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Calculation of a Deformable Membrane Airfoil in
Hovering Flight

D.M.S. Albuquerque1, J.M.C. Pereira 1 and J.C.F. Pereira1,2

Abstract: A numerical study of fluid-structure interaction is presented for the
analysis of viscous flow over a resonant membrane airfoil in hovering flight. A
flexible membrane moving with a prescribed stroke period was naturally excited
to enter into 1st , 2nd and 3rd mode of vibration according to the selected mem-
brane tension. The Navier-Stokes equations were discretized on a moving body
unstructured grid using the finite volume method. The instantaneous membrane
position was predicted by the 1D unsteady membrane equation with input from the
acting fluid flow forces. Following initial validation against reported rigid airfoils
predictions, the model is applied to the dragonfly hovering case for a flapping mem-
brane, pinned at both ends, at a Reynolds number based on the chord length of 157
and 1570. For a prescribed membrane tension corresponding to the first resonance
mode, the membrane adopts a stable equilibrium shape that reduces both drag and
lift forces relatively to the rigid airfoil values. For higher vibration resonant modes
a weak interaction was predicted between the coherent membrane inflated shape
and the resulting unsteady wake. For these cases the leading and trailing edges
vortices dominate over the membrane shape fluid interaction. Most of the airfoil
flexion occurs not from the aero-elastic interactions between the airfoil and the fluid
but from the inertial bending of the airfoil on account of its density and tension.

Keywords: unsteady aerodynamics, insect flight, computational fluid dynamics,
vortex dynamics, fluid-structure interaction, membrane dynamics.

1 Introduction

Recently interest has grown in developing insect-inspired, low Reynolds number
and low aspect ratio (LAR) flapping wings to power Micro Aerial Vehicles (MAVs)
to be used in wide-ranging monitoring and surveillance activities, ([e.g. Ellington
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(1999); Shyy, Berg, and Ljungqvist (1999); Rozhdestvensky and Ryzhov (2003)].
The majority of MAV applications require great manoeuvrability and the ability
to hover, consequently there is a growing interest on all aspects of flapping wing
operation including wing stiffness and morphing capabilities or even designs going
beyond the biological model of inspiration, [e.g. Michelson and Naqvi (2003)].

Nowadays, the unsteady aerodynamics of periodic flapping flight is well known and
many theoretical models and experimental studies exist that explain the high lift
aerodynamic mechanisms: i) clap and fling see e.g. [Weis-Fogh (1972); Lehmann,
Sane, and Dickinson (2005)], ii) leading edge vortex (LEV) or delayed stall [Dick-
inson and Götz (1993); Ellington, Berg, Willmott, and Thomas (1996); Birch and
Dickinson (2001)], iii) wake capturing [Lehmann and Dickinson (1997); Dickin-
son, Lehmann, and Sane (1999)] and iv) rotational circulation [Lehmann and Dick-
inson (1997)]. Each mechanism depends on the Reynolds and Strouhal numbers
associated with forward or hovering flight [e.g. Andro and Jacquin (2009)]. The
force required for uniform or accelerated flight conditions is achieved by changes in
the kinematic parameters, such as stroke plane angle, deviation from stroke plane,
wing beat amplitude, angular velocity of the wing, etc. In addition to complex kine-
matics, birds and insects change their camber significantly to achieve the desired
flight conditions (see for example the reviews of [Sane (2003); Shyy, Lian, Tang,
Viieru, and Liu (2008); Wang (2005)]).

The flapping flight of insects and birds is accompanied by significant bending of
flexible wings that have the potential for morphing and to alleviate the effects of
gust wind compared with rigid wings [e.g. Smith and Shyy (1995); Shyy, Jenkins,
and Smith (1997); Shyy, Berg, and Ljungqvist (1999); Ellington (1999); Thomas
and Stancey (2002); Ho, Nassef, Pornsinsirirak, Tai, and Ho (2003); Hu, Tamai,
and Murphy (2008); Heathcote, Wang, and Gursul (2008)]. In addition, flexibility
may delay the stall and acts as a potential passive flow control method in nature and
engineering applications [Rojratsirikul, Wang, and Gursul (2009)]. For this purpose
the leading edges should remain rigid to avoid loss of vortex lift by disruption of the
unsteady leading edge vortex [e.g. Lisa, Deborah, and Chris (2008); Ho, Nassef,
Pornsinsirirak, Tai, and Ho (2003)]. Mammalian flyers such as bats can exhibit
extraordinary fight agility and maneuverability in part by the utilization of LAR
thin compliant wings as the lifting surface [Galvao, Israeli, Song, Tian, K., Sharon,
and B. (2006)].

As is well known aeroelasticity describes the interaction between aerodynamic
loads, elastic and inertial forces [Bisplinghoff, Ashley, and Halfman (1996)]. The
triangle formed with these three forces illustrates the location of each aeroelastic
phenomenon on the diagram according to its relation to the three vertices. Con-
sequently wing bending and flutter, buffeting and dynamic response related with
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aircraft design are inside the triangle and involve the three forces coupling. Insects
or light MAVs present an higher wing flexibility compared with rigid wings and
it is relevant to understand if full 3D viscous fluid-structure interaction is required
[Liu (2009)] or it is possible the incorporation of wing flexion into current models
[Ansari, Zbikowski, and Knowles (2006)].

Motivation for the present work arises from several wing flexibility studies that in-
dicated the relatively minor role which pressure stresses play in determining the
wing shape, (for certain combinations of wing structure and motions). The wing
deflexion was not attributed to the aero-elastic interactions between the wing and
the fluid but simply to the inertial bending of the wing [e.g. Combes and Daniel
(2001); Daniel and Combes (2001); Thomas and Stancey (2002); Kamakoti and
Shyy (2002);Sane (2003); Yamada and Yoshimura (2008); Vanella, Fitzgerald,
Preidikman, Balaras, and Balachandran (2009)]. Different authors have applied
optimization algorithms to increase the performance of rigid airfoils by changing
their shape see e.g. [Srinath and Manek (2009); Levin and Shyy (2001)].

The main objective of this work is to investigate to what extent elastic and pressure
forces are coupled and modify the surface shape of flapping wings under resonance.
We have selected extreme conditions which constitute a class of problems involving
the dynamics of shape-changing bodies under resonance in fluids. In other words,
does the combined structural and fluid dynamic loads bring the membrane and flow
into equilibrium? or alternatively , does it result a non-steady behavior composed
of many superimposed structural modes interacting with a highly unsteady wake?

In the present study a linear membrane model is used to compute the deformation
with applied aerodynamic loads. The aeroelastic response of an initially flat mem-
brane wing is dominated by pretension in the limit of vanishing material stiffness.
We consider a simple two dimensional airfoil in dragonfly hovering, where the lack
of forward velocity requires a substantial energy input. For a comprehensive review
of the literature see [e.g. Ellington (1984); Van den Berg and Ellington (1997);
Wang (2000); Wang (2004); Wang (2005); Thomas, Taylor, Srygley, Nudds, and
Bomphrey (2002); Young, Lai, and Germain (2008)].

The phenomenon of resonance in the framework of flapping wings has been only
considered relatively to the insect thorax-wings system and related with the very
high wing beat frequency that implements mechanical resonance in the thorax to
minimize energy expenditure. The flight system of insects is a damped resonator
(e.g. Greenewalt (1960); Dudley (2000)) and in the framework of MAV, several
flying micromechanisms have been proposed [Isogai, Kamisawa, and Sato (2007)].

The viscous flow patterns and aerodynamic parameters resulting from a flapping
flexible membrane operating in resonance mode are, to the authors knowledge, not
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been reported. The present work simulates the 1st , 2nd and 3rd vibration modes
of a 1D flapping membrane over twenty stroke periods. Comparisons with a rigid
airfoil are made for reference purposes. Interest is focused on the membrane de-
formation and the nature of the unsteady vortex interaction behavior around the
flexible-membrane airfoil in resonance mode as well as their effects on the overall
aerodynamic performance.

Nowadays, there is a wide offer of numerical techniques that have been success-
fully applied to flapping wings, among them the method of artificial compressibility
[Liu, Ellington, Kawachi, Van den Berg, and Willmott (1998)], the finite element
method [Ramamurti and Sandberg (2002)], vortex method [Eldredge (2005)], the
immersed boundary-lattice Boltzmann method [Gao and Lu (2008)] and the bound-
ary element method [La Mantia and Dabnichki (2008)]. A computational fluid
dynamic (CFD) modeling approach is used to study the unsteady aerodynamics
of the flapping airfoil in dragonfly hovering. Although the present study is two-
dimensional it was reported that 2D unsteady forces predictions turn out not to be
very far away from of 3D experiments [Wang, Birch, and Dickinson (2004)], 2D
unsteady simulations have also been used to study the influence of ground effect in
hovering flight performance [Gao and Lu (2008)] and [Pereira, Maia, and Pereira
(2009)].

In this work, we focus on a hovering flapping flat plate at Re = 157 and Re = 1570
based upon maximum translational speed and wing chord. At this Reynolds num-
ber, turbulence is absent and the issues of numerical resolution can be addressed
satisfactorily with a grid moving technique that maintains grid quality over time.
Suitable distribution of around 400 thousands computational cells was required to
capture the relevant detail of this 2D unsteady flow.

The next section explains the numerical method used for both fluid and membrane
models and in particular the mesh used and the efficient moving mesh procedure.
This is followed by the validation exercise in which different rigid airfoils pre-
dictions in dragonfly mode are compared with reference data. The fourth section
presents the results obtained with the flexible membrane airfoil under different
modes of vibration. The results section ends with and energetic analysis of the
rigid and flexible airfoils by splitting the power required for the motion in pitching
and translation motions. The paper ends with summary conclusions.
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2 Computational Models for Coupled Fluid-Structure Interaction

2.1 Mathematical model and numerical method for fluid equations

We assume that the fluid is newtonian and incompressible and the Navier-Stokes
model for an unsteady flow reads as:

∇ ·u = 0, (1)
∂u
∂ t

+(u ·∇)u =−∇p
ρ

+ν∇
2u, (2)

We are interested in studying the membrane wing shape changes under elastic and
fluid forces and the shape variation effects on the surrounding fluid flow. Due to this
coupling it is required to accurately capture the transient behavior of fluid flow and
membrane dynamics. The STAR-CD software embodies a numerical finite volume
solver, for fluid flow predictions we have selected this software package because
of the unstructured grid capabilities with local refinement and non-conformal grid
with arbitrary interfaces. The solution of the linear system of equations is obtain by
bi-conjugate gradient method with algebraic multigrid preconditioning and PISO
(Pressure-Implicit Split-Operator) method is generally very efficient for transient
flow computation [Issa (1985)], while the spatial discretization uses a 2nd order
convection discretization scheme with a TVD (Total Variation Diminishing) limiter.

2.2 Moving Grid Technique

The moving grid technique is employed to adjust the grid dynamically along with
the wing motion and the geometry updates. A non-uniform mesh was used and a
high density of nodes is located close to the airfoil and in regions with expected high
velocity gradients. Fig. 1 shows the mesh with the computational domain divided in
three regions. The sliding interface was located far away from the airfoil, between
zone 2 and 3, to reduce the numerical dissipation produced by the interpolation
between the moving and steady meshes.

Near the airfoil, at zone one, the mesh extended up to 5 chords and different meshes
were generated for each airfoil type used; elliptic, plate and diamond. The second
block is delimited by the previous circle and the interface zone, which is extended
up to twenty chords from the airfoil. The third zone is defined between the interface
zone and the domain’s outer border.

A transformation is applied to the zones one and two, similar to a rotor and a stator
of a turbomachine, to account for the pitch motion of the airfoil. This is achieved,
by imposing in the interface zone a continuity condition, which interpolates infor-
mation between the steady and the moving meshes.
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Figure 1: Model’s domain and mesh with the 3 zones

The airfoil translational motion is achieved by stretching the zone two. This type
of transformation was not applied to zone one to avoid numerical dissipation. The
mesh in zone one suffers a translational motion to account for the membrane defor-
mation and the cells in zone three remain unchanged.

In the outer border the slip condition is imposed, on the airfoil surface the velocity
was prescribed according to the stroke motion guarantying the no slip condition in
the airfoil.

2.3 Membrane Equation

The dynamic of a moving web can be described by the thread-line model [Aidun
and Qi (1998)].

m
∂ 2w
∂ t2 +2V m

∂ 2w
∂x∂ t

+(V 2m−T )
∂ 2w
∂x2 +D

∂ 4w
∂x4 = p(x, t) (3)

Where w is displacement in the thickness direction, t is time, m is the mass per
unit area of the web, V the velocity of the web, T the tension of the web, D is the
bending stiffness and p(x, t) is the pressure in both top and bottom of the web.

If an inertial frame of reference is used, the variable V and the Coriolis force term
can be neglected, thus equation (3) reduces to the typical web equation:

m
∂ 2w
∂ t2 −T

∂ 2w
∂x2 +D

∂ 4w
∂x4 = p(x, t) (4)

In the case of a flexible membrane, in the limit of vanishing stiffness, the following
assumption is valid:

T
∥∥∥∥∂ 2w

∂ 2x

∥∥∥∥� D
∥∥∥∥∂ 4w

∂x4

∥∥∥∥ (5)
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So that the equation (4) reduces to the well-known membrane equation without
damping:

m
∂ 2w
∂ t2 −T

∂ 2w
∂x2 = p(x, t) (6)

The eigenvalues of equation (6) are real numbers, λ1,2 = ±
√

T
m

, denoting an hy-

perbolic differential equation. To solve this equation, we have to obtain the hydro-
dynamic force, p(x, t), which couples membrane equation with the Navier-Stokes
equations.

The Leap-Frog scheme computes the position and acceleration of each membrane
element at each time instant and the velocity is computed at the average of each
time-step. At the beginning, the acceleration is calculated from the equation (6)
using second order finite difference scheme:

a(t) =
p
m

+
T

m∆x2 (wn
i+1−2wn

i +wn
i−1) (7)

Afterwards, the velocity is computed in the middle of the time step with the fol-
lowing equation:

v
(

t +
∆t
2

)
= v
(

t− ∆t
2

)
+∆t×a(t) (8)

and the position of the membrane can be computed in the new time instant:

w(t +∆t) = x(t)+∆t× v
(

t +
∆t
2

)
(9)

After the position of the membrane is known, the time t = t +∆t and the cycle starts
again in equation (7). The conditional stability condition of the method requires
that the time step:

∆t < ∆x
√

m
T

(10)

To obtain the different resonance modes, we need to equal the frequency of the
analytic solution with the flapping frequency, obtaining the following relation:

T =
4 f 2c2m

n2 (11)
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The equation (11) allows to compute the tension which produces the desired nth

vibration mode, for a fixed membrane density m, for a flapping frequency f and c
is the airfoil’s chord.

The explicit temporal discretization for the membrane and the implicit solution of
the fluid flow constitutes an accurate coupling algorithm because the inertia of the
structure is very small. Otherwise, at each time step, the energy introduced by the
fluid loading on the structure may create energy dissipation. If an implicit coupling
is considered the coupling variables are exchanged and the fluid domain is updated
at each time step. However for the present case, with very small displacements per
time step the problem of energy conserving in the interface boundary is negligible.

3 Predictions for Rigid Airfoils

In this section, rigid airfoils with elliptic, plate or diamond shapes are calculated
in the dragonfly mode with a stroke length A0 and an angle of motion line β , see
Fig. 2. The results of the elliptic airfoil were compared with reference published
data [Wang (2000)].

Figure 2: Dragonfly mode

Three levels of mesh refinement where considered corresponding to one, two and
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four hundred thousand cells to discuss the solutions dependence on the mesh size.
The time step corresponding to each mesh was selected, as ∆t = 0.02 s, 0.01 s and
0.005 s, to guarantee the Courant number C corresponding to each mesh less than
0.5.

The dragonfly movement in hovering mode, used in the present work, is character-
ized by the translation and pitching motions given by the equations below [Wang
(2000)]:

X(t) =
A0

2
cos
(

2πt
P

)
(12)

α(t) =
π

4

[
1− sin

(
2πt
P

)]
(13)

Where X(t) is position of the airfoil center along the motion line, P is the stroke
period, α(t) the pitch angle, A0 the stroke length of 2,5 cm and β = π/3 is the
angle of motion line.

The results were predicted as a benchmark test case, with an elliptic airfoil with
1 cm of chord and 1,25 mm of thickness. The maximum velocity of the airfoil,
Ure f = π corresponds to a Reynolds number equal to Re = Ure f c/υ = 157. The
kinematic viscosity (υ) is 2.0× 10−4 m2/s and the fluid density is 1.225 Kg/m3.
The rotation and translation Strouhal numbers are equal to Sta = f A0/Ure f = 0.318
and Stc = f c/Ure f = 0.127, respectively. Twelve stroke cycles were predicted in
each case to guarantee a periodic solution.

Figure 3: Lift force with the elliptic airfoil

Fig. 3 and Fig. 4 show the temporal evolution of the lift and drag forces, obtained
with 400 thousands cells. The comparison with the reference results is globally in
satisfactory agreement but some of the differences could be explained by the dif-
ferent numerical methods used and also by the different boundary conditions at far
field. Wang uses 4th order accurate numerical method but theoretically enforces the
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Figure 4: Drag force with elliptic airfoil

outer boundary condition, we use 2nd order accuracy and the outer free boundary is
located far away, but we use a very fine mesh comprising 400 thousands cells for a
two-dimensional problem.

The average lift force component obtained during one cycle was predicted to be
2.96× 10−2 N/m while Wang (2000) reported 2.8× 10−2 N/m. Since the solution
obtained with 400 thousand cells are in satisfactory agreement with the reference
results and no differences were observed with the different mesh sizes, no further
mesh refinement was considered.

Fig. 5 and Fig. 6 show the evolution of the lift and drag forces for Re = 157 and
Re = 1570 with the elliptic airfoil. These figures help to understand the influence of
the Reynolds number or the forces. The curves have a similar evolution but denote
differences in the local relative extremes, these differences may be attributed to the
occurrence of stronger vortices for Re = 1570 than for Re = 157.

Figure 5: Lift force with elliptic airfoil for different Reynolds numbers

Fig. 7 and Fig. 8 compare the lift and drag forces for three rigid airfoils with elliptic,
plate and diamond shapes, during the dragonfly mode at Re = 157. The lift and
drag curves show a similar evolution for all the different shapes, but with some
differences that can be analyzed in the contour plots of the vorticity field shown in
Fig. 9. The plate and diamond, at point A’, marked in Fig. 7 and Fig. 8, display
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Figure 6: Drag force with elliptic airfoil for different Reynolds numbers

bigger vortices than the elliptic airfoil. Another difference appears in the leading
edge vortex that makes the drag in the plate and diamond airfoils lower than for the
elliptic airfoil, see Fig. 9. At point D’, the vortices attached to the airfoil are much
more intense in the plate and diamond airfoils than in the elliptic one.

Figure 7: Lift force with the three rigid airfoils at Re = 157

Figure 8: Drag force with the three rigid airfoils at Re = 157

Tab. 1 lists the average forces on each airfoil, the plate and diamond airfoils dis-
play similar drag and lift forces and the airfoils edges can explain the differences
relatively to the elliptic airfoil. The sharp edges of the plate and diamond airfoils
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Elliptic Plate Diamond

Figure 9: Vorticity field with the three rigid airfoils
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generate a more intense LEV and a similar observation has been made by [Ansari,
Knowles, and Zbikowski (2008)]. The airfoil shape is not a relevant design param-
eter compared with sharps leading and trailing edges, for the dragonfly hovering
set of parameters studied.

Table 1: Average force values with the three rigid airfoils at Re = 157

Force (N/m) Elliptic Plate Diamond
Lift 2.956×10−2 3.659×10−2 3.29×10−2

Drag −1.389×10−2 −2.1088×10−2 −2.094×10−2

Fig. 10 shows the temporal evolution of the lift force for Re = 1570, the lift and
drag forces evolution display similar differences for both Reynolds numbers. Tab. 2
lists the average forces values for each of the three airfoils investigated.

Figure 10: Lift force with the three rigid airfoils at Re = 1570

Table 2: Average force values with the three airfoils at Re = 1570

Force (N/m) Elliptic Plate Diamond
Lift 3.484×10−2 4.18×10−2 4.08×10−2

Drag −1.633×10−2 −2.111×10−2 −1.979×10−2

The diamond and plate airfoil coefficients are similar, which is an evidence of the
edge shape contribution, over the airfoil thickness, to the vortices generation and
their attachment to the airfoil, increasing the lift force.

4 Results for Flexible Membrane Airfoil

The prescription of the 1st , 2nd or 3rd mode of vibration allows the calculation of
the membrane tension via equation (11). The stroke length and oscillation period
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was kept unchanged as well as the membrane density (m = 2.0 Kg/m2). The mem-
brane will flap in resonance mode and one expects that the membrane oscillation
amplitude increases with time according to the viscous damping and the feedback
mechanism. At t = 0 s the initial membrane shape is geometrically flat and calcu-
lations were performed up to 20 stroke periods.

The membrane equation does not have damping terms and the membrane displace-
ment will reach a periodic solution due to aerodynamic damping, which occurs in
high frequency modes. Low frequencies should require a damping component in
the structural model, since the goal is to study the resonance mode this term was
not include.

4.1 First Mode of Vibration

The first mode of vibration was achieved with the prescription of m = 2.0 Kg/m2

and T = 1.28 N/m. Fig. 11 and Fig. 12 show the evolution of the lift and drag forces
with the rigid and flexible airfoils corresponding to the first mode of vibration.

Figure 11: Lift force with the first mode of vibration

Figure 12: Drag force with the first mode of vibration

Fig. 13 shows the membrane displacement at three reference points of control x =
c/4, x = c/2 and x = 3c/4 over four cycles of the simulation, where c is the airfoil
chord and w the calculated membrane displacement.
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Figure 13: Membrane displacement with the first mode of vibration

The three curves have the same frequency, which is equal to the flapping frequency
and the amplitude grows slightly as a consequence of the membrane being in reso-
nance. The different curves are in phase, which is a characteristic of the first mode
of vibration.

4.2 Second Mode of Vibration

The second mode of vibration was achieved prescribing m = 2.0 Kg/m2 and T =
0.32 N/m. Fig. 14 and Fig. 15 show the evolution of the lift and drag forces corre-
sponding to the membrane at the second mode of vibration and their comparison
with the rigid plate airfoil case.

Figure 14: Lift force with the second mode of vibration

Fig. 16 shows the evolution of the membrane displacement, in the three reference
points of control, during the last four cycles of the simulation. The curves of the
points x = c/4 and x = 3c/4 are in opposite phase, which is a characteristic of
the second mode of vibration. The evolution of the point corresponding to x = c/2
denotes a non periodical displacement from the nonlinear fluid structure interaction.
During the twenty cycles of the simulation only a small amplification displacement
is predicted. While the lift force shows periodicity every two cycles, the drag force
is almost equal to the rigid flat plate values.
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Figure 15: Drag force with the second mode of vibration

Figure 16: Membrane displacement with the second mode of vibration

4.3 Third Mode of Vibration

The third mode of vibration was achieved prescribing m = 2.0 Kg/m2 and T =
0.1422 N/m. Fig. 17 and Fig. 18 show the evolution of the lift and drag forces for
the flat plate and membrane airfoil at the third mode of vibration. Twenty cycles
were not enough to reach a periodic solution. For this resonance mode the lift curve
displays relatively large variations to the rigid plate counterpart.

Figure 17: Lift force with the third mode of vibration

Fig. 19 shows the evolution of the membrane displacement in the three reference
points of control, during the last four cycles of the simulation. The curves at points
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Figure 18: Drag force with the third mode of vibration

x = c/4 and x = 3c/4 are in phase while the point at x = c/2 is in opposite phase,
which are characteristics of the third mode of vibration.

Figure 19: Membrane displacement with the third mode of vibration

4.4 Comparison of the resonance modes

Fig. 20 and Fig. 21 show the comparison of the lift and drag forces corresponding
to the three resonance modes and the reference flat plate rigid case. The vorticity
contours at each of the marked instants, during the last simulated cycle, are shown
in Fig. 22 and a zoom is shown in Fig. 23.

Fig. 20 shows that at instant A lift drops at the 1st and 3rd mode cases, see also
Fig. 22 and Fig. 23, these airfoils do not carry an attached vortex at the leading
edge and the Kramer (rotational) effect explains the production of the lift force
in the beginning of the downstroke, the same trend is observed for the temporal
evolution of points B to E.

Fig. 21 shows the drag force evolution denoting smaller differences than the ones
observed for the lift force and occur mainly at points F and H. Point F denotes an
increase in the drag force for the 1st mode at the beginning of the upstroke (point E)
corresponding to the membrane maximum displacement at point F. The membrane
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Figure 20: Lift force with the plate and membrane airfoils

Figure 21: Drag force with the plate and membrane airfoils

movement will push the fluid to the opposite side of the airfoil’s movement increas-
ing the drag force. The 3rd mode promotes a high drag force at point H, since the
two displacement peaks of the membrane will push the fluid in the opposite direc-
tion of the movement, which can been seen at point F, plus the detachment of the
leading edge vortex at point H.

Tab. 3 lists the average value of the lift and drag forces calculated during the 20th

stroke. The positive lift force drop and the drag value corresponding to the 1st

resonance mode airfoil, are a consequence of the drag peak observed at point F, the
signal of the average force in the x axis is reverted. In addition the lift over drag
ratio is higher in the vibration modes than for the rigid flat plate.

Table 3: Values of Lift and Drag forces with the plate and membrane airfoils

Force (N/m) Plate 1st Mode 2nd Mode 3rd Mode
Lift 3.659×10−2 1.398×10−2 3.472×10−2 2.766×10−2

Drag −2.109×10−2 1.184×10−3 −1.469×10−2 −1.112×10−2

Lift / Drag −1.735 11.807 −2.384 −2.487
Lift / Lift rigid 1.0 0.382 0.924 0.7558
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Plate 1st Mode 2nd Mode 3rd Mode

Figure 22: Vorticity field with the plate and membrane airfoils (A to H, see Fig. 20)
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Plate 1st Mode 1 2nd Mode 3rd Mode

Figure 23: Vorticity field with the plate and membrane airfoils detailed
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The expected difficult problem of membrane displacement prediction due to aeroe-
lasticity fluid structure coupling was not found despite off the extreme cases of
flapping resonance modes investigated. Rather, the computed instantaneous spatial
airfoil bending, in turn, may be inserted on a computational fluid model, without
the need for the full fluid-membrane interaction.

4.5 Energy Balance

The section presents the calculations of the power required during dragonfly mode,
taking into account only the aerodynamic forces. The inertial forces were not ac-
counted for because the rigid and the resonant airfoils have the same mass dis-
tribution and, consequently, the power required due to inertial forces is the same.
Our goal is to compare the differences in the energy consumption among the four
airfoils.

The energy balance can be divided in three contributions. The power required for
the pitching motion is denoted by CpR and the power required for the translation
motion in the x and y axis is denoted by CpTx and CpTy, respectively.

CpR =
−α ′(t)MR

0.5ρU3
re f S

(14)

CpTy =
Fy sin(β )X ′(t)

0.5ρU3
re f S

(15)

CpTx =
Fx cos(β )X ′(t)

0.5ρU3
re f S

(16)

Where ρ is the fluid density, Ure f is the reference velocity, S is the wing area, Fx

and Fy are both the forces in the x and y axis and β is the angle of motion line,
X ′(t), is the velocity along the motion line, α ′(t) is the pitch velocity and MR is the
pitching moment, the pitch angle is positive in the clockwise direction.

4.5.1 Rigid Plate Analysis

The Fig. 24 shows the evolution of three power coefficients and the total coefficient
for the rigid airfoil. The CpTy coefficient denotes that the downstroke is dominated
by a large power coefficient value which is caused by the airfoil high angle of
attack. At the end of each stroke, there is a small time interval with negative values
that explain the amplitude limitation, identified by (Sun and Tian (2002)).

The CpTx coefficient presents, at the begin of the upstroke, two peaks due to the vor-
tex presence and removal on the airfoil upper surface. The oscillations are caused
by changes of the angular velocity and the angle of attack of the airfoil, during the
downstroke.



358 Copyright © 2011 Tech Science Press CMES, vol.72, no.4, pp.337-366, 2011

Figure 24: Potency coefficients with the plate airfoil

4.5.2 Rigid and Flexible Airfoils Comparison

During the beginning of the upstroke Fig. 25 shows that the (CpR) pitch potency
coefficient corresponding to the 1st mode of vibration displays the lowest negative
values because membrane motion is in opposite direction of the airfoil motion. In
the literature, the negative work contribution has received several interpretations
being the one given by Weis-Fogh (1972) attributed to an elastic element that could
extract energy and release it later.

Figure 25: Pitch potency coefficient with the plate and membrane airfoils

Fig. 26 shows the lift potency coefficient evolution. During the downstroke, the
1st mode displays slightly lower values, according to the observed in the lift force.
During the upstroke, the airfoil is moving upwards and the CpTy is positive. The
resonant airfoils exhibit higher CpTy because they have higher lift absolute values
than the rigid airfoil.

The drag potency coefficient evolution, shown in Fig. 27, follows the drag force
already seen in Fig. 21. The drag peak, at point F of the 1st mode of vibration,
results in a local minimum in the CpTx evolution which has a negative value since
the membrane movement contradicts the airfoil motion.

The CpTotal evolution shown in Fig. 28 attributes the lowest absolute value to the
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Figure 26: Lift potency coefficient with the plate and membrane airfoils

Figure 27: Drag potency coefficient with the plate and membrane airfoils

1st mode. Although there is a significant reduction in the energy consumption in
the 1st mode, the lift loss is higher than in the other airfoils studied. Some extra
energy is required, during the downstroke, due to the membrane upward movement
(relative to its reference). During the upstroke, the membrane downward movement
contradicts the airfoil movement creating a positive effect in the drag force and
consequently in the CpTx.

Figure 28: Total potency coefficient with the plate and membrane airfoils

Tab. 4 shows the work done during the 20th stroke and obtained by integration of
the power coefficient over time. Tab. 5 lists the work done taking into account only
the positive work.



360 Copyright © 2011 Tech Science Press CMES, vol.72, no.4, pp.337-366, 2011

Table 4: Average values of work coefficients with the plate and membrane airfoils

Power Plate 1st Mode 2nd Mode 3rdMode
CwR 3.282×10−2 −5.925×10−3 2.881×10−2 2.931×10−2

CwTy 8.384×10−2 7.283×10−2 9.15×10−2 7.901×10−2

CwTx 3.387×10−2 2.508×10−2 2.765×10−2 2.704×10−2

CwTotal 1.505×10−1 9.288×10−2 1.48×10−1 1.354×10−1

CwTotal relative 1.0 0.617 0.983 0.9
Lift / CwTotal 0.243 0.151 0.236 0.204

Table 5: Average values of positive work coefficients for plate and membrane air-
foils

Power Plate 1st Mode 2nd Mode 3rd Mode
CwR 4.015×10−2 1.962×10−2 3.834×10−2 3.575×10−2

CwTy 8.564×10−2 8.107×10−2 9.407×10−2 8.222×10−2

CwTx 3.484×10−2 2.823×10−2 2.958×10−2 2.896×10−2

CwTotal 1.505×10−1 1.053×10−1 1.495×10−1 1.354×10−1

CwTotal relative 1.0 0.7 0.993 0.9
Lift / CwTotal 0.243 0.133 0.232 0.204

The CpR values for the resonant airfoils 2nd and 3rd modes differ tipically 10 to
20% of the analog results for the rigid flat plate airfoil. The first mode displays
values above 50%. The energetic analysis support the flow dynamics related with
the very small contribution of airfoil shape for hovering flight.

5 Conclusions

Predictions of 2D airfoils in hovering flight were presented for rigid and for flexi-
ble resonant membranes. The computational procedure and methodology was val-
idated with a variety of benchmark tests of a rigid airfoil in hovering flight and
the results show satisfactory agreement with the instantaneous drag and lift forces
reported by Wang [Wang (2000)]. The following conclusions could be withdrawn.

• Three rigid airfoil shapes in hovering flight were compared, flat plate, ellipti-
cal and diamond, at Re = 157 and Re = 1570. The predicted near and far field
vortical structures are very similar for the different airfoil shapes because the
leading and trailing edge vortices are almost independent on the 2D airfoil
curvature. The predicted forces noticeable differences are attributed to the
edge curvature angle of the airfoil shapes. The profiles with sharp edges,
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flat plate and diamond shape, promote strong LEV and contrary, the round
leading edge of the elliptical profile shape decreases the LEV intensity and
reduces the vortices residence time over the airfoil.

• Once validated the numerical tool for flapping airfoils, we have considered
a flexible flat-plate airfoil in dragonfly hovering and in resonant mode. The
flapping frequency was made equal to the natural frequency of the 1D mem-
brane, being the number frequency mode inversely proportional to the ten-
sion. Although the membrane is highly deformed the predicted drag and lift
forces are very much similar to the flat-plate results despite of a highly de-
formed membrane, during the second or third resonant modes, the drag and
lift forces. The inertial and elastic components do not dominate the system
behavior in these operation modes. The membrane bending, associated with
the first mode strongly minimizes the drag force but the lift decreases due
to drag role in dragonfly mode, consequently the lift over drag coefficient
increases substantially.

• The energy global balance and the instantaneous power coefficients during
the 2nd and 3rd vibration modes are withing 20% of the values predicted to
the rigid airfoil despite of the differences presented in the airfoil shapes. The
first vibration mode differs substancialy due to the membrane shape motion
relatively to the surrounding flow.

• The results obtained in this study provide physical insight into the under-
standing of unsteady aerodynamics and flow structures during 2D inclined
hovering flight. The results shed some light to study in detail the modes of
vibration on membrane oscillations. Future studies may be concerned with
stiffness that may create different vibration modes resulting on unsteady in-
teractions with the wake.
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