
Copyright © 2011 Tech Science Press CMES, vol.72, no.3, pp.185-210, 2011

MLPG Method for Transient Heat Conduction Problem
with MLS as Trial Approximation in Both Time and Space

Domains

D. Mirzaei1 and M. Dehghan1

Abstract: The meshless local Petrov-Galerkin (MLPG) method with an effi-
cient technique to deal with the time variable are used to solve the heat conduction
problem in this paper. The MLPG is a meshless method which is (mostly) based
on the moving least squares (MLS) scheme to approximate the trial space. In this
paper the MLS is used for approximation in both time and space domains, and
we avoid using the time difference discretization or Laplace transform method to
overcome the time variable. The technique is applied for continuously nonhomo-
geneous functionally graded materials (FGM) in a finite strip and a hallow cylinder.
This idea can be easily extended to all MLS based methods such as the element free
Galerkin (EFG), the local boundary integral equation (LBIE) and etc.

Keywords: Meshless methods, Moving least squares (MLS) approximation, MLPG
method, Heat conduction problem, Functionally graded materials (FGM).

1 Introduction

There are several approaches for numerical solution of boundary value problems.
Finite difference (FD) methods, finite elements methods (FEM), spectral methods
and boundary elements method (BEM) are some of such technologies. While these
methods have been successfully applied to wide ranges of engineering problems,
meshless methods are in their own way to be another powerful approach. Mesh-
less methods are based on approximation in terms of scattered data (Belytschko,
Krongauz, Organ, Fleming, and Krysl (1996)). Moving least squares (MLS) is one
of the scattered data approximation methods, that has been used successfully to
approximate the trial space in plenty of meshless methods. For instance we can
mention element-free Galerkin (EFG) method (Belytschko, Lu, and Gu (1994)),
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boundary nodes method (BNM) (Mukherjee and Mukherjee (1997)), meshless lo-
cal boundary integral equation (LBIE) method (Zhu, Zhang, and Atluri (1998)),
meshless local Petrov-Galerkin (MLPG) method (Atluri and Zhu (1998)) and etc.
Meshless methods are becoming popular, due to their high adaptivity and a low
cost to prepare input data for numerical analysis. The latest, MLPG, introduced by
Atluri and his colleagues (Atluri and Zhu (1998); Atluri and Shen (2002); Atluri
(2005)), has got more interest which is based on local sub-domains, rather than a
global domain, and requires neither domain elements nor background cells in ei-
ther the approximation or the integration. These properties make the MLPG a truly
weak-based meshless method. Several types of MLPG have been presented and
labeled from 1 up to 6. This classification allows some other meshless methods to
be especial cases of the MLPG (Atluri and Shen (2002); Atluri (2005)).

Meshless methods have been employed for solving transient heat conduction prob-
lems in many papers. For example you can see Sladek, Sladek, and Zhang (2003);
Sladek, Sladek, Krivacek, and Zhang (2003); Sladek, Sladek, and Atluri (2004);
Sladek, Sladek, and Zhang (2004); Sladek, Sladek, Tanaka, and Zhang (2005);
Sladek, Sladek, and Zhang (2005); Qian and Batra (2005); Ling and Atluri (2006);
Wang, Qin, and Kang (2006); Sladek, Sladek, Hellmich, and Eberhardsteiner (2007);
Sladek, Sladek, Tan, and Atluri (2008) and etc.

Also there are many time-dependent problems considered by meshless methods.
For instance you can see Dehghan and Mirzaei (2008a,b); Feng, Han, and Li (2009);
Mirzaei and Dehghan (2010b); Abbasbandy and Shirzadi (2010, 2011) and etc.

In all of these papers the meshless methods are used to approximate the space vari-
able. Authors have employed either the time discretization or the Laplace transform
techniques to eliminate the time variable in differential equation.

In this paper, we propose an interesting method which employs MLS for approx-
imation in both time and space domains. Although the technique is presented for
the MLPG method, it can be easily extended to other meshless methods.

This paper is organized as follows. In the rest of the section we will introduce
some general notations and definitions that we will refer to them in next sections.
Section 2 is devoted to a brief review of MLS approximation. In Section 3, we will
discretize the heat conduction problem using MLS approximations for both time
and space variables. In Section 4, some notes on polynomial basis functions are
given. In Section 5, numerical results will be presented and finally in Section 6 the
article ends with a brief conclusion.

Given the multi-index α = (α1, ...,αd) ∈ Nd
0 , |α| denotes the sum α1 + ... + αd ,
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and, if u is sufficiently smooth function, Dαu denotes the partial derivative

∂ |α|

∂ x̄α1
1 ...∂ x̄αd

d
u.

Also xα = x̄α1
1 x̄α2

2 ...x̄αd
d where x = (x̄1, x̄2, ..., x̄d) ∈ Rd .

The unisolvency condition is required not only for MLS approximation but also for
every multivariate approximation method. A set X = {x1,x2, ...,xN} of pairwise
distinct centers is called Pd

m-unisolvent if the zero polynomial is the only polyno-
mial from Pd

m which vanishes at all centers x j.

In the MLS and other scattered data approximation methods two quantities fill dis-
tance (or mesh-size) and separation distance are important to measure the quality
of centers and derive the rate of convergence. For a set of points X = {x1,x2, ...,xN}
in a bounded domain Ω ⊆ Rd the fill distance hX is the radius of the largest ball
which is completely contained in Ω and the separation distance qX is the largest
possible radius for two balls centered at different data points to be essentially dis-
joint. They can be defined as

hX = sup
x∈Ω

min
1≤ j≤N

‖x− x j‖2, qX =
1
2

min
i 6= j
‖xi− x j‖2.

A set X of data sites is said to be quasi-uniform with respect to a constant cqu > 0
if qX ≤ hX ≤ cquqX .

2 MLS approximation

In this section, we discuss the moving least squares (MLS) that will be used for
approximation in both time and space variables in heat conduction problem.

The MLS approximation can be defined as bellow: Let u ∈C(Ω), having the data
set {u(x j)} for 1 ≤ j ≤ N at point set X = {x1,x2, ...,xN} ⊂ Ω ⊂ Rd , the MLS
approximation of u(x) can be written as

û(x) =
N

∑
j=1

a j(x)u(x j).

We assume this approximation is exact for a finite dimensional subspace
S = span{p1, p2, ..., pQ}, i.e.

N

∑
j=1

a j(x)p(x j) = p(x), p ∈ S.

In MLS, we are interested in local approximation. To be more precise we choose a
continuous function φ : [0,∞)→ [0,∞) with
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• φ(r) > 0, 0≤ r < 1,

• φ(r) = 0, r ≥ 1,

and define

wδ (x,y) = φ

(
‖x− y‖2

δ

)
,

for δ > 0 as a weight function. We further define the set of indices

J := J(x,δ ,X) = { j ∈ {1,2, ...,N} : ‖x− x j‖2 ≤ δ},

of centers contained in the interior of closed ball B(x,δ ) of radius δ around x and
use S = Pd

m as a space of d-variate polynomials of degree at most m of dimension
Q =

(m+d
d

)
. According to these assumptions the MLS approximation to u(x) is

defined as û(x) := p∗(x), where p∗ is the solution of

min

{
∑
j∈J

(
u(x j)− p(x j)

)2wδ (x,x j) : p =
Q

∑
k=1

bk pk

}
, (1)

According to Levin (1998) and Wendland (2001, 2005), p∗ can be written as

p∗(x) = ∑
j∈J

a∗j(x)u(x j),

where a∗j(x) minimize the quadratic form

1
2 ∑

j∈J
a2

jθδ (x,x j),

subject to the linear constraints

∑
j∈J

a j pk(x j) = pk(x), 1≤ k ≤ Q,

where θδ = 1/wδ . The functions a∗j are called MLS shape functions. From the
definition of MLS shape functions, if wδ ∈ Ck(Ω) then û(x) ∈ Ck(Ω). Existence
and uniqueness of MLS shape functions were considered in Levin (1998), Theorem
2.1 of Wendland (2001) and Theorem 4.3 and Corollary 4.4 of Wendland (2005).

The approximation is well-defined if the unisolvency condition satisfies. If we
define the matrix

P =
(

p`(x j)
)
, 1≤ `≤ Q, j ∈ J,
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then the unisolvency condition means that P is full-rank. A necessary condition
is |J| ≥ Q, i.e. there should be at least Q points in the support of weight func-
tion wδ (the domain of definition of MLS approximation), but these conditions are
not sufficient. The necessary and sufficient condition is however the unisolvency
condition. When d = 1, every set of distinct points with condition |J| ≥ Q is a
P1

m-unisolvent set. The unisolvency condition in multivariate cases (d ≥ 2) is not
as straight forward as univariate one. But for some especial cases we can conclude
the unisolvency. Some of these cases can be found in Theorem 2.7 and Lemma 2.8.
of Wendland (2005).

In computations, it is better to rewrite the MLS approximation in the matrix-vector
form. According to minimization problem (1) and using the standard optimization
theory, if we set

p(x) = [p1(x), p2(x), ..., pQ(x)],
a∗(x) = [a∗1(x),a

∗
2(x), ...,a

∗
N(x)],

W (x) :=
(
δ jkwδ (x,xk)

)
j,k∈J(x),

then

a∗(x) = p(x)A−1B, (2)

where A(x) = PW (x)PT and B(x) = PW (x). In an extended form we have

a∗j(x) =
Q

∑
k=1

pk(x)
[
A−1(x)B(x)

]
k j, 1≤ j ≤ N. (3)

It is easy to show that A is a positive definite matrix, and so invertible. This matrix
sometimes is called the moment matrix and plays an important role in the MLS
approximation. We will come back to this matrix in Section 4.

The error analysis of MLS approximation can be found in Armentano (2001); Levin
(1998); Wendland (2001, 2005); Zuppa (2003). Under some conditions, for all u ∈
Cm+1(Ω) and quasi-uniform point set X with fill distance hX we have ‖u− û‖∞ ≈
O(hm+1

X ).
The order of convergence of MLS approximation mainly depends on the polyno-
mial basis {p1, ..., pQ} and the quality of point set X . It dose not depend on the
weight function. The weight function is used to make a moving and local approx-
imation. But weight may stabilize the approximation. Here, the following C∞

Gaussian weight function is used:

wδ (x,x j) =

{
exp[−(d j/c)2]−exp[−(δ/c)2]

1−exp[−(δ/c)2] , 0≤ d j ≤ δ ,

0, d j > δ ,
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where d j = ‖x− x j‖2, c = c0hX is a constant controlling the shape of the weight
function and δ = δ0hX is the size of the support domain, with constants c0 and δ0.

The derivatives of û(x) can be written as

Dα û(x) = ∑
j∈J

Dαa∗j(x)u(x j), (4)

where

Dαa∗j(x) =
Q

∑
k=1

Dα

(
pk(x)

[
A−1(x)B(x)

]
k j

)
,

where DeiA−1 = −A−1
(
DeiA

)
A−1, and so on. Note that ei = (0, ...,0,1,0, ...,0) ∈

Nd
0 where 1 is in i-th place. The convergence rates of MLS derivatives of order
|α| ≤ m can be also found in Armentano (2001); Zuppa (2003). In this case the
order of convergence is O(hm+1−|α|

X ).
If we set

ψ j(x) =

{
a∗j(x), j ∈ J,

0, otherwise,
(5)

the MLS approximation can be written as

û(x) =
N

∑
j=1

ψ j(x)u(x j), (6)

that will refer to it as MLS approximation equation in the following.

3 Heat conduction problem

Let Ω ⊂ Rd be a bounded d dimensional domain. The governing equation of the
heat conduction problem can be written as

1
α(x)

∂u
∂ t

(x, t) = ∆u(x, t)+
1

κ(x)
∇κ(x) ·∇u(x, t)+

1
κ(x)

f (x, t), (7)

where x ∈ Ω and 0 ≤ t ≤ tF denote the time and the space variables, respectively,
and tF is the finial time. The initial and boundary conditions are

u(x,0) = u0(x), x ∈Ω, (8)

u(x, t) = u(x, t), x ∈ Γu, 0≤ t ≤ tF , (9)

κ(x)
∂u
∂n

(x, t) = q(x, t), x ∈ Γq, 0≤ t ≤ tF . (10)
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In (7)-(10), ∆ represents the Laplacian operator, u(x, t) is the temperature field,
κ(x) and α(x) stand for the thermal conductivity and diffusivity, respectively, and
f (x, t) is the density of the body heat sources. Moreover n is the unit outward
normal to the boundary Γ, u and q are specified values on the Dirichlet boundary
Γu and Neumann boundary Γq where Γ = Γu∪Γq.

To employ the MLS approximation in time domain, we do the following: from (7)
and (8) we have

1
α

u(x, t) =
∫ t

0

[
∆u(x,τ)+

1
κ

∇κ ·∇u(x,τ)
]
dτ +

1
κ

∫ t

0
f (x,τ)dτ +

1
α

u0(x), (11)

keeping in mind α := α(x) and κ := κ(x) are some functions of space variable x.
First the MLS approximation is written in respect to the time variable t. The idea
comes up from the MLS based method for Fredholm and Volterra integral equations
presented in Mirzaei and Dehghan (2010a). Here the Volterra type is compatible.

Consider F distinct points T = {t1, t2, ..., tF} in the time domain [0, tF ], with the fill
distance hT . It is better tF be included because in various cases we need the solution
at the final time. According to (6), replacing x by t and N by F , the univariate MLS
approximation to equation (11) in respect to the time variable t, after imposing at
t = tk for 1≤ k ≤ F , is

1
α

F

∑
`=1

ψ`(tk)u(x, t`)−
F

∑
`=1

(∫ tk

0
ψ`(τ)dτ

)(
∆u(x, t`)+

1
κ

∇κ ·∇u(x, t`)
)

=
1
κ

∫ tk

0
f (x,τ)dτ +

1
α

u0(x).

(12)

The integrations over [0, tk] can be done by converting this interval to interval [0,1]
using the following linear transformation

τ(t,θ) = tθ . (13)

Therefore if we set

Ek,` = ψ`(tk), 1≤ k, `≤ F,

Gk,` =
∫ tk

0
ψ`(τ)dτ = tk

∫ 1

0
ψ`(tkθ)dθ = tk

M

∑
j=1

ψ`(tkθ j)ω j, 1≤ k, `≤ F,

u(x) = [u(x, t1), ...,u(x, tF)],

f(x) = [ f1(x), ..., fF(x)], fk(x) = tk
M

∑
j=1

f (x, tkθ j)ω j, 1≤ k ≤ F,

u0(x) = [u0(x), ...,u0(x)]1×F ,

(14)
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where {θ j,ω j}M
j=1 is a M-point Gauss quadrature (or others) formula in [0,1], then

we have

1
α

EuT (x)−G
(

∆uT (x)+
1
κ

[
∇κ ·∇u(x)

]T)=
1
κ

fT (x)+
1
α

uT
0 (x). (15)

In addition from Dirichlet boundary condition (9), we have

F

∑
`=1

ψ`(tk)u(x, t`) = u(x, tk), 1≤ k ≤ F, x ∈ Γu,

and if we set u(x) = [u(x, t1), ...,u(x, tF)], then

EuT (x) = uT (x), x ∈ Γu. (16)

Moreover, from the Neumann boundary condition (10), we have

F

∑
`=0

ψ`(tk)
∂u
∂n

(x, t`) =
1
κ

q(x, tk), 1≤ k ≤ F, x ∈ Γq

and if we set q(x) = [q(x, t1), ...,q(x, tF)], then

E
∂uT

∂n
(x) =

1
κ

qT (x), x ∈ Γq. (17)

Consider Equations (15)-(17), now we have a time free system of equations. Our
goal is applying the MLPG method (here the MLPG5) to solve this problem. Thus
the MLS approximation in respect to the space variable x should be applied. Ac-
cording to the MLPG process, first the local weak forms are written over local
sub-domains Ω

y
σ ⊂ Ω where ∂Ω

y
σ = Ly

σ ∪Γ
y
σ , and Γ

y
σ is a part of sub-domain’s

boundary which has intersection with global boundary Γ over which the Neumann
boundary conditions are applied. The local sub-domains could be of any geometric
shape and size. For simplicity they are taken to be B(y,σ)∩Ω. Note that neither
Lagrange multiplier nor penalty parameters are introduced in the local weak form,
because the Dirichlet boundary conditions are imposed directly using the MLS ap-
proximation. It is clear that for every internal node y, Γ

y
σ = /0 and Ly

σ = ∂Ω
y
σ . From

(15) and (17) we have

E
∫

Ω
y
σ

1
α

uT (x)dΩ−G
∫

Ly
σ

∂uT

∂n
(x)dΓ−G

∫
Ω

y
σ

( 1
κ

[
∇κ ·∇u(x)

]T)dΩ

=
∫

Ω
y
σ

[ 1
κ

fT (x)+
1
α

u0(x)
]
dΩ+GE−1

∫
Γ

y
σ

1
κ

qT (x)dΓ

(18)
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that is held for every y ∈ int(Ω)∪Γq, providing E is an invertible matrix. As we
know, E is the MLS shape function matrix and due to the theory of MLS approxi-
mation it is nonsingular. The right hand side of Equation (18) is a known vector of
size F×1, say r(y). For y ∈ Γu, Equation (16) is repeated replacing x by y.

Now consider the set of Pd
m-unisolvent and quasi-uniform X = {x1,x2, ...,xN} in

Ω with fill distance hX . For simplicity suppose that x j ∈ Γu for 1 ≤ j ≤ N1 and
x j ∈ Γq∪ int(Ω) for N1 +1≤ j≤N. Thanks to the MLS approximation, the vectors
u and its derivatives can be written in terms of values of u at the point set X . To
make difference between the MLS approximation in time and space, here we use
the notation φ j(x) instead of ψ j(x) for shape functions in (6). Thus equation (16)
can be approximated by

E
( N

∑
j=1

φ j(y)uT (x j)
)

= uT (y), y ∈ Γu. (19)

and equation (18) by

E
( N

∑
j=1

[∫
Ω

y
σ

1
α

φ j(x)dΩ

]
uT (x j)

)
−G

( N

∑
j=1

[∫
Ly

σ

∂φ j

∂n
(x)dΓ

]
uT (x j)

)
−G

( N

∑
j=1

[∫
Ω

y
σ

1
κ

∇κ ·∇φ j(x)dΩ

]
uT (x j)

)
= r(y).

(20)

Holding (19) at y = xi, 1≤ i≤ N1 and (20) at y = xi, N1 +1≤ i≤ N and setting

H1(i, j) = φ j(xi), 1≤ i≤ N1, 1≤ j ≤ N,

H2(i, j) =
∫

Ω
xi
σ

1
α(x)

φ j(x)dΩ, N1 +1≤ i≤ N, 1≤ j ≤ N,

K2(i, j) =
∫

Lxi
σ

∂φ j

∂n
(x)dΓ+

∫
Ω

xi
σ

1
κ

∇κ ·∇φ j(x)dΩ, N1 +1≤ i≤ N, 1≤ j ≤ N,

R1(i, :) = u(xi), N1 +1≤ i≤ N,

R2(i, :) = r(xi), N1 +1≤ i≤ N,

U( j, :) = u(x j), 1≤ j ≤ N,

(21)

give{
E(H1U)T = RT

1

E(H2U)T −G(K2U)T = RT
2
.
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Let H = [HT
1 HT

2 ]N×N , K = [0 KT
2 ]N×N and R = [RT

1 RT
2 ]F×N , thus we have

EUT H−GUT K = R, (22)

which is a generalized Sylvester equation. This equation should be solved by some
linear algebra techniques that we will discuss in the following. Note that U( j, `) =
u(x j, t`) for 1 ≤ j ≤ N and 1 ≤ ` ≤ F . When U is derived from equation (22), the
solution at every point (x, t) ∈Ω× [0, tF ] can be approximated by

u(x, t)≈ û(x, t) =
N

∑
j=1

φ j(x)u(x j, t) =
N

∑
j=1

F

∑
`=1

φ j(x)ψ`(t)u(x j, t`).

If we set

Φ(x) = [φ1(x), ...,φN(x)], Ψ(t) = [ψ1(t), ...,ψF(t)],

then

u(x, t)≈Φ(x)UΨ
T (t). (23)

Note that, E and G are time and H and K are space matrices. The method provides
the time and space matrices separately. Therefore other meshless methods in space
can be easily replaced by the MLPG, presented in this paper.

However, this method needs a linear algebra technique for numerically solving the
generalized Sylvester equation (22). There are several strategies.

This equation can be converted to

TUT +UT S = C, (24)

with the time matrix T = G−1E, the space matrix S = −KH−1 and the right-hand
side C = G−1RH−1, providing G and H are invertible matrices. Equation (24) is a
standard Sylvester equation with unknown U . In MATLAB the function

X = lyap(T,S,-C)

gives the solution U = XT . Numerical results show, the matrix H is invertible and
if 0 is not included in T , the matrix G is also invertible. Note that there is no force
to include zero.

Another technique is based on invertibility of at least one of matrices E, H, G or
K. As we know E, the MLS shape function matrix, is nonsingular. The pair of
equations{

L1H +GL2 = R

L1K +EL2 = 0
(25)
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are equivalent to (22) with EUT = L1 and UT K = −L2. This system is a coupled
standard sylvester equation. Recovering L1 from (25), UT = E−1L1.

Equation (22) can also be solved directly, without any assumption on invertibility
of matrices, using the Bartels-Stewart (BS) or Hessenberg-Schur (HS) algorithms
presented in Gardiner, Laub, Amato, and Moler (1992) based on QZ factorization.
In these algorithms a transformation method is used which employs the QZ algo-
rithm to structure the equation in such a way that it can be solved column-wise by a
back substitution technique. Gardiner, Laub, Amato, and Moler (1992) derived: if
N ≥ F (if is not change N and F), the computational costs of BS and HS algorithms
are

BS : 33N3 +33F3 +3N2F +3F2N,

HS : 8.8N3 +33F3 +(5+5.5p)N2F +3F2N,

where 0 ≤ p ≤ 0.5. This means that the computational costs of both methods
are O(N3 + F3). As we will see, solving a generalized Sylvester equation in this
method is not a noticeable problem in sense of computational costs in comparison
to other time elimination techniques.

Note that some iteration algorithms can be also used for solving generalized Sylvester
equations. For more details see Dehghan and Hajarian (2011) and the references
therein.

The results of this paper are performed using the Bartels-Stewart (BS) or Hessenberg-
Schur (HS) algorithms.

In time discretization method we can use a difference equation of order O(∆t) like
[u(x, t + ∆t)− u(x, t)]/∆t instead of ∂u/∂ t. If we suppose u(x,n∆t) = u(n)(x) and
approximate u by θu(n+1) + (1− θ)u(n) for 0 < θ ≤ 1, Equations (7)-(10) after
imposing the MLS approximation convert to[

H1

θK2− 1
∆t H2

]
u(n+1) =

[
b(n+1)

1

−
(
(1−θ)K2 + 1

∆t H2
)

u(n) +b(n+1)
2

]
, (26)

where H1, H2 and K2 are defined in (21) and

b(n)
1 (i) = u(n)(xi), 1≤ i≤ N1,

b(n)
2 (i) =−

∫
Γ

xi
σ

1
κ(x)

q(x,n∆t)dΓ−
∫

Ω
xi
σ

1
κ(x)

f (x,n∆t)dΩ, N1 +1≤ i≤ N.

System (26) should be solved for n = 0,1,2, ...,M with u(0)(xi) = u0(xi) till getting
the desirable time t = M∆t. If ∆t chosen to be constant in all time steps, the stiffness
matrix is constant and LU decomposition, once, (costing O(N3) operators) and
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backward and forward substitutions, M times, (costing O(MN2) operators) require.
In this case a small time step ∆t needs to get accurate results. In the method of this
paper the order of convergence in the time domain is O

(
hm+1

T

)
, therefore F (the

number of time MLS points) can be chosen absolutely smaller than M.

Laplace transform method is another way to solve the time dependent problems.
Suppose that L u(t) = ũ(s). Applying L on both sides of Equations (7)-(10) and
doing the MLS approximation for ũ(x,s) in respect to variable x, yield[

H1
K2− sH2

]
ũ(s) =

[
b1(s)

b0 +b2(s)

]
, (27)

where H1, H2 and K2 are defined in (21) and

b1(i) = ũ(xi), 1≤ i≤ N1,

b0(i) =−
∫

Ω
xi
σ

1
α(x)

u0(x)dΩ, N1 +1≤ i≤ N,

b2(i) =−
∫

Γ
xi
σ

1
κ(x)

q̃(x,s)dΓ−
∫

Ω
xi
σ

1
κ(x)

f̃ (x,s)dΩ, N1 +1≤ i≤ N.

Finally a numerical Laplace inversion technique requires, that needs solutions of
(27) for many s. The stiffness matrix depends on s and should be solved as well
as s changes. This means that several linear system of equations should be solved
to get the solution at a sample time t. Moreover, Laplace transforms of the body
force and the boundary conditions should be provided. Also, the accuracy of the
space method (here MLPG) will finally lose due to the poor accuracies of Laplace
inversion techniques.

4 Some notes on basis functions in MLS

Before going to numerical problems, we give some explanations to polynomial
basis {p1, ..., pQ}. Practically authors use the set

{xα}0≤|α|≤m, (28)

as a basis function for Pd
m in the MLS approximation. The choice of this basis is

important and has influence especially on matrix A = PWPT . Matrix A should be
a well-posed matrix because the accuracy of computing A−1 in (3) must be guar-
anteed. This matrix is positive definite and thus nonsingular. But numerical results
show that when the density of nodes increases (or more precisely hX and qX de-
crease) the determinant of A decreases rapidly and the accuracy of computing A−1

gets worse due to the roundoff errors. This phenomenon effects the final numerical
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results and we will have a numerical instability in the algorithms of MLS based
methods.

To overcome this drawback it is better to use the shifted scaled basis polynomials
(Mirzaei, Schaback, and Dehghan (2011)). The shifted basis can be defined by

{(x− z)α}0≤|α|≤m , (29)

and the shifted scaled basis by{
(x− z)α

q|α|X

}
0≤|α|≤m

, (30)

where qX is the separation distance and z is a fixed evaluation point such as a test
point or a Gaussian point for integration in weak-form based techniques. We use the
notations A = PTWP where the basis (28) is employed and Az = P(·−z)TWP(·−z)
and Az

qX
= P( ·−z

qX
)TWP( ·−z

qX
) where (29) and (30) are used respectively. It can be

proved that det(A) = det(Az). In addition, we set

D = diag
{

1,
1

qX
, · · · , 1

qX︸ ︷︷ ︸
( d

d−1) times

,
1

q2
X

, · · · , 1
q2

X︸ ︷︷ ︸
(d+1

d−1) times

, · · · , 1
qm

X
, · · · , 1

qm
X︸ ︷︷ ︸

(d−1+m
d−1 ) times

}
Q×Q

.

It is clear that Az
qX

= DAzD, hence

det(Az
qX

) = det(Az)[det(D)]2 = det(A)[det(D)]2.

Using the combinatorial formula

m

∑
j=0

j
(

d−1+ j
d−1

)
= d
(

d +m
d +1

)
=: ρ,

we have det(D) = q−ρ

X , therefore

det(Az
qX

) = q−2ρ

X det(A),

and this is the reason why the determinant of Az
qX

remains constant as qX decreases.
Using the shifted scaled basis, matrix A becomes well-conditioned and A−1 is com-
puted accurately. The quantity qX can be replaced by a function which varies in
accordance with node density in Ω.
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5 Numerical results

In this section, first, we examine and compare the proposed technique using a sim-
ple test problem. Then the method is applied for analyzing transient heat con-
duction in nonhomogeneous functionally graded materials (FGMs), which has a
continuously functionally graded thermal conductivity parameter. Due to the high
mathematical complexity of the initial boundary value problems, analytical ap-
proaches for the thermomechanics of FGMs are restricted to simple geometry and
boundary conditions. Thus, the transient heat conduction analysis in FGM demands
accurate and efficient numerical methods (Sladek, Sladek, Tan, and Atluri (2008)).

In numerical results, we use the quadratic shifted scaled basis polynomial functions
(m = 2) in the MLS approximation for both time and space domains. For integration
over the local sub-domains in MLPG (space) a ten points Gauss formula is used.
For the time integration (for generation the matrix G), if the time domain is large
it is better to use more accurate quadratures. Here we use a fifty points Gauss
formula. If the time domain is small we can use some fewer points quadrature
formulas.

5.1 Test Problem

Let Ω = [0,1]2 ⊂ R2 and consider Equations (7)-(10) with α = 1/(2π2), κ = 1
and f (x, t) = 0. The function u(x, t) = exp(−t)cos(πx1)cos(πx2) satisfies to such
equation. Initial and essential boundary conditions are extracted accordingly. Here,
we compare the results of MLPG5, with time difference scheme and MLS approx-
imation in time, in terms of maximum errors and CPU times used. To be fair in
comparison, let F = M, ∆t = hT and tF = 5. As we can see from the results pre-
sented in Table 1, MLPG with MLS in time is more accurate than MLPG with time
difference scheme. The Sylvester equation is solved using Bartels-Stewart (BS) al-
gorithm, and the final linear system of time difference method is decomposed using
LU technique once and then backward and forward substitutions give the solutions
at other time levels. Table 1 shows that the CPU times used are approximately the
same for both techniques. This confirms the discussions presented at the end of
Section 3.

Table 1

Comparison of “Time difference” and “MLS in time” schemes with ∆t = hT = 0.5.

Time difference MLS in time

N ‖e‖∞ CPU time used ‖e‖∞ CPU time used

36 6.5×10−3 3.7 Sec. 2.9×10−3 3.7 Sec.

121 3.6×10−3 25.0 8.8×10−4 24.3

441 3.2×10−3 125.5 5.7×10−4 127.0



MLPG Method for Transient Heat Conduction Problem 199

 

0 1 2 3 4
0

1

2

3

4

u = T.H(t)

q = 0

q = 0

x1 (cm)

x2 (cm)

u = 0

Figure 1: Boundary conditions and node distribution for a finite strip.

In the next problems we will see the superiority of this method over Laplace trans-
form technique in terms of accuracy.

5.2 Problem 1 in FGM

In two dimensional case (d = 2), consider a finite strip with a unidirectional vari-
ation of the thermal conductivity and diffusivity. The same exponential spatial
variation for both parameters is taken

κ(x) = κ0 exp(γx1),
α(x) = α0 exp(γx1),

(31)

with α0 = 0.17× 10−4 m2s−1 and κ0 = 17 Wm−1deg.−1. Three different expo-
nential parameters γ = 0.2, 0.5 and 1.0 cm−1 (20,50 and 100 m−1) are selected in
numerical calculation. On both opposite sides parallel to the x2-axis two different
temperatures are prescribed. One side is kept to zero temperature and the other has
the Heaviside step time variation i.e., u = T0H(t) with T0 = 1 deg. On the lateral
sides of the strip the heat flux vanishes. See Fig. 1.

Such problem has considered in Sladek, Sladek, and Zhang (2003) using meshless
LBIE method with Laplace transform in time and in Wang, Qin, and Kang (2006)
using a meshless collocation method with time difference approximation.

In numerical calculations, a square with a side-length a = 0.04 m and a 11×11 reg-
ular node distribution is used for the MLS approximation in the space domain (Fig.
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Figure 2: Time variation of the temperature in a finite strip at three positions with γ = 0

1). Also a regular node distribution in the time domain t ∈ [0,60] with hT = 3 is
used. After solving the final Sylvester system for U at the collocation points in time
and space, the values of unknown function u at other points (x, t) are approximated
using equation (23).

The special case with an exponential parameter γ = 0 corresponds to a homoge-
neous material. In such a case an analytical solution is available

u(x, t) =
T0x1

a
+

2
π

∞

∑
n=1

T0 cosnπ

n
sin

nπx1

a
× exp

(
−α0n2π2t

a2

)
,

which can be used to check the accuracy of the present numerical method. Nu-
merical results are computed at three locations along the x1-axis with x1/a = 0.25,
0.5 and 0.75. Results are depicted in Fig. 2. An excellent agreement between
numerical and analytical results is obtained.

The discussion above concerns heat conduction in homogeneous materials only
since analytical solutions can be used for verification. To illustrate the application
of the proposed algorithm, consider now the cases γ = 0.2, and 0.5 cm−1, respec-
tively. The variation of temperature with time for three γ-values and at position
x1 = 0.01 and 0.02 m are presented in Figs. 3 and 4, respectively.

Fig. 4 is in good agreement with the Figure 11 presented in Wang, Qin, and Kang
(2006), but some differences are evident between Fig. 3 and Figure 4 of Sladek,
Sladek, and Zhang (2003). This disagreement also was reported in Table 1 of Wang,
Qin, and Kang (2006). Note that in this case our results are in agreement with Table
1 of Wang, Qin, and Kang (2006).
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Figure 3: Time variation of the temperature at position x1/a = 0.25 of the functionally
graded finite strip
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Figure 4: Time variation of the temperature at position x1/a = 0.5 of the functionally
graded finite strip
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Figure 5: Distribution of temperature at t = 30 s along x1-axis of functionally graded finite
square strip

Fig. 5 shows the distribution of temperature along the x1-axis at t = 30 sec. This
figure again is in very good agreement with the corresponding Figure 12 of Wang,
Qin, and Kang (2006). As expected, it is found from Figs. 3, 4 and 5 that the
temperature increases along with an increase in γ-values (or equivalently in thermal
conductivity), and the temperature approaches a steady state when t > 20 sec.

For final steady state an analytical solution can be obtained as

u(x, t→ ∞) = T0
exp(−γx1)−1
exp(−γa)−1

,
(

u→ T
x1

a
, as γ → 0

)
.

Analytical and numerical results computed at time t = 60 sec. corresponding to
stationary or static loading conditions are presented in Fig. 6. The numerical results
are in good agreement with the analytical results for the steady state case.

5.3 Problem 2 in FGM

In this example, an infinitely long and functionally graded thick-walled hollow
cylinder is considered, where the following radii R1 = 8× 10−2 m and R2 = 10×
10−2 m are selected. This problem is considered in Sladek, Sladek, and Zhang
(2003) using meshless LBIE method. The Laplace transform is employed to over-
come the time variable.

Heaviside step boundary condition is prescribed on the external surface of the hol-
low cylinder for the time-dependent thermal loading as a thermal shock with T0 = 1
deg. The inner surface is kept at zero temperature. Due to the symmetry in geom-
etry and boundary conditions it is sufficient to analyze only a quarter of the cross
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Figure 6: Distribution of temperature along x1-axis for a functionally graded finite square
strip under steady-state loading conditions

section of the hollow cylinder. The boundary conditions and the total nodes lying
in the domain and on the global boundary are depicted in Fig. 7.

The thermal conductivity and diffusivity functions are chosen such as (31) with
same constants α0 and κ0. For comparison purpose, a homogeneous material (γ =
0) is first considered. In this homogeneous case, an analytical solution is known as:

u(r, t) = T0
ln(r/R1)

ln(R2/R1)
−π

∞

∑
n=1

T0
J2

0 (R1βn)U0(rβn)
J2

0 (R1βn)− J2
0 (R2βn)

× exp
(
−α0β

2
n t
)
,

where

U0(rβn) = J0(rβn)Y0(R2βn)− J0(R2βn)Y0(rβn),

and βn are the roots of the following transcendental equation

J0(r)Y0(rR2/R1)−Y0(r)J0(rR2/R1) = 0,

with J0(r) and Y0(r) being Bessel functions of first and second kinds and zeroth
order. In numerical results we use time step hT = 1 in the time domain [0,16]
and after solving the final Sylvester system for U at collocation points in time and
space, the values of unknown function u are approximated using equation (23). Fig.
8 depicts the numerical and exact solutions in various times at r = 9 cm. The results
show an excellent agreement with the analytical solution.

Fig. 9 shows the variation of the temperature with radial coordinate at four different
time instants.
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Figure 8: Exact and numerical solution at r = 9 cm in hallow cylinder with homogeneous
material properties (γ = 0).
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time levels with homogeneous material properties (γ = 0).
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Figure 11: Time variation of the temperature at r = 9 cm for γ = 0.5 cm−1 for a function-
ally graded hollow cylinder.
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Finally, we consider the functionally graded hollow cylinder with the thermal dif-
fusivity and conductivity being graded in the radial direction. Numerical results for
the time variation of the temperature are shown in Fig. 10. Similar to the results
for a finite strip in the first example, the temperature level at interior points in the
steady state increases with increasing γ-value. Here, again there is a difference
between the results of this paper and the results presented in Figure 9 of Sladek,
Sladek, and Zhang (2003) using meshless LBIE method and Laplace transform. It
can be seen that the results of this paper are larger than those obtained by LBIE
method for inhomogeneous case. This difference also observed in the previous ex-
ample. For γ = 0.5 the temperature grows rapidly and gets the steady-state in lower
times. To analyze this case we use the very fine time step hT = 0.1. The results are
presented in Fig. 11. As we see, for t > 1 sec., we get the steady state solution.

Finally Fig. 12 illustrates the variation of the temperature with the normalized
radial coordinate r/R1 for different choices of γ at t = 2 sec.

6 Conclusion

This article describes a numerical implementation of meshless methods, such as
MLPG, to transient heat conduction problem. We use the MLS method for ap-
proximation in both time and space domains. The scheme leads to a generalized
Sylvester equation. This system can be solved using some linear algebra techniques
with O(N3 + F3) operations, where N and F are the numbers of meshless points
in the space domain Ω and the time domain [0, tF ], respectively. Finally some ap-
plications are provided to the transient heat conduction analysis in continuously
nonhomogeneous functionally graded materials (FGM). Although the process has
presented for the MLPG method, we can extend this idea to other MLS based mesh-
less methods, similarly.

Acknowledgement: The authors deeply thank Dr. Behnam Hashemi (Shiraz
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generalized Sylvester equation.

References

Abbasbandy, S.; Shirzadi, A. (2010): A meshless method for two-dimensional
diffusion equation with an integral condition. Engineering Analysis with Boundary
Elements, vol. 34, pp. 1031–1037.

Abbasbandy, S.; Shirzadi, A. (2011): MLPG method for two-dimensional dif-
fusion equation with neumann’s and non-classical boundary conditions. Applied
Numerical Mathematics, vol. 61, pp. 179–180.



208 Copyright © 2011 Tech Science Press CMES, vol.72, no.3, pp.185-210, 2011

Armentano, M. (2001): Error estimates in sobolev spaces for moving least square
approximations. SIAM Journal on Numerical Analysis, vol. 39(1), pp. 38–51.

Atluri, S.; Zhu, T.-L. (1998): A new meshless local Petrov-Galerkin (MLPG)
approach in Computational mechanics. Computational Mechanics, vol. 22, pp.
117–127.

Atluri, S. N. (2005): The meshless method (MLPG) for domain and BIE dis-
cretizations. Tech Science Press, Encino, CA.

Atluri, S. N.; Shen, S. (2002): The Meshless Local Petrov-Galerkin (MLPG)
Method. Tech Science Press, Encino, CA.

Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P. (1996): Mesh-
less methods: an overview and recent developments. Computer Methods in Applied
Mechanics and Engineering, special issue, vol. 139, pp. 3–47.

Belytschko, T.; Lu, Y.; Gu, L. (1994): Element-Free Galerkin methods. Inter-
national Journal for Numerical Methods in Engineering, vol. 37, pp. 229–256.

Dehghan, M.; Hajarian, M. (2011): Analysis of an iterative algorithm to solve
the generalized coupled Sylvester matrix equations. Applied Mathematical Mod-
elling, vol. 35, pp. 3285–3300.

Dehghan, M.; Mirzaei, D. (2008): The meshless local Petrov-Galerkin (MLPG)
method for the generalized two-dimensional non-linear Schrödinger equation. En-
gineering Analysis with Boundary Elements, vol. 32, pp. 747–756.

Dehghan, M.; Mirzaei, D. (2008): Numerical solution to the unsteady two-
dimensional Schrödinger equation using meshless local boundary integral equation
method. International Journal for Numerical Methods in Engineering, vol. 76, pp.
501–520.

Feng, W.; Han, X.; Li, Y. (2009): Fracture analysis for two-dimensional plane
problems of nonhomogeneous magneto-electro-thermo-elastic plates subjected to
thermal shock by using the meshless local Petrov-Galerkin method. CMES: Com-
puter Modeling in Engineering and Sciences, vol. 48, no. 1, pp. 1–26.

Gardiner, G.; Laub, A.; Amato, J.; Moler, C. (1992): Solution of the Sylvester
matrix equation AXBT +CXDT = E. AMS Transactions on Mathematical Soft-
ware, vol. 18, no. 2, pp. 223–231.

Levin, D. (1998): The approximation power of moving least-squares. Mathemat-
ics of Computation, vol. 67, pp. 1517–1531.

Ling, X.; Atluri, S. (2006): Stability analysis for inverse heat conduction prob-
lems. CMES: Computer Modeling in Engineering and Sciences, vol. 13, no. 3, pp.
219–228.



MLPG Method for Transient Heat Conduction Problem 209

Mirzaei, D.; Dehghan, M. (2010): A meshless based method for solution of
integral equations. Applied Numerical Mathematics, vol. 60, pp. 245–262.

Mirzaei, D.; Dehghan, M. (2010): Meshless local Petrov-Galerkin (MLPG)
approximation to the two dimensional sine-Gordon equation. Journal of Compu-
tational and Applied Mathematics, vol. 233, pp. 2737–2754.

Mirzaei, D.; Schaback, R.; Dehghan, M. (2011): On generalized moving least
squares and diffuse derivatives. Submitted.

Mukherjee, Y.; Mukherjee, S. (1997): The boundary node method for potential
problems. International Journal for Numerical Methods in Engineering, vol. 40,
pp. 797–815.

Qian, L.; Batra, R. (2005): Three-Dimensional transient heat conduction in
a functionally graded thick plate with a higher-order plate theory and a meshless
local Petrov-Galerkin method. Computational Mechanics, vol. 35, pp. 214–226.

Sladek, J.; Sladek, V.; Atluri, S. (2004): Meshless local Petrov-Galerkin method
for heat conduction problem in an anisotropic medium. CMES: Computer Model-
ing in Engineering and Sciences, vol. 6, pp. 309–318.

Sladek, J.; Sladek, V.; Hellmich, C.; Eberhardsteiner, J. (2007): Heat conduc-
tion analysis of 3-D axisymmetric and anisotropic FGM bodies by meshless local
Petrov-Galerkin method. Computational Mechanics, vol. 39, pp. 223–233.

Sladek, J.; Sladek, V.; Krivacek, J.; Zhang, C. (2003): Local BIEM for transient
heat conduction analysis in 3-D axisymmetric functionally graded solids. Compu-
tational Mechanics, vol. 32, pp. 169–176.

Sladek, J.; Sladek, V.; Tan, C.; Atluri, S. (2008): Analysis of transient heat
conduction in 3D anisotropic functionally graded solids, by the MLPG method.
CMES: Computer Modeling in Engineering and Sciences, vol. 32, no. 3, pp. 161–
174.

Sladek, J.; Sladek, V.; Tanaka, M.; Zhang, C. (2005): Transient heat con-
duction in anisotropic and functionally graded media by local integral equations.
Engineering Analysis with Boundary Elements, vol. 29, pp. 1047–1065.

Sladek, J.; Sladek, V.; Zhang, C. (2003): Transient heat conduction analysis
in functionally graded materials by the meshless local boundary integral equation
method. Computational Materials Science, vol. 28, pp. 494–504.

Sladek, J.; Sladek, V.; Zhang, C. (2004): A local BIEM for analysis of transient
heat conduction with nonlinear source terms in FGMs. Engineering Analysis with
Boundary Elements, vol. 28, pp. 1–11.



210 Copyright © 2011 Tech Science Press CMES, vol.72, no.3, pp.185-210, 2011

Sladek, J.; Sladek, V.; Zhang, C. (2005): Stress analysis in anisotropic function-
ally graded materials by the MLPG method. Engineering Analysis with Boundary
Elements, vol. 29, pp. 597–609.

Wang, H.; Qin, Q.-H.; Kang, Y.-L. (2006): A meshless model for transient heat
conduction in functionally graded materials. Computational Mechanics, vol. 38,
pp. 51–60.

Wendland, H. (2001): Local polynomial reproduction and moving least squares
approximation. IMA Journal of Numerical Analysis, vol. 21, pp. 285–300.

Wendland, H. (2005): Scattered Data Approximation. Cambridge University
Press.

Zhu, T.; Zhang, J.; Atluri, S. (1998): A local boundary integral equation (LBIE)
method in computational mechanics, and a meshless discretization approach. Com-
putational Mechanics, vol. 21, pp. 223–235.

Zuppa, C. (2003): Error estimates for moving least square approximations. Bul-
letin of the Brazilian Mathematical Society, vol. 34(2), pp. 231–249.


