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On Chaos Control in Uncertain Nonlinear Systems
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Abstract: Chaotic behavior of uncertain nonlinear systems offers a rich variety
of orbits, which can be controlled by bounding the signals involved in closed-loop
systems. In this paper, systems with nonlinear uncertainties with no prior knowl-
edge of their bounds, unmodeled dynamic law and rapidly varying disturbances are
analyzed in order to propose a stabilization controller of the chaotic behavior via
the fuzzy logic systems.
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1 Introduction

The utility of structured adaptive control formulations is important for a large
class of nonlinear oscillations, aircraft control, spacecraft control, and coopera-
tive robotic system control [Junkins, Subbarao and Verma (2000); Lin (2009)].
Chaotic behavior has been extensively analyzed and the concept of chaos control
becomes desirable in various applications [Pereira-Pinto, Ferreira and Savi (2004)].
Chaos control methods are related to feedback linearization and backstepping tech-
niques applied to design a wide variety of nonlinear controllers for systems with un-
known parameters [Kristic, Kanellakopoulos and Kokotovic (1995); Kristic, Kanel-
lakopoulos and Kokotovic (1992)]. The feedback linearization transforms a non-
linear system with matching conditions, into a linear system for which the linear
control technique is used to acquire the desired performances [Isidori (1995)]. The
backstepping technique requires the cancellation of the nonlinearities and it is used
to design the controllers for the systems with known nonlinearities without satis-
fying the matching conditions [Kanellakopopoulos, Kokotovic and Morse (1991)].
For systems for which the precise knowledge of nonlinearities may not be available
or nonlinearities may change in time, the models have been modified in order to
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introduce some prior knowledge of uncertainties, such as known bounds of static
nonlinearities [Qu (1995)].

The case of uncertain nonlinear systems without satisfying the matching conditions
has been extensively studied in the literature. However, the application of fuzzy
logic systems (FLS) to model nonlinearities based on the feedback linearization
have been addressed by Boulkroune, Tadjine, Saad and Farza(2008); Golea, Golea
and Benmahammed (2003), whilst Chen, Liu and Tong (2007); Chen, Liu and Shi
(2009); Tong, Li and Shi (2009) have applied the backstepping based adaptive FLS.

Lin (2010) proposed a direct method for the adaptive fuzzy-neural tracking con-
trol equipped with sliding mode and Lyapunov synthesis approach to analyze the
training data corrupted by noise or rule uncertainties. Extension to multiple-input
multiple-output (MIMO) nonlinear systems are discussed by Isidori (1995).

The Kalman synthesis dynamic compensation and Neural Network (NN) were uti-
lized by Ursu, Toader and Tecuceanu (2009, 2010) to compensate the lack of sys-
tem knowledge in conjunction with a unitary approach of adaptive output feedback
control. A backstepping based robust adaptive NN control is also discussed by Li,
Hong and Shi (2008) for strict-feedback nonlinear systems via a small gain theo-
rem.

Polynomial chaos methods coupled with fictitious domain approach have been
studied by Parussini and Pediroda (2008) for the investigation of multi geometric
uncertainties.

We believe that controlled systems which only contain nonlinear uncertainties,
without either the unmodeled dynamic law or dynamic disturbances, represent a
limitation for obtaining the control design for real nonlinear systems with chaotic
behavior. A relevant paper in this direction is due to Tong, He, Li and Zhang
(2010). The authors have proposed an adaptive fuzzy robust control method, for
single-input single-output nonlinear systems with nonlinear uncertainties, the un-
modeled dynamic law and rapidly varying disturbances, by combining the back-
stepping technique with the nonlinear small-gain approach.

The chaos control method presented in this paper further extends the range of ap-
plications of the adaptive control method to systems with nonlinear uncertainties,
unmodeled dynamic law and rapidly varying disturbances. The control objective is
to apply fuzzy logic systems to determine a stabilization controller of the chaotic
behavior. Numerical experiments are carried out for a driven double pendulum.

2 Preliminaries

In this section, the concepts of Input-to State Stable (ISS) and ISS-Lyapunov func-
tion proposed by Sontag (1989, 1990), Sontag and Wang (1995), Khalil (1996) and
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Li, Hong and Shi (2008) are revisited from the chaos point of view. Chaos control
usually involves two steps. In the first step, the unstable period trajectories that
are embedded in the chaotic set are identified. After that, a control technique is
employed in order to stabilize a desirable orbit [Pereira-Pinto, Ferreira and Savi
(2004)].

A function γ : R+→ R+ of class K is a continuous, strictly increasing function with
γ(0) = 0. A function γ : R+→ R+ of class K∞ is a continuous, strictly increasing
function with γ(0) = 0 and γ(s)→ ∞ as s→ ∞. The function β : R+×R+→ R+ is
of class KL if β (·, t) is of class K for every t ≥ 0 and β (s, t)→ 0 as t→ ∞ KL.

Definition 1 [Li, Hong and Shi (2008)]. The system ẋ = f (x,u) is Input-to-State
practically Stable (ISpS) if there exists a function γ of class K, called the nonlin-
ear L∞ gain, and a function β of class KL, such that, for ansy initial condition
x(0), each measurable bounded control u(t) defined for all t ≥ 0 and a nonnegative
constant d, the solutions x(t)are defined on [0,∞) and satisfy

||x(t)|| ≤ β (||x(0)||, t)+ γ(||ut ||∞)+d. (2.1)

For d = 0, the ISpS property reduces to the ISS property.

Definition 2 [Jiang (1999)]. A function V of class C1is ISpS - Lyapunov function for
ẋ = f (x,u) if there exist the functions αi,i = 1,2, ...,4 of classK∞, and a constant
d > 0such that

α1(||x||)≤V (x, t)≤ α2(||x||), ∀x ∈ Rn, (2.2)

V,x f (x,u)≤−α3(||x||)+α4(||u||)+d.

For d = 0, the Lyapunov function is an ISS - Lyapunov function. Herein a comma
in the subscript denotes differentiation with respect to the specified variable. The
nonlinear L∞ gain γ is derived from (2.2) as

γ(s) = α
−1
1 ◦α

◦
2 α
−1
3 ◦α4, ∀s > 0. (2.3)

Proposition 1 [Sontag and Wang (1995); Praly and Wang (1996)]. The system
ẋ = f (x,u)is ISpS if and only if there exists an ISpS – Lyapunov function for the
system.

Theorem 1 [Jiang, Teel and Praly (1994); Jiang and Mareels (1997)]. Consider two
related ISpS systems in the feedback form

ẋ = f (x,ω), z̃ = H(x),
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ẏ = g(y, z̃), ω = K(y, z̃). (2.4)

Let the functions βω and βξ of class KL, and the functions γz, γω of class K be
such that all solutions X(x;ω, t) and Y (y; z̃, t) are defined on [0,∞) and satisfy the
following relations for t ≥ 0

||H(X(x;ω, t)|| ≤ βω(||x||, t)+ γz(||ωt ||∞)+d1,

||K(Y (y; z̃, t)|| ≤ βξ (||y||, t)+ γω(||z̃t ||∞)+d2, (2.5)

for every ω ∈ L∞, z̃ ∈ L∞, x ∈ Rn and y ∈ Rm, and d1 > 0, d2 > 0 two constants.

Under these conditions, if

γz(γω(s)) < s or γω(γz(s)) < s, ∀s > 0, (2.6)

the solution of (2.4) is ISpS.

Proposition 2 [Tong, He, Li and Zhang (2010)]. Given the interconnected systems

ẋ1 = f1(x1,x2,u1), ẋ2 = f2(x1,x2,u2), (2.7)

where xi ∈ Rni ,ui ∈ Rmi ,i = 1,2, and fi : Rn1 × Rn2 × Rmi → Rni locally satisfy
the Lipschitz conditions, and assuming that there exist the ISpS - Lyapunov func-
tions,Vi,i = 1,2, then the following statements hold:

1. There exist the functions ϑi1,ϑi2of class K∞, so that

ϑi1(||xi||)≤Vi(xi)≤ ϑi2(||xi||), ∀xi ∈ Rni , (2.8)

2. There exist the functions α ′i of classK∞,the functions χi and γiof class K, and the
constants ci ≥ 0, so that V1(x1)≥max(χ1(V2(x2)), γ1(||u1||)+ c1)implies that

∇V1(x1) f1(x1,x2,u1)≤−α
′
1(V1), (2.9)

and V2(x2)≥max(χ2(V1(x1)), γ2(||u2||)+ c2)implies that

∇V2(x2) f2(x1,x2,u2)≤−α
′
2(V2). (2.10)

Theorem 2 [Jiang, Marels and Wang (1996)]. In the conditions of the Proposition2,
let us assume that thexi-subsystems, i = 1,2, have the ISpS - Lyapunov functions
Vi,i = 1,2, satisfying (2.8)-(2.10). If there exists c0 ≥ 0 such that

χ1 ◦χ2(s) < s, ∀s > c0, (2.11)

then the interconnected systems (2.7) are ISpS. Futhermore, if c0 = c1 = c2 = 0,
the system is ISS.

The robustness of the controller is obtained by checking the conditions of the the-
orem 2 for closed loop systems.
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3 Formulation of the problem

In this section we study the following uncertain unmodeled nonlinear system

ẋ1 = x2 + f1(x1,x2)+∆1(z,x1, ...,xn), ẋ2 = x3 + f2(x1,x2,x3)+∆2(z,x1, ...,xn),

. . .

ẋn−1 = xn + fn−1(x1, ...,xn)+∆n−1(z,x1, ...,xn),

ẋn = u+ fn(x1,x2, ...,xn,u)+∆n(z,x1, ...,xn),

ż = q(z,x1),

y = x1, (3.1)

where (x1(t),x2(t), ...,xn(t)) ∈ Rn is the state, fi, i = 1,2, ...,n, are nonlinear func-
tions that define the uncertainties of the system, ∆i(z,x1, ...,xn), i = 1,2, ...,n are
rapidly varying disturbances, u ∈ Rm (m positive integer) is the input of the sys-
tem, z(t) ∈ D ⊂ Rn (n positive integer) represents the dynamic unmodeled law for
the unmeasured portion of the state, q(z,x1) is an uncertain Lipschitz continuous
function, and y ∈ Rl (l positive integer) is the output of the system.

We assume that there exist the unknown positive constantspi, i = 1,2, ...,n, and
known nonnegative smooth functionsψi1(||xi||), ψi2(||z||) such that for t > t∗, with
a known t∗, to have [Jiang and Praly (1998); Bernardo and Stoten (2006)]

||∆i|| ≤ pi[ψi1 +ψi2], ψi2(0) = 0, i = 1,2, ...,n. (3.2)

Moreover, we assume that q(z,x1)admits a Lyapunov function V0(z,x1) of the form
(2.2)

α1(||z||)≤V0(z,x1)≤ α2(||z||), ∀x ∈ Rn,

V0,zq(z,x1)≤−α0(||z||)+ γ0(||x1||)+d0, (3.3)

where α1(||z||), α2(||z||), α0(||z||) and γ0(||x1||) are of class K∞ and d0 is a nonneg-
ative constant. The unmodeled dynamic law ż = q which verifies (3.3) characterizes
an ISpS system [Jiang (1999)].

Under conditions (3.2) and (3.3), the adaptive fuzzy control scheme proposed by
Tong, He, Li and Zhang (2010) can guarantee that closed-loop systems are semi-
globally uniformly ultimately bounded.
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4 Adaptive fuzzy state feedback control

A fuzzy logic system (FLS) fuzzifies the input vector x = [x1,x2, ...,xn]T using pre-
scribed membership functions, goes to a table-lookup rule base to determine asso-
ciated output values, then defuzzifies the output values into a single output value y.
The FLS is a collection of fuzzy If-Then rules

Rl : If x1 is F l
1 and . . . and xn is F l

n , then y is Gl, l = 1,2, ...,N, (4.1)

where F l
i and Gl are fuzzy sets of the fuzzy functions µF l

i
(xi) and µGl (y), respec-

tively, and N is the number of rules. The FLS can be expressed as

y(x) =
N

∑
l=1

ȳl

n

∏
i=1

µF l
i
(xi)/

N

∑
l=1

(
n

∏
i=1

µF l
i
(xi)

)
, (4.2)

where ȳl = maxy∈R µGl (y), or in the form

y(x) = ς
T

ϕ(x). (4.3)

In (4.3), ςT = [ȳ1, ȳ2, ..., ȳN ] = [ς1,ς2, ...,ςN ] and ϕ(x) = [ϕ1(x),ϕ2(x), ...,ϕN(x)]T

are the fuzzy basis functions defined as

ϕl =
n

∏
i=1

µF l
i
(xi)/

N

∑
l=1

(
n

∏
i=1

µF l
i
(xi)

)
. (4.4)

Lemma 1 [Wang (1994)]. Let f (x) be a continuous function defined on a compact
set Ω. Then for any constant ε > 0, there exists a FLS given by (4.3) such that

sup || f (x)− ς
T

ϕ(x)|| ≤ ε, (4.5)

Let us suppose that the unknown smooth functions fi, i = 1,2, ...,n, defined on the
compact sets Ui, can be approximated by the FLS (4.3)

f̂ (xi|ςi) = ς
T
i ϕ(xi), i = 1,2, ...,n, (4.6)

where the adaptation functions ςiare defined on the compact sets Ωi. In this case,
equation (3.1)3can be written as

ẋn−1 = xn + f̂n−1 +[ f̂(n−1)opt − f̂n−1]+ [ fn−1− f̂(n−1)opt ]+∆n−1, (4.7)

where f̂iopt = f̂i(xi|ςiopt). The optimal parameters ςiopt are defined as

ςiopt = arg min
θi∈Ω1

[
sup xi∈Ui | f̂i− fi|

]
, i = 1,2, ...,n. (4.8)



On Chaos Control in Uncertain Nonlinear Systems 235

The fuzzy approximation errors εi(xi) = fi− f̂iopt , verify the following relation

||εi(xi)|| ≤ εi0, i = 1,2, ...,n,

with εi0 positive constants. By inserting (4.6) into (4.7) it results

ẋn−1 = xn + ς
T
n−1ϕn−1 +(ς(n−1)opt − ςn−1)T

ϕn−1 + εn−1 +∆n−1. (4.9)

If xi+1, i = 1,2, ...,n, are assumed to be the virtual controls, the stabilization func-
tions πi(x1, ...,xi,ς1, ...,ςi, p̂1, ..., p̂i) are defined by

x̄i+1 = xi+1−πi, i = 1,2, ...,n, (4.10)

where p̂i are adaptation functions representing the estimate functions of pi, i =
1,2, ...,n defined by (3.2). The time differentiation of (4.10) gives

˙̄xi+1 =

xi+2 + fi+1−
i

∑
j=1

πi,x j f j−
i

∑
j=1

πi,x j x j+1−
i

∑
j=1

πi,θ j θ̇ j−
i

∑
j=1

πi,p̂ j
˙̂p j +∆i−

i

∑
j=1

πi, j f j,

(4.11)

where the unknown smooth functions fi+1−
i

∑
j=1

πi,x j f j are defined on the compact

sets Ωi, i = 1,2, ...,n. Assume that these unknown functions can be approximated
by FLS

fi−∑πi−1,x j f j = ς
T
i ϕi +(ςiopt − ςi)T

ϕi + εi. (4.12)

Now, consider the Lyapunov functions

Vi = Vi−1 +
1
2

x̄2
i +

1
2
(ςiopt − ςi)T

Γ
−1
i (ςiopt − ςi)+

1
2

λ
−1
i (p̂i− pi)2, (4.13)

where V0 = 1
2 η(x2

1) is a smooth function of the class K∞, Γi = ΓT
i are known adap-

tation gain matrices, λi > 0 are design parameters. The function η(x2
1) is chosen

such that its derivative with respect to x1 is strictly positive. By using (4.11) and
(4.12), the time differentiation of Vi becomes

V̇i = V̇i−1 + x̄i ˙̄xi− (ςiopt − ςi)T
Γ
−1
i θ̇i +λ

−1
i (p̂i− pi) ˙̂pi

= V̇i−1 + x̄i

[
xi+1 +Hi−1 +(ςiopt − ςi)T

ϕi + εi +∆i−
i

∑
j=1

πi, j f j

]
− (ςiopt − ςi)T

Γ
−1
i ς̇i +λ

−1
i (p̂i− pi) ˙̂pi,

(4.14)
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where

Hi−1 = ς
T
i ϕi−

i−1

∑
j=1

πi−1,x j x j+1−
i−1

∑
j=1

πi−1,θ j ς̇ j−
i−1

∑
j=1

πi−1,p̂ j
˙̂p j+1. (4.15)

The adaptive fuzzy state feedback control design is based on the following theorem
proven by Tong, He, Li and Zhang (2010).

Theorem 3 [Tong, He, Li and Zhang (2010)]. Given the uncertain unmodeled non-
linear system (3.1), if πi(x1, ...,xi,ς1, ...,ςi, p̂1, ..., p̂i),p̂i and θi,i = 1,2, ...,n, are
defined as

πi =−x̄i−1− cix̄i−Hi−1− εi0 tanh
x̄iεi0

k
− p̂iWi, (4.16)

˙̂pi = λix̄iWi−λiσp(p̂i− pi0), p̂i(0) = pi0, (4.17)

ς̇i = Γix̄iϕi−Γiσθ (ςi− ςi0), ςi(0) = ςi0, (4.18)

Wi = x̄iφi1 +
x̄i

4
+

1
4

i−1

∑
j=1

(
πi−1,x j

)2 x̄i, (4.19)

φi1 =
1
4

+

||xi||
1∫

0

ψi1,s(s||xi||ds

2

+

(
i−1

∑
j=1
||πi−1,x j ||ψ j1(||x j||)

)2

, (4.20)

where ci > 0 are design parameters, σp > 0,σθ > 0 are known design parameters,
kis a given arbitrary constant and ψi1are given by (3.2).

then (4.13) are ISpS - Lyapunov functions.

The robustness of the adaptive fuzzy controller is obtained for a proper choice of
V0 = 1

2 η(x2
1) if the conditions of Theorem 1 are verified.

5 Double pendulum: A case study in chaos

In this section, we analyze the double pendulum with driven forces to reveal the
chaos control performance of the proposed algorithm. The forced double pendu-
lum is a well-known chaotic system [Chen and Yu (2003); Hsu (2000)]. Fig.5.1
shows a double pendulum subject to periodic non-conservative loads [Munteanu
and Donescu (2004)]. For large motions it is a chaotic system, but for small mo-
tions it is a simple linear system. This pendulum consists of two straight rods O1O2
and O3O4 of massesM1, M2, lengths 2l1, 2l2, and mass centers C1,C2, respectively.
The rods are articulated in O3 and suspended in O1, so that they can move in the
vertical plane xO1y without friction. Other notations from Fig.5.1 are l = O1O3,
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l1 = O1C1, l2 = O3C2. We denote byθ1, θ2 the displacement angles with respect to
the vertical axis O1x, I1 the moment of inertia of O1O2 with respect to C1, I2 the
moment of inertia of O3O4 with respect to C2, and g the gravitational constant. The
forces acting upon the pendulum are, firstly, the weights of bars. The generalized
forces are

G1 =−M1l1gsinθ1−M2gl sinθ1, G2 =−M2gl2 sinθ2. (5.1)

Secondly, we consider the case of a non-conservative force Pcosωt along O3O4
(Fig.5.1).

 
Figure 1: Geometry of the system.

Therefore, the generalized force is

Q = Pl sin(θ2−θ1)cosωt. (5.2)

The equations of motion obtained from the Lagrange equations, namely,

d
dt

(
∂T
∂ θ̇1

)
− ∂T

∂θ1
= G1 +Q,

d
dt

(
∂T
∂ θ̇2

)
− ∂T

∂θ2
= G2, (5.3)

are non-dimensionalized in the form

θ̈1 +α[θ̈2 cos(θ2−θ1)− θ̇
2
2 sin(θ2−θ1)]+β sinθ1 = R,

θ̈2 + γ[θ̈1 cos(θ2−θ1)+ θ̇
2
1 sin(θ2−θ1)]+ sinθ2 = 0. (5.4)

Here, the dimensionless variables and coefficients are given by

t→ t
√

η , ω→ ω
√

η
, η =

gM2l2
I2 + l2

2M2
, α =

M2ll2
I1 + l2

1M1 + l2M2
, γ =

M2ll2
I2 + l2

2M2
,
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β =
M1l1 +M2l

I1 + l2
1M1 + l2M2

· I2 + l2
2M2

M2l2
, µ̃ =

P
gM2

, ν =
4
3

αµ̃,

R = ν sin(θ2−θ1)cosωt. (5.5)

A dot denotes differentiation with respect to the dimensionless variablet. By setting

m =
M1

M2
, r =

l
l1

, s =
l2
l1

, (5.6)

we assume that the motion of the double pendulum with driven forces depends on
the unknown parameters r, s, m, µ̃ and ω . The motion of the double pendulum
is studied without any knowledge of the above parameters. It is easy to show that
α,β ,γ become

α =
3rs

3r2 +4m
, β =

4s(r +m)
3r2 +4m

, γ =
3r
4s

. (5.7)

By introducing the new variables

θ1 = x1, θ̇1 = x2, θ2 = x3 , θ̇2 = x4, u = ν sin(θ2−θ1)cosωt, (5.8)

equations (5.4) are rewritten as

ẋ1 = x2 +∆1,

ẋ2 = f2(x1,x3,u)+∆2,

ẋ3 = x4 +∆3,

ẋ4 = f4(x1,x3,x4,u)+∆4,

ż =−3z+0.25x2
1,

y = x1,

where

f1 = 0,

f2(x1,x3,u) =
1

1−αγ cos2(x3− x1)
[−β sinx1 +α sinx3 cos(x3− x1)+

+αx2
4 sin(x3− x1)+αγx2

2 sin(x3− x1)cos(x3− x1)−u]

f3 = 0,
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f4(x1,x3,x4,u) =
1

1−αγ cos2(x3− x1)
[−sinx3 +βγ sinx1 cos(x3− x1)−

− γx2
2 sin(x3− x1)−αγx2

4 sin(x3− z1)cos(x3− x1)+ γucos(x3− x1)],

∆1 = (sinx1 + z)2, ∆2 = x2zsinx1, ∆3 = x3zsinx1, ∆4 = (sinx4 + z)2,

u =−4
3

αµ̃ cosωt sin(x3− x1), 1−αγ cos2(x3− x1) 6= 0 . (5.9)

The initial conditions are

x1(0) = x10, x2(0) = x20, x3(0) = x30, x4(0) = x40, (5.10)

with the known constants xi0, i = 1,2, ...,4. By choosing

ψi1(s) = ψi2(s) = ψi3(s) = s2, ψi4(s) = 0, i = 1,2, V0 = z2,

α0(s) = 1.85s2, α1(s) = 0.2s2, α2(s) = 2s2, γ0(s) = s4, d0 = 0, (5.11)

conditions (3.2) and (3.3) are satisfied. Therefore, the adaptive fuzzy control scheme
proposed by Tong, He, Li and Zhang (2010) can guarantee that closed-loop systems
are semi-globally uniformly ultimately bounded. The FLS are

θ
T
m ϕm =

9

∑
j=1

θ
T
m jϕm j, m = 2,3,4, (5.12)

with the fuzzy functions chosen as

ϕm j(x1,x2, ...xm) =
(
Π

m
i=1 exp

(
−0.25(xi−0.5 j +2)2))

/
(
Π

9
l=1Π

m
i=1 exp

(
−0.25(xi−0.5l +2)2)) . (5.13)

Regarding the small-gain conditions, we chose

εi = 0.001, i = 1,2, ...,4, β (s) = s2, γ(s) =
√

s,

2V0 = η(x2
1) = 105x8

1 +4x2
1, σp = 0.2, σθ = 0.2, Γ2 = Γ3 = Γ4 = I9.

The Lyapunov functions Vi, i = 1,2, ...,4, are ISpS - Lyapunov functions if the con-
ditions of Theorem 3 are satisfied. The adaptive functions and the fuzzy controller
are

π1 =−x1v1(x2
1)− p̂1φ11(x1)x1η

′,
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π j =−x̄ j−1−c jx̄ j−H j−1−ε j0 tanh(x̄ jη
′
ε j0/k)− p̂ jx̄ j

(
φ j1 +0.25+0.25π

2
j−1,x j

)
,

j = 2,3,4,

˙̂p1 = λ1x2
1η

2
,x1

φ11−λ1σp(p̂1− p10),

˙̂p j = λ jx̄ j

(
x̄ jφ j1 +0.25+0.25π

2
j−1,x j

)
−λ jσp(p̂ j− p j0),

p̂ j(0) = p j0, j = 2,3,4

θ̇2 = Γ2x̄2ϕ2−Γ2σθ (θ2−θ20) θ̇i = Γix̄iϕi−Γiσθ (θi−θi0), θi(0)= θi0, i = 3,4,

u =−x̄2− c4x̄4− (H2 +H4)− ε20 tanh(x̄2ε20/k)− ε40 tanh(x̄4ε40/k).

where Hi are given by (4.15) and ε j0 = 0.1, λ j = 1, j = 2,3,4, ci = 2, k = 0.01.

We assess the efficiency of our analysis by computing the representations of the so-
lutions for a forced double-pendulum. Initial conditions are chosen in the interval
[−1.5, 1.5], i.e. {θ1, θ̇1,θ2, θ̇2} ∈ [−1.5,1.5]. Numerical experiments on the solu-
tions have shown that for ω = µ̃ = 0 the motion of the pendulum is bounded and
stable. For certain values of the parameters ω 6= 0, µ̃ 6= 0 we also obtain bounded
motions, but we depict other regions of these parameters for which the correspond-
ing solutions may sudden change to irregular, chaotic type motions. The initial
conditions are given by

p̂ j(0) = p j0 = 1, j = 1,2,3,4, ci = 2, θi0 = [0.1, ...,0.1]T , i = 2,3,4.

To analyze the effect of the rapidly varying disturbances, let us consider first that

∆i(z,x1, ...,xn) = 0, i = 1,2, ...,n.

The first step is to construct the chaotic attractor which has a dense set of unstable
periodic trajectories. The chaotic response has a sensitive dependence on the initial
conditions, which implies that small perturbations in the initial conditions may
dramatically alter the evolution of the motion [Miller (2005)]. The second step is
to identify a set of unstable trajectories. Once the desired unstable trajectories to
be stabilized are chosen, the control will be initialized to require the pendulum to
move towards the equilibrium position.

The resulting phase portraits of θi,i = 1,2 and their corresponding time derivatives
divided by ω , for 0≥ t ≤ 50sec . are displayed in Figs. 5.2 and 5.3, respectively.

Fig. 5.4 displays the trajectories of θi, i = 1,2 for 0 ≥ t ≤ 50sec . The trajectory
of the control is presented in Fig. 5.5. All the signals in closed-loop system are
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Figure 2: Phase portrait of θ̇1/ω and θ1.

 

Figure 3: Phase portrait of θ̇2/ω and θ2.

bounded, and the system output converges to a small neighborhood of the origin
eventhough the exact information on the nonlinear functions in the controlled sys-
tems is not available.
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Next, to make the system chaotic during rapid oscillations, we select

∆i(z,x1, ...,xn) 6= 0, i = 1,2, ...,n,

and u as a sinusoidal force of appropriate amplitude and frequency.

The resulting chaotic trajectories of θi, i = 1,2, for closed-loop systems is presented
in Fig.5.6. The discontinuities of the angular evolutions are due to the fact that the
angular values are projected into a short interval of time. From Fig. 5.6 it is clearly
visible that the control requires the pendulum to move towards the equilibrium
position at about t = 5 (θiθ̇i ≤ 0, i = 1,2).

 

Figure 4: Trajectories of θ1 and θ2.

 

Figure 5: Trajectory of the control u.
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Figure 6: Trajectories of θ1 and θ2under the action of the rapidly varying distur-
bances.

6 Conclusions

The chaos control presented in this paper further extends the range of applications
of the adaptive robust control method (Tong, He, Li and Zhang (2010)) to systems
with various nonlinear uncertainties, unmodeled dynamic law and rapidly varying
disturbances. The model of a stable adaptive controller is obtained by combining
the backstepping and small-gain approaches. The method was used to control the
chaotic motion of the double pendulum without knowledge of the parameters. Once
the desired unstable trajectories to be stabilized are chosen, the control will be
initialized to require the pendulum to move towards the equilibrium position.
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