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Improved Material Point Method for Simulating the Zona
Failure Response in Piezo-Assisted Intracytoplasmic

Sperm Injection

Y. Gan1, Z. Chen2,3 and S. Montgomery-Smith4

Abstract: The material point method (MPM), which is an extension from compu-
tational fluid dynamics (CFD) to computational solid dynamics (CSD), is improved
for the coupled CFD and CSD simulation of the zona failure response in piezo-
assisted intracytoplasmic sperm injection (piezo-ICSI). To evaluate the stresses at
any zona material point, a plane stress assumption is made in the local tangent
plane of the membrane point, and a simple procedure is proposed to find the ef-
fective point connectivity for the orientation of the local tangent plane. With an
iterative algorithm in each time step, the original MPM is improved to better sim-
ulate fluid dynamics problems involving strong shocks. The use of an Eulerian
mesh for solving the momentum equations enables the MPM to automatically han-
dle fluid-membrane interactions without requiring the interface-tracking module.
Several examples are used to demonstrate the robustness and efficiency of the pro-
posed numerical scheme for simulating three-dimensional fluid-membrane interac-
tions. Finally, the proposed procedure is applied to the shock-induced zona failure
analysis for the piezo-ICSI experiment.

Keywords: material point method, piezo-assisted intracytoplasmic sperm injec-
tion, shock-induced failure, fluid-membrane interaction.

1 Introduction

Since firstly presented by Kimura and Yanagimachi (1995), the piezo-assisted intracyto-
plasmic sperm injection (piezo-ICSI) technique has been extensively used in the
clinical treatment of infertility and biological experiments [Mansour (1998); Yanagida,
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Katayose, Yazawa, Kimura, Konnai, and Sato (1999); Takeuchi, Minoura, Shiba-
hara, Shen, Futamura, and Toyoda (2001)]. In the piezo-ICSI procedure, a se-
ries of piezo pulses are applied to an injection micropipette to trigger its vibration,
thereby piercing the oocyte zona. Fig. 1 shows the sequence of the zona pierc-
ing in the piezo-ICSI experiment [Yanagida, Katayose, Yazawa, Kimura, Konnai,
and Sato (1999)]. A small amount of mercury is commonly put inside the injec-
tion micropipette to improve the success rate of piezo-ICSI, although the toxicity
of mercury may lower the survival and fertilization rates of the oocyte and cause
birth defects in the embryo. To develop a piezo-ICSI procedure without mercury
and better control the piezo-ICSI experiment, a fundamental understanding on the
mechanism of the zona piercing in piezo-ICSI is necessary. Model-based simula-
tion, which allows detailed parametric studies and complements experiments, pro-
vides an efficient and cost-effective way to systematically analyze the piezo-ICSI
procedure, which involves fluid-structure interaction and material failure under ex-
treme shock loading conditions.

 
Figure 1: Sequence of the zona piercing in the piezo-ICSI experiment [Yanagida,
Katayose, Yazawa, Kimura, Konnai, and Sato (1999)]

Over the past few decades, many efforts have been devoted towards coupling com-
putational fluid dynamics (CFD) and computational structural dynamics (CSD)
codes for fluid-structure interaction problems (e.g., [Peskin (1972); Zienkiewicz
and Bettess (1978); Liu and Ma (1982); Donea, Giuliani, and Halleux(1982);
Thornton and Dechaumphai (1988); Löhner (1990); Guruswamy and Byun (1993);
Farhat, Lesoinne, and LeTallec (1998); Baum, Luo, Mestreau, Löhner, Pelessone,
and Charman (1999); Tallec and Mourob (2001); Zhang, Gerstenberger, Wang, and
Liu (2004); Cirak, Ortiz, and Pandolfi (2005); Tezduyar (2006); Löhner, Yang, and
Oñate (2006); Küttler (2008)]). Two approaches have been mainly used: strong
coupling and loose coupling [Löhner, Cebral, Yang, Baum, Mestreau, Charman,
and Pelessone (2004); Kamakoti and Shyy (2004)]. In the strong coupling method,
the governing equations are reformulated by combining the equations of motion
for fluid and structural systems and solved simultaneously. The application of this
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strong coupling method is currently limited to two-dimensional problems due to
its grid size requirement and expensive computational cost. The widely used loose
coupling approach solves the fluid and structural equations separately and handles
the interaction between the fluid and structure by the exchange of information at the
fluid-structure interface. Such exchange procedure includes the mapping of fluid
surface loads onto the structural mesh and the transfer of the structural position
and velocity onto the fluid surface grid, which is implemented by using different
interpolation and extrapolation functions (e.g., [Smith, Cesnik, Hodges, and Moran
(1996); Smith, Hodges, and Cesnik (2000); Zhang, Gerstenberger, Wang, and Liu
(2004)]). To account for the structural deformation, one algorithm for the treatment
of the moving fluid boundary is required. Many interface-tracking techniques have
been developed to capture the moving interface, as reviewed by earlier work [Löh-
ner, Cebral, Yang, Baum, Mestreau, Charman, and Pelessone (2004); Kamakoti
and Shyy (2004); Tezduyar (2007)]. However, depending on the mesh type, these
techniques may exhibit certain disadvantages, e.g., loss of some information in the
interpolation, unsatisfactory elements on the boundary, and extra cost associated
with the recalculation of geometry.

In addition to the fluid-structure interaction, the prediction of the shock-induced
material failure is essentially important for the simulation of the zona piercing in
piezo-ICSI. Generally, there exist two different approaches for modeling the ma-
terial failure evolution, namely, continuum and discrete methods [Bazant and Oh
(1983); de Borst (1987); Wiehe, Kroplin, and de Borst (1998); Feenstra, de Borst,
and Rots (1991a); Feenstra, de Borst, and Rots (1991b); Pandolfi, Guduru, Ortiz,
and Rosakis (2000); Schreyer, Sulsky, and Zhou (2002)]. The work related to the
continuum approach assumes that a continuum constitutive relation is still valid
in the failure zone. This assumption may result in the possible loss of ellipticity
and material stability within the failure zone [31]. Frequently, the finite element
method (FEM) is used for the structural solver in the coupling of CFD and CSD
(e.g., [Donea, Giuliani, and Halleux(1982); Löhner (1990); Guruswamy and Byun
(1993); Zhang, Gerstenberger, Wang, and Liu (2004); Tezduyar (2006)]). To en-
sure the accuracy, a small finite element size is required in the highly deformed
failure zone, which, in turn, leads to more computational cost for the message pass-
ing between fluid and structural grids. Alternatively, the discrete approach looks
upon the material failure as a displacement discontinuity with tractions being re-
lated to the displacement jumps. Likewise, the employment of the discrete model
encounters the same numerical problem of handling large deformations as that of
the continuum model when the FEM is used. Such numerical difficulty associated
with the FEM can be overcome by adopting meshless methods as the structural
solver because they abandon the use of rigid connectivity.
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The meshless methods have been demonstrated to be well suited to the analysis of
the large deformations and discontinuity propagation problems, and received com-
prehensive attention [Belytschko, Krongauz, Organ, Fleming, and Krysl (1996);
Atluri and Zhu (1998); Atluri and Shen (2002); Han, Rajendran, and Atluri (2005);
Han, Liu, Rajendran, and Atluri (2006); Li and Atluri (2008); Atluri, Sladek, and
Soric (2009)]. As one of the meshless approaches, the material point method
(MPM) is an extension to solid dynamics problems of a hydrodynamics code called
FLIP [Brackbill and Ruppel (1986)] evolving from the particle-in-cell method. The
essential idea of the MPM is to take advantage of both the Eulerian and Lagrangian
methods while avoiding the shortcomings of each. In the MPM, the material is
discretized by a set of material points, each of which carries the material properties
and is tracked throughout the deformation history. The deformation of the contin-
uum, hence, is described by the movement of the Lagrangian material points. One
Eulerian background mesh is constructed to solve the equations of motion, and the
internal state variables carried by material points are updated by the interpolation
of the solutions at the mesh nodes. In this way, no additional module is needed to
identify and track the interface between different materials and a continuous change
of the mesh topology with the evolution of failure is avoided. With the deforma-
tion history recorded at material points for the given history-dependent constitutive
equations, the MPM is able to handle dynamic problems with material discontinu-
ity, large deformation and multiple materials, such as impact/contact, penetration
and perforation, and fluid-structure interaction with strong shocks, as demonstrated
in open literatures [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer
(1995); York II, Sulsky, and Schreyer (2000)].

Based on the above brief summary, the MPM appears well suited for the modeling
of the zona piercing process in piezo-ICSI. In this paper, an effort is made to modify
the original MPM algorithm for the three-dimensional fluid-membrane interaction
with high-strength shocks, as presented in Section 2. Four cases are then considered
in Section 3 to verify the proposed MPM algorithm and test the capability of the
improved MPM procedure to simulate the failure evolution of the mouse zona in
piezo-ICSI. Finally, concluding remarks are made in Section 4.

2 Three-dimensional MPM formulation for fluid-membrane interaction

Based on the experimental observation [Yanagida, Katayose, Yazawa, Kimura,
Konnai, and Sato (1999)], the oocyte is modeled as a droplet of viscous fluid en-
closed by an isotropic membrane, one solid structure which only possesses the
stretching stiffness in the local tangent plane and has no bending rigidity. To be
computationally robust, the original MPM algorithm is enhanced for the simula-
tions of membranes, fluids and fluid-membrane interaction, as described below.
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2.1 MPM membrane model

In the MPM, material points in a continuum body are connected via the Eule-
rian grid nodes [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou, and Schreyer
(1995)]. No connection exists between any two material points separated by one
or more grid cells. It is known that membranes have stresses only in the local
tangent plane, while other stress components are negligible. Thus, to model the
three-dimensional membrane with the MPM, the algorithm of computing stresses
at points in the original MPM must be modified so that the stresses of membrane
material points are in the local tangent plane. Otherwise, unrealistic membrane
rupture may occur due to the absence of effective connection between neighboring
membrane points through grid nodes.

 
Figure 2: The definition of the local normal-tangential coordinate system for a
three-dimensional membrane

Fig. 2 illustrates one three-dimensional membrane in the global x-y-z Cartesian
coordinate system. The local Cartesian coordinate system at membrane point p is
defined as the x’-y’-z’ with the x′-y’ plane being the local tangent plane and the
z’ axis being along the thickness direction. There is one layer of material points
through the membrane thickness. Since the membrane has stresses in the tangent
plane only, the plane stress assumption is made in the x’-y’ plane. Moreover, all
other stress components are set to be zero. If the membrane is linear elastic, stress
components in the local coordinate system can then be simply computed as

ε
′
z =−

ν
(
ε ′x + ε ′y

)
1−ν

(1)
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εx′y′
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where E and ν are the Young’s modulus and the Poisson’s ratio of the membrane,
respectively.

In the MPM, the equations of motion are solved in the x-y-z coordinate system. The
strain rate at membrane point p, ε̇εε p, is calculated by

ε̇εε p =
1
2

[
∇vp +(∇vp)

T
]

(3)

where vp is the velocity vector of point p in the global x-y-z coordinate system. At
time level k+1 (k=1, 2, 3, . . . ), the total strains at point p are

εεε
k+1
p = εεε

k
p + ε̇εε

k+1
p ∆t (4)

in which the superscript denotes the time level, and ∆t is the time step. To evaluate
stresses at membrane points, membrane strains computed in the x-y-z coordinate
system must be transformed to the x’-y′-z’ coordinate system. According to tensor
theory [Lai, Rubin, and Krempl (1993)], the strains in the local x’-y’-z’ coordinate
system can be found by the following transformation formulation

εεε
′
p = QT

εεε
k+1
p Q (5)

where εεε ′p is strains at point p in the x′-y’-z’ coordinate system, and Q is the direction
cosine matrix for the transformation of coordinates in three dimensions and can be
expressed as

Q =

Qxx′ Qxy′ Qxz′

Qyx′ Qyy′ Qyz′

Qzx′ Qzy′ Qzz′

 (6)

with Qi j (i = x, y, z and j = x′, y′, z′) being the directional cosine between the global
basis vector ei and the local basis vector e j. Once the local membrane stresses are
computed with the local strains, the plane stress assumption, and the constitutive
equation, they should be transformed back to the x-y-z coordinate system for the
next MPM computation cycle by

σσσ
k+1
p = Qσσσ

′
pQT (7)
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where σσσ p and σσσ ′p are the symmetric stress tensor in the global and local coordinate
systems at point p, respectively. It should be noticed that the local stresses rather
than the local strains are rotated back to the global coordinate system.

As can be seen from the above derivation, the key part of evaluating stresses at
membrane points is the determination of Q. To find elements of Q, it is proposed
that the basis vectors of the local x’-y’-z’ coordinate system, v′x, v′y and v′z, be found
by two steps: (1) calculate the vector normal to the membrane surface, v′z, and then
(2) determine vectors v′x and v′y, as discussed below.

In addition to the point connectivity method used by York II et al. [York II, Sulsky,
and Schreyer (1999)] in the two-dimensional MPM membrane model, many other
approaches have been proposed to determine the material point normal, such as
simple color function approach, interpolation method, mass matrix approach and
point-set method [York II (1997); Torres and Brackbill (2000)]. These methods,
however, are not effective for complex membrane shapes, and their numerical im-
plementation is much more complicated than that of the point connectivity method.
In fact, the connectivity method is quite simple and convenient despite the disad-
vantage of additional storage space for the point connectivity data, which should
not be a major concern with current computer hardwares.

The original algorithm to set material points is cell-based. Material points are reg-
ularly distributed in grid cells, and each point is assigned a fraction of the mass
of the associated cell. Since membrane points have no ordered relationship with
grid cells, the initialization of membrane points is performed in a different way to
construct the connectivity information of membrane points.

The membrane surface is firstly approximated by a collection of triangles, and then
the membrane material points are defined on the vertices. Let s be the surface
area of the membrane, ρm denote the mass per unit area of the membrane, and NP

represent the total number of vertices. Then, the mass of each material point is
simply set to be sρm/NP. Insufficient membrane points may result in unrealistic
membrane rupture due to the separation of membrane points by mesh cells. On
the other hand, more membrane points require more computational cost. Thus, the
triangulation of the membrane surface should be performed based on the available
resources and the characteristics of the problems.

Because of its initialization on the triangle vertex, each membrane material point
will be shared by several triangles. The normal vector of each triangle can be easily
found with the coordinates of its three vertices. As illustrated in Fig. 3, the point
normal at point p is simply taken as the average of vectors normal to the triangles
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Figure 3: Calculation of the point normal

to which point p belongs, i.e.,

v′z =
NTri

∑
i=1

ni/NTri (8)

where ni is the unit vector normal to triangle i and NTri is the total number of
triangles surrounding point p. Conventionally, the normal to a triangle is calculated
by the right-hand rule and the outward-pointing normal is used for closed surfaces.

Now, the next step is to determine v′x and v′y. In three dimensions, the relation
between the values of v′z at time levels k+1 and k can be expressed as

v′k+1
z = S ·v′kz (9)

where S is the 3×3 orthogonal matrix and maps v′kz to v′k+1
z , but preserves all vec-

tors perpendicular to both v′kz and v′k+1
z . Due to the use of the Cartesian coordinate

system, the vectors of v′k+1
x and v′k+1

y can be also written as

v′k+1
x = S ·v′kx (10)

v′k+1
y = S ·v′ky (11)
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Therefore, the problem is reduced to find S. Let w̄ denote the cross product of v′kz
to v′k+1

z , and ŵ be the unit vector in the same direction, i.e.,

w̄ = v′kz ×v′k+1
z (12)

ŵ = w̄/|w̄| (13)

Then

P1 = ŵ⊗ ŵ (14)

P2 = I3− ŵ⊗ ŵ (15)

are the orthogonal projections that map onto subspace perpendicular to v′kz and
v′k+1

z , and the subspace spanned by v′kz and v′k+1
z , respectively. Here, I3 denotes the

3×3 identity matrix. Then, S will be the identity on the range of P1, and a two-
dimensional rotation on the range of P2. Using Gram-Schmidt orthogonalization
[Golub and Van Loan (1996)], it may be seen that the range of P2 has orthonormal
basis consisting of the two vectors b̂1 and b̂2, i.e.,

b̂1 = v′kz (16)

b̂2 = b2/|b2| (17)

b2 = v′k+1
z −

(
b̂1 · v′k+1

z

)
b̂1 (18)

and with respect to this basis, S performs the following two-dimensional rotation

R =
[

cosθ sinθ

−sinθ cosθ

]
(19)

where cosθ = v′kz ·v′k+1
z , and sinθ =

√
1− cos2 θ . Here, sinθ can always be taken

to be non-negative, so the square root calculation is unambiguous. Therefore

R =
(
cosθ b̂1− sinθ b̂2

)
⊗ b̂1 +

(
sinθ b̂1 + cosθ b̂2

)
⊗ b̂2 (20)

Now

S = RP2 +P1 (21)

which after simplification becomes

S = (ŵ⊗ ŵ)+
(

v′kz ·v′k+1
z

)
(I3− ŵ⊗ ŵ)+

(
v′k+1

z ⊗v′kz −v′kz ⊗v′k+1
z

)
(22)
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The only way a singularity can happen in this calculation is when w̄= 0, in which
case S = I3. After the orientation of the local coordinate axes has been updated, the
elements of matrix Q can be directly calculated based on their definition.

The above procedure clearly shows that the proposed three-dimensional MPM
membrane model can be easily implemented by modifying the existing three-dimen-
sional MPM code. If the material point is a membrane point, its total strains in the
global coordinate system are rotated to the local coordinate system at each time
step, and then the plane stress assumption is applied. With an appropriate consti-
tutive model, the local stresses at membrane points are computed and transformed
back to the global coordinate system for the evaluation of the internal forces at mesh
nodes. The goal of this paper is to present the derivation and evaluation of the three-
dimensional fluid-membrane interaction MPM formulation for the modeling of the
zona piercing process in piezo-ICSI, in which no zona wrinkle is assumed due to
the suction within the holding pipette. Hence, the MPM membrane algorithm for
the membrane wrinkle is not considered here and will be studied in the future work.

2.2 MPM fluid model for high-strength shocks

As demonstrated by Sulsky, Chen, and Schreyer (1994) and Sulsky, Zhou, and
Schreyer (1995), no constitutive equations are used in the development of the MPM
discrete momentum equations. Hence, the discretization procedure and the numer-
ical scheme of the original MPM are valid for solid and fluid points. The key
difference between fluid and solid material points is the various constitutive rela-
tions they respectively follow. For viscous fluid points, the relation between the
stresses and rate of strains is given by

σσσ f = 2µε̇εε f +λ tr(ε̇εε f )I−PI (23)

where the f subscript denotes the fluid point, λ is bulk viscosity of the fluid, µ is
shear viscosity of the fluid, P is pressure of fluid points and I is the second-order
unit tensor.

The strain rate of fluid material points can be obtained by Eq. (3). To find stresses at
fluid points with Eq. (23), an equation of state (EOS) is required for fluid pressure
P, namely,

I f = I (P,ρ f ) (24)

where I f and ρ f are the specific internal energy and the density of fluid points,
respectively. Based on the mass conservation, the density of material points at time
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level k+1 can be updated by the following equation

ρ
k+1
f =

ρk
f

1+∆t
(

∇ ·vk+1
f

) (25)

where v f is the velocity vector of fluid points. The EOS is dependent on the internal
energy as well as density. The energy equation is considered at each material point.
If the thermal effect is neglected, the conservation of energy gives that the change
of internal energy is equal to the rate of mechanical work done to the system. Thus,
the internal energy of fluid points is updated by

Ik+1
f = Ik

f +
∆t

ρ
k+1
f

σσσ
k+1
f :ε̇εεk+1

f (26)

It can be found from Eqs. (24) and (26) that Eq. (23) is nonlinear because both
sides contain the stress term. Hence, an iterative procedure must be employed to
obtain convergent internal energy and pressure for strong shock problems. At time
level k+1, the iteration steps are described as follows:

(1) Calculate ρ
k+1
f by Eq. (25)

(2) Set the initial internal energy of fluid points as

Ik+1,m
f = Ik

f +
∆t

ρ
k+1
f

σσσ
k
f :ε̇εε

k+1
f , m = 1 (27)

where m denotes the mth iteration loop.

(3) Solve the equation of state for the pressure of fluid points

Ik+1,m
f = I

(
Pk+1,m,ρk+1

f

)
, m = 1,2, . . . (28)

(4) Compute the stress tensor of fluid points

σσσ
k+1,m
f = 2µε̇εε

k+1
f +λ tr

(
ε̇εε

k+1
f

)
I−Pk+1,mI (29)

(5) Update the internal energy of fluid points
Ik+1,m+1

f = Ik
f + ∆t

ρ
k+1
f

σσσ
k+1,m
f :ε̇εεk+1

f m = 1

Ik+1,m+1
f = Ik

f + ∆t
ρ

k+1
f

(
σσσ

k+1,m−1
f +σσσ

k+1,m
f

2

)
:ε̇εεk+1

f m > 1
(30)
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(6) If the internal energy converges, exit the iteration and set the internal energy
and stresses of fluid points at time level k+1 by

Ik+1
f = Ik+1,m+1

f , σσσ
k+1
f = σσσ

k+1,m
f (31)

Otherwise, go to (3) for the next iteration loop.

The use of artificial viscosity in fluid dynamics simulations has proven itself to be
able to smooth the oscillation at the shock front and give more accurate results. The
artificial viscosity employed in the MPM, q, is added to the pressure of fluid points
and expressed as{

q = ρLc

{
c0Lc [tr(ε̇εε f )]

2− c1a tr(ε̇εε f )
}

tr(ε̇εε f ) < 0

q = 0 tr(ε̇εε f )≥ 0
(32)

where a is the local sound speed of the fluid point, c0 and c1 are constants, and Lc

is the characteristic length. In the three-dimensional MPM, Lc is calculated as

Lc = 3
√

Vcell (33)

where Vcell is the volume of the grid cell. Usually, the grid cell in the three-
dimensional MPM is cubic. Thus, the characteristic length is identical to the side
length of the background mesh cell. The artificial viscosity given in Eq. (32) is
also used in LS-DYNA [Hallquist (1998)], in which c0 and c1 default to 1.5 and
0.06, respectively. In general, the values of c0 and c1 should be determined through
numerical tests.

2.3 Fluid-membrane interaction with the MPM

After stresses at fluid and membrane material points are computed, they must be
transformed into nodal forces for the solution of the equations of motion. Fig. 4
illustrates a fluid-membrane system in the two-dimensional MPM. At time level
k+1, the transformation of stresses at material points to forces at node i is given as

fk+1
i =−

Nm

∑
m=1

Mm∇Ni(Xk+1
m ) ·σσσ k+1

m /ρ
k+1
m −

N f

∑
f =1

M f ∇Ni(Xk+1
f ) ·σσσ k+1

f /ρ
k+1
f (34)

where subscript m denotes the membrane point, X is the coordinate of material
points, Ni is the shape function of node i, Nm and N f are the total numbers of
membrane and fluid points, respectively, and M is the mass of material points. The
mass at node i, mi is calculated by

mk+1
i =

Nm

∑
m=1

MmNi(Xk+1
m )+

N f

∑
f =1

M f Ni(Xk+1
f ) (35)
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Figure 4: Illustration of the fluid-membrane interaction in the two-dimensional
MPM

With the nodal mass and the nodal force, the nodal accelerations are obtained by
solving the following equation of motion

mk+1
i ak+1

i = fk+1
i + fk+1,ext

i (36)

where ai is the accelerations at node i and fk+1,ext
i is the external force applied at

node i. Then, the accelerations at material points are updated through the interpola-
tion of nodal accelerations [Sulsky, Chen, and Schreyer (1994); Sulsky, Zhou, and
Schreyer (1995)].

As can be seen from the above procedure, one material point influences its neighbor
points (including both membrane and fluid points) through the nodal force summa-
tion and the nodal acceleration interpolation. Therefore, the interaction between
the fluid and the membrane is indirectly coupled via the mesh grid nodes without
any consideration of the fluid-membrane interface. As a result, there is no need
for the MPM to identify the fluid-membrane interface and apply correct boundary
conditions, in contrast to what most CFD-CSD coupling methods generally do. In
other words, the MPM is able to automatically handle the fluid-membrane interac-
tion without requiring special treatment. Basically, the motion equations of fluids
and structures are inherently coupled together and solved in a single step within the
MPM. Therefore, the proposed MPM scheme can be views as one strong CFD-CSD
coupling method.
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3 Demonstrations

3.1 Impact between a membrane and an elastic solid

An example of a cuboid impacting a net is used to validate the MPM formulation
for membranes. As shown in Fig. 5, a cuboid solid is initially positioned above
the center of a stationary net. At time t=0, the cuboid moves toward the net with a
velocity of 1 m/s along the z-direction. Both the cuboid and the net are elastic, and
their dimensions and material properties are listed in Tabs. 1 and 2, respectively.

 
Figure 5: An elastic cuboid impacting a net

The MPM model is composed of 53500 material points with 40000 for the net and
13500 for the cuboid. The net is triangulated with 77922 triangles. The compu-
tational mesh is built with cubic cells, and three cell sizes are employed, namely,
0.02, 0.025 and 0.05 m. All simulations are performed with a time step of 1×10−5

s. Fig. 6 presents the time history of the z-directional displacement at the central
point of the cuboid by the MPM and the LS-DYNA. It can be observed from the
figure that the solutions by the MPM and the LS-DYNA agree well, and the MPM
solutions are convergent as the mesh size becomes smaller. The deformations of
the net at various times are shown in Fig. 7 (0.02 m mesh size).

3.2 One-dimensional shock tube

Fig. 8 shows a shock tube divided into two halves by a diaphragm. Initially, the left
region is full of perfect gas with higher pressure pL and density ρL, and the right



Improved Material Point Method 59

Table 1: Dimensions of the cuboid and the net
Material Length (m) Width (m) Height or Thickness (m)
Cuboid 0.2 0.2 0.1

Net 1 0.2 0.0125

Table 2: Material properties of the cuboid and the net

Material Young’s Modulus (Pa) Poisson’s ratio Density (kg/m3)
Cuboid 2×107 0.2 4000

Net 2×107 0.0 2000
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Figure 6: Time history of the z-directional displacement at the central point of the
cuboid

region contains ideal gas with lower pressure pR and density ρR. The diaphragm is
suddenly broken at time t=0, and then the shock wave due to the pressure disconti-
nuity propagates to the right.

The length of the tube, l, is 1 m and the initial velocities for the air in both regions
are zero. Other initial conditions are ρL= 1 kg/m3, pL=1 Pa, ρR= 0.125 kg/m3,
and pR=0.001 Pa. The ideal gas EOS is applied to the gases in both regions. This
one-dimensional problem is solved with the three-dimensional MPM. The x-axis is
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Figure 7: Material point position plots for the simulation of a cuboid impacting a
net (0.02 m mesh size): (a) t=0.05 s, (b) t=0.1 s, (c) t=0.15 s, (d) t=0.2 s

 
Figure 8: One-dimensional shock tube problem
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Figure 9: Initialization of points in one cell

chosen to be the wave propagation direction. The nodal velocities along the other
two directions, i.e., the y- and z-directions, are nullified. The background mesh is
composed of 800 cubic cells with a side length of 0.00125 m. The initialization of
material points in each cell is demonstrated in Fig. 9. Thus, each cell has 25 points
and there are 20000 points in total. The time step is 2.0×10−5 s, and the artificial
viscosity defined in Eq. (32) is applied with c0=2.0 and c1=1.0.

To verify the proposed iterative algorithm, the non-iterative MPM algorithm for
fluids presented by York II et al. [Your II (1997); York II, Sulsky, and Schreyer
(2000)] is also used to simulate this example. Fig. 10 gives the profiles of pressure,
density, velocity and internal energy along the wave propagation direction at time
t=0.143 s using the non-iterative algorithm, and the corresponding profiles obtained
with the presented iterative algorithm are illustrated in Fig. 11. Figs. 10 and 11 are
both plotted according to the averages of material points initialized in every four
consecutive mesh cells. In Fig. 10, unfavorable agreement is reached between the
MPM and analytical solutions. In particular, the density at the shock front in the
MPM solution is up to 47 kg/m3, whereas the corresponding analytical solution is
0.73 kg/m3. This demonstrates that the non-iterative algorithm is not able to give
satisfactory solutions for problems with high shock strength. From Fig. 11, it can
be seen that the results for the iterative algorithm favorably agree with the analytical
solutions.
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Figure 10: MPM solutions with the non-iterative algorithm

3.3 Membrane expansion

As shown in Fig. 12, a gas-filled box is covered by a flat membrane, and other walls
of the box are rigid. One elastic cube is put at the center of the membrane. The
membrane perimeter is fixed, and the gas in the box has an initial pressure of 800
Pa. Due to the pressure difference between the inside and outside of the box, the
gas will expand and the membrane will be displaced. Eventually, the cube will be
released from the membrane. During the time period of this simulation, no release
is considered and the cube always has close contact with the membrane.

The box is 0.2 m in length, 0.2 m in width, and 0.1 m in height. Hence, the 0.01m-
thick square membrane has a side length of 0.2 m. The cube has a side length of
0.04 m. The membrane is triangulated with 19602 triangles, and represented by
10000 material points. The material points for the cube and the gas are initialized
by the standard cell-based algorithm [Sulsky, Chen, and Schreyer (1994); Sulsky,
Zhou, and Schreyer (1995)], with 13824 solid points for the cube, and 48000 fluid
points for the gas. Linear elasticity is used for the membrane and cube with elastic
parameters given in Tab. 3. The ideal-gas EOS is adopted for the gas, and artificial
viscosity is used with c0=2.0 and c1=1.0. A time step of 1×10−5 s is employed and
three cubic cell sizes of 0.01, 0.02 and 0.04 m are used to construct the computa-
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Figure 11: MPM solutions with the iterative algorithm

 
Figure 12: Setup of the fluid-membrane interaction problem

tional grid. The z-directional displacement of the cube centroid is given in Fig. 13.
The good match between the MPM and LS-DYNA solutions demonstrates that the
MPM can solve fluid-membrane interaction problems without using additional al-
gorithms. In addition, the MPM results are convergent with decreasing background
mesh size. The deformed shapes of the membrane at various times are shown in
Fig. 14 (0.01 m mesh size). Due to the inertia of the cube, the membrane points
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interacting with the cube have smaller velocities than other membrane points. A
concavity at the center of the membrane is therefore observed in the figure.

Table 3: Material properties of the cube and the membrane

Material Young’s Modulus (Pa) Poisson’s ratio Density (kg/m3)
Cube 1×107 0.2 1000

Membrane 1×105 0.45 1000
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Figure 13: Time-history of the z-directional displacement of the cube centroid

3.4 Mouse oocyte response in piezo-ICSI

This example is to test the ability of the proposed MPM scheme for the zona failure
analysis in piezo-ICSI. Fig. 15 illustrates the set-up of the piezo-ICSI experiment
[Ediz and Olgac (2004)]. The mouse oocyte and the tips of the holding and injection
micropipettes are immersed in a droplet of medium completely covered by mineral
oil. In the procedure, the mouse zona pellucida is pierced due to the sudden motion
of the injection pipette initiated by a piezo actuator.

To save computing cost, a small computational domain merely containing the oocyte,
sections of the injection and holding micropipette tips as well as the surrounding



Improved Material Point Method 65

  
 

  
 

(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 14: Deformed shapes of the membrane at various times (0.01 m mesh size):
(a) t=0.005 s, (b) t=0.001 s, (c) t=0.015 s, (d) t=0.02 s, (e) t=0.025 s, (f) t=0.03 s

medium is adopted. The length, width and height of the domain are respectively
150, 130 and 130 µm. The mouse oocyte is modeled as a spherical isotropic mem-
brane surrounding a viscous fluid droplet. The oocyte is 100 µm in diameter and
the membrane is 8 µm thick. The membrane surface is triangulated by 81920 tri-
angles and discretized with 40962 membrane points. One 15µm-long injection
micropipette tip section is modeled with 5400 solid points. The outer and inner di-
ameters of the injection micropipette are 10 and 8 µm, respectively. For simplicity,
the holding micropipette tip section is modeled as one 15-µm thick square plate
with 70 µm side length and initialized with one point per cell. The cytoplasm is
initially discretized with twenty-seven fluid points in each cell, and points repre-
senting the medium fluid outside the oocyte are initialized with one point per cell.
The MPM mesh consists of 8-node cubic cells with a side length of 5 µm and there
are 175522 material points in total. Fig. 16 shows the MPM model including the
oocyte (cyan), the injection micropipette (white), the medium fluid (red) and the
holding micropipette (blue).

The injection micropipette has an initial density of 26441 kg/m3 with the consider-
ation of the added mass due to the mercury inside the micropipette. The densities of
the holding micropipette and the membrane are 2300 and 1100 kg/m3, respectively.
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Both the cytoplasm and the medium fluid have a density of 1000 kg/m3 and a shear
viscosity of 8.9×10−4 Pa·s, and Stokes condition is applied for them. The stiffened
gas EOS [Cocchi and Saurel (1997); Haller, Ventikos, and Poulikakosa (2002)] is
used for the medium and cytoplasm and defined as

P+(Γ+1)P∞ = Γρ f I f (37)

where Γ is Grüneisen exponent and P∞ is a fitting parameter. Tab. 4 gives values of
Γ and P∞ for the medium and the cytoplasm [Gan and Chen (2008)]. The injection
and holding micropipettes are linear elastic with Young’s modulus E= 63.4 GPa
and Poisson’s ratio ν = 0.21. The constitutive model of the membrane is the strain-
based elastodamage one with the following set of equations:

f d = εmax−S (38)

Ed = 2c0Ee [exp(−c1ω)−1] 0≤ ω < ∞ (39)

S = SL (1+ω) (40)

σσσ =
(

Ee +Ed
)

: εεε = Eed : εεε (41)

in which f d is the damage surface function, εmax is the maximum principal strain
of the zona, S is the damage hardening-softening function, SL is the maximum prin-
cipal strain corresponding to the elastic limit, c0 and c1 are model parameters, ω

is a monotonically increasing variable used to parameterize the damage evolution,
Ee and Ed are respectively secant stiffness tensors for the elastic and damage pro-
cesses, Eed is the secant elastodamage stiffness tensor, and σσσ and εεε are the stress
and strain tensors of the membrane, respectively. Based on the work by Gan and
Chen (2008), the elastodamage model parameters for the membrane are listed in
Tab. 5 and the membrane point fails if its maximum principal strain exceeds 0.06.
In the simulation, the oocyte is free of the initial membrane stresses and fluid pres-
sure and no zona wrinkle is assumed due to the suction in the holding pipette. To
absorb the outgoing waves, the viscous damping stresses are continuously applied
along all the domain boundaries [Shen and Chen (2005)]. The stress components of
failed points are nullified while their inertia contribution to the model is still kept.

Table 4: Stiffened-gas EOS parameters for fluids

Fluid Γ P∞(Pa)
Cytoplasm 4.0 2.12×108

Medium 4.0 6.13×108
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Figure 15: Setup of the piezo-ICSI procedure [Ediz and Olgac (2004)]

Table 5: Elastodamage model parameters for the membrane

Young’s modulus E (kPa) Poisson’s ratio ν c0 c1 SL

17.9 0.49 10 10 0.05937

The experiment has shown that the injection micropipette has a much larger lateral
vibration than the axial oscillation [Ediz and Olgac (2004)]. Therefore, the demon-
stration focuses on the oocyte response resulting from the lateral translation of the
injection micropipette tip. Based on the free vibration analysis of the micropipette
and the experimental observation, the lateral translation is set as a sinusoid with
13.5 µm amplitude and 100 µs period. No slip between the micropipette tip and
the membrane is assumed. The time step is 5.0×10−10 s and the simulation time
period is 100 µs. The deformed shapes of the oocyte are presented in Fig. 17 and
the failed membrane points are marked by red color. As can be seen from Fig.
17, the oocyte experiences large deformation and the failed points are concentrated
at four corner areas around the contact zone between the micropipette tip and the
zona. This simulation result is consistent with the experimental observation by Ediz
and Olgac (2004), and confirms that the piercing of the mouse zona in piezo-ICSI
is mainly due to the lateral oscillation of the injection micropipette. Due to the lo-
cal nature of the constitutive model employed here, however, the simulation results
are mesh-dependent, and an alternative modeling approach must be considered. A
further discussion on this issue is beyond the scope of this paper with a focus on
the spatial discretization procedure.

4 Concluding remarks

The improved MPM algorithms for three-dimensional simulations of membranes,
fluids and fluid-membrane interaction have been presented in this paper. To imple-
ment the MPM for membranes, the plane stress assumption is made in the local tan-
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Figure 16: The MPM model of the mouse oocyte in piezo-ICSI: (a) MPM model,
(b) zona, (c) medium fluid, (d) holding micropipette, (e) injection micropipette

gent plane of membrane points so that the stresses at membrane points are consis-
tent with the membrane orientation. Based on the mesh-generation technique in the
FEM, a simple and effective method of initializing membrane points is developed
for building the point connectivity used to determine the local normal-tangential
coordinate system for membrane points. By using an iterative algorithm in each
time step, the MPM fluid scheme has been improved to enable the simulation of
strong-shocks in fluid dynamics problems. The interaction between the fluid and
membrane is coupled via the Eulerian grid nodes without the need for tracking the
fluid-membrane interface.

Three cases, namely, a cuboid impacting a membrane, the shock tube test and the
membrane expansion, are considered to demonstrate and verify the proposed pro-
cedure. The reasonable agreement between the MPM results and the analytical
and FEM solutions illustrates the potential of the proposed procedure for fluid-
membrane interaction problems. Finally, the response of the mouse oocyte in
piezo-ICSI is studied with the proposed method, and the results qualitatively agree
with the experiment, which demonstrates the capability of the improved MPM al-
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Figure 17: Deformation shapes of the oocyte at different times: (a) t=28 µs, (b)
t=52 µs, (c) t=76 µs, (d) t=100 µs
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gorithm to simulate the zona piercing process in piezo-ICSI. Future work includes
the membrane wrinkle algorithm, and calibration of material parameters via well-
designed experiments.
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