II =

4KP1
II −KP2

II
3

KQ
III =

4KP1
III−KP2

III
3

(4)

where

KP
I =

G
2(1− v)

√
cosϕ

√
π

2lPQ
∆uP

n

KP
II =

G
2(1− v)

√
cosϕ

√
π

2lPQ
∆uP

t2

KP
III =

G
2
√

cosϕ

√
π

2lPQ
∆uP

t1

(5)

with lPQ being the distance of P (representing P1 or P2) and Q; ∆un and ∆ut being
the normal and tangent components of ∆u at P under the local coordinate system
defined at Q (see Fig.3).

3 Fast Multipole Dual Boundary Element Method

3.1 Multipole Expansion

A unified form of the multipole expansions of integrals containing U∗i j (x,y) and
T ∗i j (x,y) for 3-D elasticity has been established in ref. (Wang, Hall, Yu and Yao
2008), adopting a concise expansion formulation proposed in ref. (Yoshida 2001).
We extend this form for the multipole expansions of integrals containing D∗i j (x,y)
and S∗i j (x,y).

Considering a reference point O close to y and a threshold of
∣∣∣−→Oy
∣∣∣< ∣∣∣−→Ox

∣∣∣ is satis-
fied, the integrals in Eq. (1a, 1b) can be expanded around O as,

∫
S0

U∗i j (x,y) t j (y)dS (y) =

1
8πG

∞

∑
n=0

n

∑
m=−n

(
FS

i j,n,m

(−→
Ox
)

MU1
j,n,m (O)+GS

i,n,m

(−→
Ox
)

MU2
n,m (O)

)
(6a)
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∫
S0

T ∗i j (x,y)u j (y)dS (y) =

1
8πG

∞

∑
n=0

n

∑
m=−n

(
FS

i j,n,m

(−→
Ox
)

MT 1
j,n,m (O)+GS

i,n,m

(−→
Ox
)

MT 2
n,m (O)

)
(6b)

∫
S+

c

T ∗i j (x,y)∆u j (y)dS (y) =

1
8πG

∞

∑
n=0

n

∑
m=−n

(
FS

i j,n,m

(−→
Ox
)

MT 1,Sc
j,n,m (O)+GS

i,n,m

(−→
Ox
)

MT 2,Sc
n,m (O)

)
(6c)

where (Yoshida 2001)

FS
i j,n,m

(−→
Ox
)

=
λ +3G
λ +2G

δi jSn,m

(−→
Ox
)
− λ +G

λ +2G

(−→
Ox
)

j

∂

∂xi
Sn,m

(−→
Ox
)

GS
i,n,m

(−→
Ox
)

=
λ +G
λ +2G

∂

∂xi
Sn,m

(−→
Ox
) (7)

MU1
j,n,m (O) ,MU2

n,m (O) ,MT 1
j,n,m (O) ,MT 2

n,m (O) ,MT 1,Sc
j,n,m (O) and MT 2,Sc

n,m (O) are called mul-
tipole moments. Detailed expressions of the multipole moments are given in the
Appendix. Sn,m are called solid spherical harmonic functions (Yoshida 2001) as
defined in the Appendix.

According to the relations of D∗i j (x,y)/S∗i j (x,y) and U∗i j (x,y)/T ∗i j (x,y), see Eq.(3),
straightforward expansions for the integrals in Eq.(1c) containing D∗i j (x,y) and
S∗i j (x,y) give,

∫
S0

D∗i j (x,y) t j (y)dS (y)

=
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂FS
l j,n,m

(−→
Ox
)

∂xl
+G

∂FS
k j,n,m

(−→
Ox
)

∂xi
+

∂FS
i j,n,m

(−→
Ox
)

∂xk

MU1
j,n,m (O)

+
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂GS
l,n,m

(−→
Ox
)

∂xl
+G

∂GS
k,n,m

(−→
Ox
)

∂xi
+

∂GS
i,n,m

(−→
Ox
)

∂xk

MU2
n,m (O)

(8a)
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∫
S0

S∗i j (x,y)u j (y)dS (y)

=
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂FS
l j,n,m

(−→
Ox
)

∂xl
+G

∂FS
k j,n,m

(−→
Ox
)

∂xi
+

∂FS
i j,n,m

(−→
Ox
)

∂xk

MT 1
j,n,m (O)

+
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂GS
l,n,m

(−→
Ox
)

∂xl
+G

∂GS
k,n,m

(−→
Ox
)

∂xi
+

∂GS
i,n,m

(−→
Ox
)

∂xk

MT 2
n,m (O)

(8b)

∫
S+

c

S∗i j (x,y)∆u j (y)dS (y)

=
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂FS
l j,n,m

(−→
Ox
)

∂xl
+G

∂FS
k j,n,m

(−→
Ox
)

∂xi
+

∂FS
i j,n,m

(−→
Ox
)

∂xk

MT 1,Sc
j,n,m (O)

+
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂GS
l,n,m

(−→
Ox
)

∂xl
+G

∂GS
k,n,m

(−→
Ox
)

∂xi
+

∂GS
i,n,m

(−→
Ox
)

∂xk

MT 2,Sc
n,m (O)

(8c)

The essence of Eq.(8) is that the multipole moments of U∗i j (x,y) and T ∗i j (x,y) are
repeatedly used for the evaluations of the integrals of D∗i j (x,y) and S∗i j (x,y). There-
fore, direct expansions of D∗i j (x,y) and S∗i j (x,y) are avoided. Notice that except
for the upper index (U , T or T , Sc) for the multipole moments, the multipole ex-
pansion formulas for all integrals, at any boundary integral equation in Eq.(1), are
unified. This implies that other expansion and translation operator formulas are
also unified for all integrals at any boundary integral equation if they are derived
using the multipole expansions. Hence we omit the difference in the upper index
and use M1

j,n,m (O) and M2
n,m (O) instead of the original six coefficients to carry out

the subsequent translation operations.
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3.2 Local Expansion

Considering another reference point O′ close to x and a threshold of
∣∣∣−→O′x∣∣∣< ∣∣∣−→O′y∣∣∣ is

satisfied, the integrals in Eq. (1) can be expanded around O′ as a ‘local expansion’
form,

∫
S0

U∗i j (x,y) t j (y)dS (y) =

1
8πG

∞

∑
n=0

n

∑
m=−n

(
FR

i j,n,m

(−→
O′x
)

LU1
j,n,m

(
O′
)
+GR

i,n,m

(−→
O′x
)

LU2
n,m
(
O′
))

(9a)

∫
S0

T ∗i j (x,y)u j (y)dS (y) =

1
8πG

∞

∑
n=0

n

∑
m=−n

(
FR

i j,n,m

(−→
O′x
)

LT 1
j,n,m

(
O′
)
+GR

i,n,m

(−→
O′x
)

LT 2
n,m
(
O′
))

(9b)

∫
S+

c

T ∗i j (x,y)∆u j (y)dS (y) =

1
8πG

∞

∑
n=0

n

∑
m=−n

(
FR

i j,n,m

(−→
O′x
)

LT 1,Sc
j,n,m

(
O′
)
+GR

i,n,m

(−→
O′x
)

LT 2,Sc
n,m

(
O′
))

(9c)

∫
S0

D∗i j (x,y) t j (y)dS (y)

=
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂FR
l j,n,m

(−→
O′x
)

∂xl
+G

∂FR
k j,n,m

(−→
O′x
)

∂xi
+

∂FR
i j,n,m

(−→
O′x
)

∂xk

LU1
j,n,m

(
O′
)

+
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂GR
l,n,m

(−→
O′x
)

∂xl
+G

∂GR
k,n,m

(−→
O′x
)

∂xi
+

∂GR
i,n,m

(−→
O′x
)

∂xk

LU2
n,m
(
O′
)

(9d)
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∫
S0

S∗i j (x,y)u j (y)dS (y)

=
1

8πG

∞

∑
n=0

n

∑
m=−n

nk

λδki

∂FR
l j,n,m

(−→
O′x
)

∂xl
+G

∂FR
k j,n,m

(−→
O′x
)

∂xi
+

∂FR
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where (Yoshida 2001)

FR
i j,n,m

(−→
O′x
)

=
λ +3G
λ +2G

δi jRn,m
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Rn,m are another solid spherical harmonic functions (Yoshida 2001) as defined in the
Appendix. LU1

j,n,m (O′) ,LU2
n,m (O′) ,LT 1

j,n,m (O′) ,LT 2
n,m (O′) ,LT 1,Sc

j,n,m (O′) and LT 2,Sc
n,m (O′)
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are called local moments. Due to the unified local expansion forms of all integrals
at any boundary integral equation of Eq.(1), we omit the difference in the upper
index and use L1

j,n,m (O′) and L2
n,m (O′) instead of the original six local moments.

In the FMM framework, the local moments L1
j,n,m (O′), L2

n,m (O′) are derived by a
linear mapping acting on the multipole moments M1

j,n,m (O), M2
n,m (O), instead of

being evaluated directly.

3.3 Translation of Multipole and Local Moments

An adaptive tree is constructed based on the geometry information of the bound-
ary elements. This tree is the key structure of the FMM for both operations and
data storage. After the multipole moments M1

j,n,m (O) and M2
n,m (O) are collected

for each tree leaf centered at O, three kinds of translation operators of the original
FMM, namely 1) the multipole to multipole translation (M2M), 2) the multipole
to local translation (M2L) and 3) the local to local translation (L2L), are carried
out recursively throughout the tree in order to obtain both the multipole moments
M1

j,n,m, M2
n,m and local moments L1

j,n,m, L2
n,m for the tree nodes of various levels.

The new version of FMM (Greengard and Rokhlin 1997) can be applied by intro-
ducing an ‘exponential expansion’ and replacing the M2L operator with three new
operators, namely 1) the multipole to exponential translation (M2E), 2) exponen-
tial to exponential translation (E2E) and 3) exponential to local translation (E2L).
With the prefactor greatly reduced, the new FMM performs better in speed than the
original version, especially for 3-D problems. Formulas of the translation operators
in our work are in the same form as those in Yoshida (2001) for 3-D elastostatics
problems.

3.4 Evaluation of Integrals

For each x, the near-field integrals are evaluated directly, and the far-field integrals
are evaluated using Eq. (9) by the local moments L1

j,n,m, L2
n,m of the tree leaf con-

taining x.

3.5 Iterations

GMRES is used for the iterative solution of the DBEM. At each iterative step, the
matrix-vector multiplication is accomplished by the FMM with O(N) operations
and storage. Preconditioning techniques are required to make the iteration con-
verge in reasonable speed. In this paper, we consider a left preconditioner matrix
with block diagonal forms as in Nishimura, Yoshida and Kobayashi (1999). Each
diagonal block is related to one tree leaf and entries of the block are evaluated
directly by the collocation nodes contained in the leaf.
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4 Numerical results

A C++ code of the new fast multipole DBEM has been developed for the analysis
of 3-D general crack problems. In the code, each entry is calculated and stored as
an eight-byte value. In order to assess the accuracy and efficiency of the proposed
method, a number of numerical tests have been carried out, involving the analysis
of single and multiple cracks for which analytical solutions exist for comparison.
The code runs on a desktop computer with a processor of Intel Core 2 Duo E8400
(3.0GHz) and physical memory of 3GB.

In the following, The Young’s modulus and Poisson’s ratio are taken to be 250.0
and 0.25, respectively; the positioning parameter λ for discontinuous and edge-
discontinuous elements is taken to be 0.67; and in GMRES the relative error is taken
to be 10−5. Gaussian quadrature is used for direct evaluations of both the singular
and near-field regular integrals. For simplicity, empirical values of the number of
integration points are chosen to guarantee the high accuracy: 14× 14 Gaussian
points are used for singular and hyper-singular integrals at one boundary element
based on the finite part integral; three alternative selections are considered for the
regular integrals depending on the distance of the source point and the element to
be integrated, namely 12×12 Gaussian points are used when Ds f < Le

max/4, 8×8
Gaussian points are used when Le

max/4 < Ds f < 3Le
max, and 4× 4 Gaussian points

are used for the rest, where Le
max is the largest edge length of the element and Ds f

is the distance of source point and any geometry point of the element.

4.1 Crack Opening Displacement of a Circular Crack in Infinite Solid under
Tension

This test involves the analysis of a circular crack with radius a in an infinite solid
under a tensile load σ perpendicular to the crack. The crack is discretized into
300 discontinuous elements with 7,200 DOFs as shown in Fig. 4 (each element is
plotted as four corner collocation nodes connected with solid lines in order only
to show the effect of discontinuity). The crack opening displacement ∆un is eval-
uated using the new fast multipole DBEM. We take 18 terms for the multipole,
local and exponential expansions. The calculated normalized crack opening dis-
placement G∆un/(aσ) along the radial direction of the crack is plotted in Fig. 5
and compared with the analytical solution. Good agreement is observed, demon-
strating high accuracy of the proposed method and capability of the quarter-point
element for modelling square root behavior of the crack opening displacements at
crack fronts.



A Fast Multipole Dual Boundary Element Method 129

X Y

Z

 

Figure 4: Discontinuous element distribution on the circular crack

 

Figure 5: Normalized crack opening displacement versus distance from the crack
center
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4.2 Stress Intensity Factor of a single crack embedded in a cube under Tension

This test involves the analysis of a cube with edge length L containing an embedded
circular crack of radius a. L / a = 20. The ends of the cube are subjected to a tensile
load σ perpendicular to the crack. Due to the large distance from the center of the
crack to the surfaces of the cube, the state of the crack can be treated as a crack
in an infinite solid under tension. Hence theoretically the value of the normalized
stress intensity factor KI/

(
2σ
√

a/π

)
of the crack is 1.0.

The crack surface is discretized into discontinuous elements, surfaces of the cube
are discretized into edge-discontinuous elements at the corners and continuous el-
ements at the rest areas, as shown in Fig. 6. The number of DOFs is 22,368. The
stress intensity factor KI at crack fronts is evaluated using the new fast multipole
DBEM. In order to study the influence of the number of terms in the expansion on
the accuracy of the solution, we take three selections for the number of multipole,
local expansion terms (denoted by p) and exponential expansion terms (denoted by
q), namely 1) p = 10, q = 9; 2) p = 18, q = 18 and 3) p = 24, q = 27. The calculated
normalized stress intensity factors KI/

(
σ
√

πa
)

of 64 points evenly distributed at
the crack front are plotted in Fig. 7. It is shown that all values in Cases 2 (p = 18, q
= 18) and 3 (p = 24, q = 27) are within 0.5% of the analytical value, and that there
is very little difference among these values in the two cases. For Case 1 (p = 10, q =
9), the relative error ranges from 1% to 3.5%. Therefore, 18 terms in the multipole,
local and exponential expansion is large enough to guarantee the accurate solution.

4.3 Stress Intensity Factor of an Elliptical Crack in Infinite Solid under Tension

This test involves the analysis of an elliptical crack with aspect ratio b / a (see
Fig. 8) in an infinite solid under a tensile load σ perpendicular to the crack. Three
values of aspect ratios are considered, namely b / a = 1, 2 and 4. The corresponding
meshes with discontinuous elements are shown in Fig. 9. The stress intensity
factor KI along the crack front is evaluated using the new fast multipole DBEM. We
take 18 terms for the multipole, local and exponential expansions. The calculated
normalized stress intensity factor KI/

(
2σ
√

a/π

)
versus θ defined in Fig. 8 is

plotted in Fig. 10 and compared with the analytical solution. Most calculated
points agree well with the analytical solution. The only one poor matching at θ = 0
for b / a = 4 may be due to the fact that the size of the crack front element at this
position is larger than others as in Fig. 9(c), leading to a relative course precision.
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(a) 

 
(b) 

 Figure 6: (a) Global and (b) local translucent view of element distribution on a cube
with a circular crack
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Figure 7: Normalized stress intensity factors KI/
(

2σ
√

a/π

)
of a single crack

embedded in a cube
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Figure 8: An elliptical crack with aspect ratio b / a
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(a) 

 
(b) 

 
(c) 

 Figure 9: Discontinuous element distribution on the elliptical crack (a) b / a = 1 (b)
b / a = 2 (c) b / a = 4

4.4 Stress Intensity Factor of an Edge Crack in a Rectangular Bar under Ten-
sion

This test involves the analysis of a rectangular bar of thickness t, width w, total
height h, with an edge crack of length a throughout the width, as shown in Fig. 11.
t / a = 2, w / a = 3, h / a = 6. The ends of the bar are subjected to a tensile load
σ perpendicular to the crack. The state of the deformation in the central area of
the bar is approximately regarded as plane strain. For simplicity, both surfaces and
crack of the model are discretized into discontinuous elements with 28,800 DOFs
as shown in Fig. 12. Besides the quarter point elements generated at the crack
tip, we also move the two mid-side geometry points of each free surface element
interacting with the crack tip to the quarter position. With this adjustment, we
achieve both the

√
r displacement variation at this area and

√
1/r stress variation

calculated from displacement derivatives. The stress intensity factor KI along the
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Figure 10: Normalized stress intensity factor KI/
(

2σ
√

a/π

)
versus θ

crack front is evaluated using the new fast multipole DBEM. We take 18 terms for
the multipole, local and exponential expansions. The calculated normalized stress
intensity factor KI/

(
σ
√

πa
)

is plotted in Fig. 13 and compared with the analytical
plane strain solution. The numerical result at the center of the bar is within 2% of
the plane strain value.

Stresses on free surfaces are postprocessed using displacement derivatives. The
calculated normalized radial stresses σrr (

√
a/KI) (see Fig. 11) near the crack tip

(r� a) are 1.24 at r/a = 0.0625,θ = 0 and 1.65 at r/a = 0.0625,θ = π/2, within
23% and 3% of the plane stress values 1.59 and 1.69 from Eq. (11), respectively.
It is shown that surface stresses calculated from displacement derivatives have rel-
atively poor accuracy compared with the stress intensity factor.

σrr =
KI

4
√

2πr

(
5cos

θ

2
− cos

3
2

θ

)
⇒ σrr

(√
a/KI

)
=

1
4
√

2π

√
a
r

(
5cos

θ

2
− cos

3
2

θ

)
, r� a (11)
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Figure 11: A rectangular bar with an edge crack throughout the width
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Figure 12: Discontinuous element distribution on the edge-cracked bar
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Figure 13: Normalized stress intensity factor KI/
(
σ
√

πa
)

along the crack front

4.5 Stress Intensity Factors of an array of cracks embedded in a cube under
Tension

This test involves the analysis of a cube of edge length L containing an array of 5×
5×5(125) embedded circular cracks of the same radius a. L / a = 60. The centers
of these cracks are located regularly at the interval of 10a in all the coordinate
directions. All cracks are in the same orientation, with normal vectors parallel to
Z axis. The ends of the cube are subjected to a tensile load σ perpendicular to
the cracks. Due to the large distance from the center of one crack to others and
to the surfaces of the cube, the state of each crack can be treated as a crack in an
infinite solid under tension. Hence theoretically the values of the normalized stress
intensity factors KI/

(
2σ
√

a/π

)
of all cracks are the same to be 1.0.

All crack surfaces are discretized into discontinuous elements, surfaces of the cube
are discretized into edge-discontinuous elements at the corners and continuous el-
ements at the rest areas, as shown in Fig. 14. The number of DOFs reaches up to
167,058. The stress intensity factor KI at crack fronts is evaluated using the new
fast multipole DBEM. We take 18 terms for the multipole, local and exponential
expansions. A local view of the crack opening displacements is given in Fig. 15.
The calculated normalized stress intensity factors KI/

(
σ
√

πa
)

of 2,000 points at
crack fronts (16 points evenly distributed at each crack front) are plotted in Fig.
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16. It is shown that most values are within 1% of the analytical value, and that
the biggest error is within 1.4%. The results clearly demonstrate accuracy of the
proposed method for large-scale problems.

4.6 Memory Requirement and Solution Time of New Fast Multipole DBEM

In order to evaluate the performance of the proposed method in both memory con-
sumption and solution time, a comparison was made on the computational effi-
ciency between the fast multipole DBEM and several other algorithms including
the LAPACK-based standard Gaussian elimination and the fully-pivoted ACA. The
codes of the latter two solvers are written via C++ in authors’ group. The fully-
pivoted ACA is chosen instead of the partially-pivoted version for comparison be-
cause the key factor for large-scale BEM solutions is memory rather than speed,
and that the fully-pivoted version consumes similar memory to the partially-pivoted
version but is much easier than the latter one to be implemented for vector prob-
lems. The problems to be solved are an array of n×n×n cracks in an infinite solid
under tension, with n ranging from 1 to 6. The largest model (6× 6× 6 cracks)
has 248,832 DOFs. For the new fast multipole DBEM we take 10 terms for the
multipole, local expansions and 9 terms for the exponential expansions. A global
view of the crack opening displacements of the largest model is given in Fig. 17.

The memory requirements of various solvers versus the number of DOFs are plotted
in Fig. 18. It is shown that the new fast multipole DBEM consumes the least
memory among the three solvers. Gaussian elimination requires around 25MB
at DOF=1152 which is around twice the theoretical value of O

(
N2
)

storage for
the coefficient matrix (11522× 8/10242 = 10MB). This is due to the additional
memory requirement for the common variables defined in authors’ coding that help
enhance the integration efficiency. The fast multipole DBEM has a perfect O(N)
scale except that the value at DOF=1152 beyond this linear trend. This is also
due to the common variables which consume comparable memory with the FMM
tree structure at such small scales but are neglectable at large scales. Due to the
memory limit of a common PC (e.g., 1GB), capabilities of the three solvers are
such that around 10,000 DOFs by Gaussian elimination, less than 100,000 DOFs
by ACA and several hundred thousands DOFs by the new fast multipole DBEM.
Hence the new fast multipole DBEM is more competitive than other two solvers
for 3-D large-scale crack problems.

Solution time of various solvers versus the number of DOFs is plotted in Fig. 19.
According to the trends, it is indicated that the break-even points will be at DOF ≈
10000 for Gaussian elimination / new fast multipole DBEM and at DOF ≈ 35000
for fully-pivoted ACA / new fast multipole DBEM. For larger scales, the new fast
multipole DBEM is the fastest.
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(a) 

X Y

Z

 
(b) 

 Figure 14: (a) Global translucent view and (b) local view of element distribution
on a cube containing an array of 5×5×5(= 125) circular cracks
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Figure 15: Local view of crack opening displacements

 

Figure 16: Normalized stress intensity factors KI/
(

2σ
√

a/π

)
of 5×5×5(= 125)

circular cracks
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Figure 17: Global view of crack opening displacements of 6×6×6 cracks

5 Conclusions

A fast boundary element solver has been developed for the analysis of three-dimensional
general crack problems. A dual boundary integral equation formulation was used
to model the embedded or edge cracked structures in an efficient way. The new
fast multipole method was applied to the solution of the discretized DBIE so that
large-scale modeling of crack problems can be carried out in a personal desktop
computer. In order to make the multipole moments of the integrals containing ker-
nels of various singularities collected and translated in a unified form, a multipole
expansion formulation was derived for the hyper-singular integral. Several numer-
ical tests were presented to demonstrate accuracy of the proposed method and its
capability for the solution of large-scale 3-D crack problems.
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Figure 18: Memory requirement versus DOFs

 

Figure 19: Solution time versus DOFs
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Appendix

In this section, we give a summary of detailed expressions of the multipole mo-
ments in Eq. (6). The solid spherical harmonic function and their derivatives are
defined accordingly, which can be found in Yoshida (2001).

Multipole moments:

MU1
j,n,m (O) =

∫
S0

Rn,m

(−→
Oy
)

t j (y)dS (y) (A1)
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Solid spherical harmonic functions and derivatives:

Rn,m

(−→
Oy
)

=
1

(n+m)!
Pm

n (cosθ)eimφ rn (A7)

Sn,m

(−→
Oy
)

= (n−m)!Pm
n (cosθ)eimφ 1

rn+1 (A8)

{r,θ ,φ} are the spherical coordinates of vector
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n is the associated Legendre
function.
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